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ABSTRACT 

This paper investigates the development of a rhythm representa-

tion of music audio signals, that (i) is able to tackle rhythm relat-

ed tasks and, (ii) is invertible, i.e. is suitable to reconstruct audio 

from it with the corresponding rhythm content being preserved. 

A conventional front-end processing schema is applied to the au-

dio signal to extract time varying characteristics (accent features) 

of the signal. Next, a periodicity analysis method is proposed that 

is capable of reconstructing the accent features. Afterwards, a 

network consisting of Restricted Boltzmann Machines is applied 

to the periodicity function to learn a latent representation. This 

latent representation is finally used to tackle two distinct rhythm 

tasks, namely dance style classification and meter estimation. 

The results are promising for both input signal reconstruction and 

rhythm classification performance. Moreover, the proposed 

method is extended to generate random samples from the corre-

sponding classes. 

1. INTRODUCTION 

Invertible signal transformations play an essential role in the mu-

sic processing field. From everyday use of music, like adjusting 

the equalizer of a stereo system up to the process of sound pro-

duction and mixing, the transformation of audio is a crucial step 

for most of these applications. Most of them usually rely on the 

well-studied Short Time Fourier Transform (STFT) (a.k.a. Gabor 

Transform), which offers a very simple and intuitive way to edit 

audio signals. However, the main limitation of STFT is the linear 

spacing of frequency bins, which can be a drawback for music 

analysis systems, since in this case the energy concentrates on 

frequencies in a logarithmic scaling. The Constant Q Transform 

(CQT), firstly introduced by Brown [1], although it has been an 

alternative to STFT for almost three decades, it didn’t get as 

much attention; not only due to its computational cost, but mostly 

because it is irreversible. In [2] authors presented a computation-

al framework for a CQT with almost perfect reconstruction, and 

just one year later, a perfect reconstruction was achieved [3]. 

However, most of the signal analysis and transformation ap-

plications involve transformations based solely in time slices, i.e. 

observing the spectral content on a segment basis. Transfor-

mations in the other dimension (i.e. across time for each frequen-

cy bin) have not yet been studied. Such transformations would 

have an impact on the temporal organization of the input signal, 

which in the case of music is very closely related to rhythm. 

The aim of this paper is to introduce a rhythm representation 

that can be exploited to tackle rhythm related tasks, and it is in-

vertible, so that a rhythmically relevant signal can be recon-

structed from it. Such a representation is useful, since it can pro-

vide a better insight of rhythm related features. 

The rest of the paper is organized as follows. Section 2 will 

present current rhythm analysis systems, and will highlight the 

limitations of such methods towards developing an invertible 

rhythm representation. Section 3 will present an overview of the 

proposed method, while algorithmic details will be described in 

Section 4. An evaluation of the model’s reconstruction ability 

and its rhythm classification performance will be presented in 

Section 5. Section 6 concludes this paper with a discussion and 

considerations for future work. 

2. BACKGROUND 

Most of the rhythm analysis methods involve a two step-

process framework. Firstly, from a Time-Frequency representa-

tion (either STFT or CQT) of the input signal, the extraction of 

spectral characteristics through time (as for example frequency 

band energies), hereafter referred to as accent features, takes 

place. Accent features are then processed in a periodicity analysis 

step, such as the autocorrelation function [4-6], convolution with 

a bank of resonators [7-10], considering Inter-Onset-Interval his-

tograms [11] or just by taking the Discrete Fourier Transform 

(DFT) of each feature [12]. The result of such an analysis is usu-

ally referred to as spectral rhythm patterns or periodicity function 

(PF). 

Regarding the beat-tracking methods, most of them include an 
additional step, which combines spectral (periodicity function) 
with temporal (accent features) information to infer beat posi-
tions. A notable exception is the beat-tracking method presented 
in [5], where tempo is induced from the beat activation function. 

Although the accent feature extraction step is a lossy trans-
formation, it can be considered as being lossless in the context of 
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rhythm analysis, as it is possible to reconstruct audio that pre-

serves the rhythmic information of the original signal. Such a 

result was demonstrated in [7], where the envelopes of sub-band 

energies were used to modulate a noise signal. The derived signal 

had a rhythmic characteristic very similar to that of the original 

audio. 

However, this is not the case for the periodicity analysis step 

methods. While most of them preserve spectral information of 

the accent features, phase or timing information gets lost, which 

makes it impossible to get any meaningful reconstruction of the 

accent features and consequently block the way to an invertible 

rhythm transformation.  

Regarding beat-tracking methods, although beat-inference can 

be considered as an inverse process from the spectral to the time 

domain, it cannot be viewed as an inverse transformation. An 

exception can be found in [13], where a beat-tracking method 

was proposed based on the Non-Stationary Gabor Transform 

(NSGT) [14]. NSGT was applied to the accent features and the 

derived complex valued periodicity function was further pro-

cessed by resampling and by peak-selection. The inverse NSGT 

was consequently applied to the processed periodicity function to 

get an estimate of the beat positions. Although this approach fo-

cuses on inferring the beats, it provides a framework for recon-

structing rhythmically meaningful components of the accent fea-

tures. 

In this paper, we present a method for a lossy invertible 
rhythm transformation, which consists of two key features. First-
ly, a periodicity analysis step (i.e. computing the PF) which al-
lows for an imperfect but sufficient reconstruction of the accent 
features takes place. Second, we deploy a network of Restricted 
Boltzmann Machines (RBM) [15] on the periodicity function. 
RBMs are energy based, stochastic Neural Networks with a visi-
ble input layer and a hidden layer, which are able to learn the 
probability distribution over the training data. RBMs are genera-
tive models, able to reconstruct input data given the states of the 
hidden units, to sample from the learned distribution and to ex-
tract meaningful features from the data. The hidden layer pro-
vides a latent representation of the input data and can be used to 
tackle rhythm related tasks. 

3. METHOD OVERVIEW 

Figure 1 presents an overview of the proposed method. The input 
signal is decomposed into I frequency bands and the correspond-
ing accent features ����� are extracted from each band. Next, a 
periodicity analysis takes place for each accent feature to extract 
a periodicity function ����� for each band. The periodicity analy-
sis design has focused on preserving both amplitude and phase 
information of the target periodicities, such that it is possible to 
reconstruct the accent features from it. The periodicity functions 
derived from all accent features are then fed to train a single 
RBM (RBM-1). Actually, the RBM-1 learns a distribution over 
all periodicity functions of the training dataset, irrespectively 
from which frequency band of the signal the accent feature was 
computed. Afterwards, the outputs of the RBM-1, denoted by 
��
	�
�, are concatenated to a single vector, which is used as an in-
put to the 2nd  single-layer RBM (RMB-2). The motivation be-
hind this architecture is that RBM-1 will learn a distribution over 
the individual PFs, while the RBM-2 will learn a distribution 
over combinations of PFs from the I frequency bands. The output 
of the RBM-2, denoted by ���
�, can be used as an input to a dis-
criminative method such as a Support Vector Machine (SVM) to 
tackle the rhythmic task under consideration. The whole network 
is capable of reconstructing the accent features starting from the 
top-level RBM output ���
�, and then calculating sequentially 
���
	�
�, �
���� and �
����, as shown in the bottom part of Figure 1. 
Finally, from the reconstructed accent features �
����, it is possi-
ble to derive an audio signal that preserves the most dominant 
rhythmic characteristics of the original audio signal. 

4. METHOD DETAILS 

4.1. Extracting Accent Features 

The input signal is downsampled to 22.05 kHz and the STFT is 

computed with a sliding window of 1024 samples and half over-

lap between successive windows. From the amplitude spectrum 

X, I band energies �����, � � 1. . � are computed with equally 
spaced triangular filters and half overlap in the mel-scale. For-

mally we can write 

 = ⋅E X M  (1) 

 

Figure 1. Overview of the proposed method. 
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where � � ��	|��|. . ��� and M is the filter matrix. Then, the loga-

rithm of the filter energies are differentiated to extract the accent 

feature sequence �����, � � 1. . �, where n denotes the frame in-
dex. The use of logarithms followed by differentiation to extract 

the ����� is in line with [16], as it indicates relative changes w.r.t. 
the features’ level. Each ����� is segmented by a sliding square 
window of N frames length with half hop size, resulting in ap-

proximately 12s of audio. Finally, the segments ��
���� are nor-

malized w.r.t. their mean value and standard deviation.  

To reconstruct an audio signal from the accent features �
�
����

[ ]s

i
a nɶ  the inverse pipeline is applied to [ ]s

i
a nɶ , which can be 

summarized in the following equation: 

 ( )1
[ ] exp ( [ ] )s s

i i

ns s

i i a am
e n a m σ µ

=
= ⋅ +∑ɶ ɶ  (2) 

where ����, ���� denote the mean and standard deviation of ��
�. Af-

terwards, the residual spectrogram  ! from is reconstructed from 
�� as 

 [ ]je ∠= T XX EMɶ ɶ �  (3) 

where �  denotes the Hadamard product and ∠X  denotes the 

phases of the initial spectrogram X. It should be noted that if the 

number of bands � ≪ #/2 where M is the FFT size, most of the 
harmonic content is truncated. 

4.2. Periodicity Analysis 

A periodicity function or a periodicity vector (PF) is an essential 
rhythmic representation of the accent features. Its domain is fre-
quency of beats per minute or Hertz with typical values ranging 
from 0.5 Hz (30 b.p.m.) up to 5 Hz (300 b.p.m.) [17] and its val-
ue represents the salience of these periodicities. One of the most 
important contributions of the proposed method is to derive a 
periodicity function that (a) is able to reconstruct the accent fea-
tures and (b) is an efficient representation which can be used to 
learn higher level rhythm features with Restricted Boltzmann 
Machines. 

A typical family of periodicity analysis methods may com-
prise of the convolution of each accent feature sequence with a 
bank of resonators &'. Each &' has an inherent oscillation fre-
quency that corresponds to tempo τ. The maximum value of the 
convolution within a certain window for each accent-oscillator 
pair represents the salience of tempo τin this window for the ac-
cent feature a, i.e. ��(�) � max	(&' ∗ /), where ��(�) denotes the 
periodicity vector. 

If &' and a have the same length, an alternative calculation of 
a periodicity function ��(�) is given by 

 ( ) max( )k

a
k

p ττ = Ta o  (4) 

where &'0 denotes the circular shift of &' by k samples. In other 
words, ��(�) corresponds to the value of the “best fit” between 
&' and a. The objective is to derive an invertible periodicity 
analysis step, i.e. it should be possible to reconstruct a solely by 
��(�). For the oscillators we consider the derivative of the reso-
nators proposed in [18], as follows 

 ( ) ( )*(1 tanh( (cos(2 ) 1)))Lo n d n nτ τγ πω= + ⋅ −  (5) 

where 12 denotes a non-causal differential filter of order L, 3' is 
the frequency corresponding to tempo τ and γ is called the output 
gain. 

Let us denote 45 � �&'6
067&'8

� 7. . |&'9
09� where k is a vector con-

taining the shifts of the oscillators of the target tempi and 

40 � :&�1
; 7&�2

; 7. . 7&�#
; < where k is a scalar, i.e. considering a con- 

 

Figure 2. Reconstruction of accent features from the pe-

riodicity vector. 

 

Figure 3. The “ideal”  PF  (a) along with the derived PF 

with two random shifts k (b) and (c), and the PF comput-

ed with the proposed method (d). 

 
stant shift for all &'. A naive choice to reconstruct the accent fea-
ture solely from =� could be 

 0

a
= Ta O pɶ  (6) 

that is to consider zero shifts for all oscillators. However, this 

approach has proven to result in a poor quality of accent features, 
because the phase, i.e. the time offsets ;' which maximize �>&'0 
 (;' � argmax0(�A&'0)), are needed. To demonstrate this, Figures 
2 (a) and (b) show the original and the reconstructed accent fea-

tures �,	�
 respectively and it is clear that the temporal infor-
mation of � has been lost. Figure 2(c), shows the reconstruction 
of the accent features, when the time offsets ;' of each oscillator 
are considered in the calculation of Eq. 6.  

On the other hand, if we compute the PF as �̅�(�) � �>&' in-
stead as in Eq. 6, i.e. by setting k=0 for all oscillators, the recon-
structed accent signal derived from the inverse operation (i.e. 
�C � 4=D�A), is much closer to the original one, and the phase in-
formation is preserved, as shown in Figure 2 (d). The same result 
would hold for any constant shift k. In other words, the oscillator 
bank 40 is able to provide a rough reconstruction of a if all the 
individual shifts ;' are constant. In other words, 40 can be con-
sidered as an approximate basis of the accent features. Note that 
although �̅�(�) is used for the reconstruction of a, the actual peri-
odicity function representing the rhythm saliences is its absolute 

value 7�C�(�)7.  
However, �̅�(�) proves to be a poor periodicity estimator of 

the accent signal a if it is computed for an arbitrary shift k. Fig-
ure 3 (a) shows the periodicity function derived from Eq. 4 and 

Figure 3 (b) and (c) show 7�C�(�)7 for different time shifts k of the 

oscillators. It is clear that although ��(�) and 7�C�(�)7 exhibit 
peaks at the same positions, the amplitude of these peaks are very 
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different. Moreover, the derived PF is sensitive to time shifts of 
the oscillators, or equivalently to time shifts of the accent signal 
a. To sum up, we can deduce that there is a trade-off between a 
good periodicity function and a good reconstruction of the accent 
signal. 

To overcome this limitation and have an efficient PF while at 

the same time keeping the reconstruction capabilities almost un-

affected, we propose the following method. Let ����� denote the 
accent features of the � � 1. . � band energies. Firstly, an “ideal” 
periodicity function is computed as in Eq. 4, which is then aver-

aged for all frequency bands I 

 ˆ ( ) ( ) max( )
i

k

a a i
k

i i

p p ττ τ= =∑ ∑ T
a o  (7) 

Next, the actual PF ��0(τ) is computed for a number of time 
shifts k as  

 ( ) ,   ,
a a

k k k k

i i

i i

p τ ττ = =∑ ∑T T
a o p a O  (8) 

Note that k is the same for all the oscillators and for all accent 
bands i. Finally, the time shift ;F that exhibits the higher cosine 
similarity between =�0  and =G� is chosen: 

 
0

ˆ| |
argmax

ˆ

a a

a a

k

k
k

k
 
 =
 
 

T
p p

p p
 (9) 

The corresponding PF ��
0H(�) can be considered as being the best 

approximation of �̂�(�). The resulting periodicity function for 
each �� is then computed by setting  ; � ;F for all oscillators: 

 0

i

k

a i τ= T
p a O  (10) 

Finally, the accent features are reconstructed as 

 ( )0ˆ
i

k

i a τ=
T

Ta p O  (11) 

The choice of the same k on the calculation of Eq. 8 ensures a 
good balance between accent feature reconstruction and periodic-
ity function approximation.  Since the time shift ;F is the same 
for all oscillators, the reconstruction accents will be close to �� 
(as in Fig. 2d). In the case where only the periodicity functions  

=�� without the time shift ;F are known, then the reconstructed 
accent features will differ by a time-shift value of ;F. Moreover, 
by choosing the same shift when computing the PF for the differ-
ent bands i, there is no need to keep the phase information of the 
oscillators in order to represent the PF for all energy bands, and 
at the same time the derived  PF  is as similar as possible to the 
"ideal" PF. With this method, both frequency (rhythm analysis) 
capability and temporal (reconstruction) capability are preserved. 
Periodicity analysis is shift-invariant to the accent signal, while 
the residual signal is shifted by a constant value ;F which is al-
ready known. Figure 3 (d) shows the PF derived with this meth-
od, which is closer to the “ideal” PF. Quantitative results of this 
analysis will be given in Section 5. 

4.3. Learning Features with Restricted Boltzmann Machines 

In a previous work [19] a Restricted Boltzmann Machine was 
trained on the periodicity function. The features learned by the 
RBM were used to successfully tackle a variety of rhythm analy-
sis tasks. In this paper, we deploy a similar approach to exploit 
the periodicity function described in the previous Sections. The 
main difference is that instead of the absolute values of the PF 
(as mentioned in the previous Section), we consider the actual 
values of the PF. This choice relies on the reconstruction prereq-
uisite of the proposed method. We expect that the salience of pe-

riodicities corresponding to large negative values of the PF will 
be preserved in the features learned by the RBM network. 

The motivation of using RBMs instead of other methods such 
as the Auto-Encoder is firstly that RBMs are proved to derive 
better features, and secondly they are generative models, a prop-
erty that is exploited in this paper as will be described later in 
Section 5.5. 

If the reconstruction error of the RBM network is small 
enough, both periodicity and timing information are preserved. In 

the first step, the PF extracted for all excerpts denoted by ��
J���, 

where m, i indicate the instance and the band respectively are all 
grouped into a single training dataset K	 irrespectively of the 
band index i. K	is then used to train the first RBM. After RBM-1 
is trained, for a target excerpt with periodicity functions ��

J���,  
the corresponding RBM-1 outputs L�,J

	  of all bands i=1...I are 

concatenated to a single vector to form the training dataset K�. If 
we denote the dimension of the hidden layer by M	 the feature 
dimension of K� is � ⋅ M	. K� is subsequently used to train RBM-
2, with � ⋅ M	 visible and M� hidden units. While RBM-1 is dedi-
cated to learn the distribution of the individual accent features, 
RBM-2 learns an overall distribution across all I band energies. 
We denote the output of the RBM-2 as LJ� . 

4.4. Rhythm Classification 

To demonstrate the discriminative potential of the extracted fea-

tures, we have deployed an SVM classifier with a Radial Basis 

Kernel for tackling meter estimation and dance style classifica-

tion tasks. The LIBSVM [20] implementation was used. Given a 

dataset O��
JPJQ	..Rwith a predefined set of classes C, the corre-

sponding RBM outputs denoted by S � OLJ� PJQ	..R are computed 

and used as the feature space on which we employ SVM classifi-

ers using the one-to-one multiclass approach. All datasets were 

split to 10 folds such that the distribution of the classes is the 

same for all folds and a 10-fold cross validation approach was 

used. 8 folds were used for training, one fold for testing and one 

for validation. SVM was trained on a segment basis and the clas-

sification decision was taken with a majority vote over each test 

excerpt.  

5. EVALUATION 

5.1. Evaluation Setup 

The proposed method was evaluated on five datasets for two 

distinct tasks. The first task is related to Meter estimation, where 

experiments were conducted on the Essen Folk Song database 

[21] and Finish Folk Collections database [22] comprising of 

6207and 7735 melodies in MIDI format respectively. MIDI files 

were synthesized to 22 kHz audio and ground-truth time signa-

ture information was extracted from the MIDI files. The second 

task is Dance Style Classification performed on the ballroom da-

taset [23], which consists of audio samples 30s long of 8 dance 

rhythm classes. 

Apart from recognition performance, in order to demonstrate 

the inversion capabilities of the proposed model, the Speedo [24] 

and GTZAN [25] datasets which mainly consist of popular music 

audio, were used.  
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5.2. Network Training 

The RBM network was trained on a subset of the Million Song 

Dataset (MSD) [26] consisting of 130.000 excerpts. This results 

in approximately 4.5 million instances for training the RBM-1 

and 900K instances for training the RBM-2. The training in-

stances for the RBM-1 were normalized to zero mean and unit 

standard deviation for each dimension and we used Gaussian 

Visible and Noisy Rectified Linear Hidden Units (NReLU) [27]. 

For the RBM-2, both layers consist of NReLUs. The number of 

accent bands was chosen  � � 5, and the periodicity function was 
calculated for �UVW � 20, 	�UYZ � 300 with a \� � 1step. The 
number of hidden units for RBM-1 and RBM-2 were chosen 

]	 � 300 and ]� � 500	respectively, resulting in an (281x300) 
architecture for RBM-1 and in an (1500x500) for RBM-2. Both 

RBMs were trained using Contrastive Divergence-1 [15]. 

5.3. Reconstructing Accent Signals from the Periodicity Vec-

tor 

In the inverse pipeline presented in Figure 1 for reconstructing 
�
���� from L�, the errors for each step are accumulated yielding 
the final reconstruction error. This Section will present a deeper 
insight into the reconstruction errors of the accent features, pro-
duced by the periodicity analysis step and the details of the 
method presented in Section 4.2 will be established experimen-
tally. Moreover, PF approximation (Eq. 10) along with RBM and 
overall network reconstruction errors will be reported. 

Let �̂���� denote the reconstruction of accent feature �����  
solely from the periodicity function as computed by Eq. 8, and let 
�
���� denote the accent feature reconstructed from the whole 
network. The differences between (�̂����, �����), (�
����, �̂����) 
and (�
����, �����) correspond to the reconstruction errors of the 
accent features introduced by the periodicity analysis step 
(RBMs are ignored), the RBM influence on accent signal recon-
struction and the whole architecture respectively. Regarding pe-
riodicity function approximation, the difference of the “ideal” PF  

�̂�(�) (Eq. 7) and ��(�) � ∑ 7���(�)7�  (Eq. 10) corresponds to the 

error introduced by the periodicity analysis step. If �
��(�) denotes 
the pf derived from the RBM reconstruction, then the difference 

between �
��(�) and ���(�) corresponds to the reconstruction error 
of the PF  introduced by the RBM network, while the difference 

between �̂�(�) and �
�(�) � ∑ �
��� (�) can be viewed as a measure 
of the overall approximation of  �̂�(�) by the whole network. 

To quantify the performance of the proposed method w.r.t. 
accent feature reconstruction and PF approximation we consider 
the cosine similarity  `aa
 � aba
/‖a‖‖a
‖ as an evaluation meas-
ure. The choice of the cosine measure instead of other conven-

tional measures such as the d� norm relies on the fact that cosine 
measure is more intuitive with respect to the proposed context. 
For example, the cosine similarity between ����� and an ampli-
fied version of it e ⋅ ����� will be 1, which is not the case for any 
norm. The same holds for comparing the PFs as well. 

Table 1 summarizes the results for the accent feature and PF 
reconstruction for the periodicity analysis step, the RBM network 
and the whole architecture for all evaluation datasets described in 
previous section. Values correspond to mean values for each da-
taset. Regarding the approximation of the “ideal” periodicity 

function (`f̂fvalue) by finding a single optimal time shift for all 
oscillators as described in Eq. 7 and Eq. 10, a value around 0.9 
for cosine similarity was achieved for all datasets. RBM’s recon-

struction of �
��(�) is around 0.92 for all datasets while the simi-
larity of �
��(�) with the �̂�(�) is above 0.87 for all datasets. In 

other words, the network learns a latent representation of the pe-
riodicities L� from which we can reconstruct a PF that is very 
close to the “ideal PF”. It is also noteworthy that the reconstruc-
tion rates of the PFs are almost the same for every dataset, even 
for those which stem from midi files. 

Regarding accent feature reconstruction rates of the proposed 

method, the 1st column of Table 1 indicates a larger reconstruc-

tion error of the accent features due to the inverse PF analysis 

step (Eq. 11). Although the accent feature reconstruction error 

introduced by the RBMs, i.e. the difference between accent fea-

tures reconstructed from ���(�) and �
��(�), the relatively small 
`�̂� has an impact on the final reconstruction capabilities of the 
whole network `�
� which is around 0.7 for audio and 0.6 for the 
midi datasets. 

To get a better insight into the reconstruction errors, Figure 4 

shows `�
� and `f
f̂ for each genre of the GTZAN dataset. As ex-
pected, the reconstruction error of the accent features is larger for 
some genres, such as classical, metal and jazz, while it is better 
for some genres with more steady rhythm, such as disco and pop. 
On the other hand, it is noteworthy that the periodicity function 

approximation value `f
f̂ is almost the same for all genres. Audio 
examples of the reconstructions for all excerpts of the GTZAN 
can be found in1. For a direct comparison to the original tracks, 
the audio files reconstructed from the initial accent features (Eq. 
3) are also provided. 

5.4. Classifying to Rhythm Classes 

5.4.1. Meter Estimation 

To report comparable results with other methods [28] for the me-

ter estimation task, 9 meter classes were considered, meters 2/4, 

3/2, 3/4, 3/8, 4/1, 4/2, 4/4, 6/4, 6/8 were chosen for the Essen 

Collection and meters 2/4, 3/2, 3/4, 3/8, 4/4, 5/2, 5/4, 6/4, 6/8 for 

the Finish Folk Collection. The proposed method achieved a 

classification accuracy of 80.7% and 75% for the Essen and Fin-
ish Folk song collections on a track basis. For a better insight into 

                                                           
1 http://mir.ilsp.gr/invertible_rhythm.html 

 Periodicity RBM Error Overall Error 

Dataset 
âaR  p̂pR  

âaR
ɶ
 ppR

ɶ
 

aaR
ɶ
 ˆppR

ɶ
 

Essen 74.0 89.7 94.7 91.2 63.6 87.0 
F-Folk 72.0 90.5 92.5 89.9 59.4 87.8 
Genres 78.7 90.4 94.9 92.6 69.3 87.9 
Speedo 79.5 90.4 95.1 92.8 70.4 87.9 
Ballroom 78.6 89.8 95.2 92.9 69.9 87.6 

Table 1. Detailed reconstruction approximation results of the pro-

posed method. Values correspond to 100 ⋅ `aa
 
 

Figure 4. Reconstruction approximation of accent features and 

periodicity vector across all genres on the TGZAN dataset. 
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the classification performance, the confusion matrix of the classi-
fication results for the Essen dataset is presented in Table 2. Most 
of the meter classification errors are for similar meters, as for 
example in the case of 3/8 examples, where 43% of the cases 
were classified either as 6/8 or ¾. 

If we consider only two broad meter categories, i.e. duple 
(e.g. 2/4, 4/4, 4/8 etc. meters ) and triple/compound (e.g. 3/8, 6/8, 
9/8, 3/2 etc. meters) the classification accuracy for the Essen da-
taset and the Finish Folk dataset become 89.2% and 93.8% re-
spectively.  Table 3 presents comparative results to other existing 
methods for the 2-class and 9-class classification problem. The 
proposed method achieves comparative results to state-of-the-art 
methods. 

5.4.2. Dance Style Classification 

Table 4 presents the confusion matrix of the classification results 

on the Ballroom dataset. The most correctly classified genre is 

the Quickstep (QS), with a classification accuracy of over 97%, 

while  Tango (TA), ChaCha (CH) and Waltz (W) were correctly 

recognized with around 90% accuracy. On the other hand, many 

instances of Jive (JI) and Viennese Waltz (VW) were confused 

with Waltz. Table 5 presents the overall classification re-

sults of the proposed method (81.95%), compared to other 

methods. It is noteworthy that as in the case of meter esti-

mation, without any prior knowledge about the task, the 

features learned from the network achieved a performance 

close to the state-of-the-art methods. Note that for the ref-

erence methods, the values in parenthesis correspond to 

results that were achieved when the ground-truth tempo 

was given. Consequently, they are not comparable to the 

proposed method. 

5.5. Sampling from Rhythm Classes 

To understand the features learned by the RBM network as 
well as the reconstruction capabilities of the proposed method, 

we provide audio examples sampled from the overall architec-
ture. To do so, we followed Hinton’s approach in [32] to sample 
digit images from the ten digit classes of MNIST, as shown in 
Figure 5.  A binary class vector c consisting of softmax units was 
concatenated to the network output vector L� to form the visible 
vector of an additional RBM with N=3000 hidden binary units in 
order to learn a joint distribution of c and L�. The RBM was 
trained using Persistent Contrastive Divergence [33]. After train-
ing, samples for a given class where drawn by clamping c to a 
constant value corresponding to this class and running a Gibbs 
chain with L� being randomly initialized. During Gibbs sam-
pling, audio examples were reconstructed from L�. 

We applied this method to draw samples from the eight Ball-
room classes. In order to provide a quantitative measurement of 
the quality of the samples, we followed the following procedure. 
For each class, after 2000 initial Gibbs steps, one sample was 
drawn every 250 Gibbs steps. Afterwards the samples were fil-
tered out, such that the value c of the class vector c on the nega-
tive phase of the Gibbs sampling for the corresponding class was 
over 0.7. With this procedure, 50 samples were finally drawn 
from each class. Afterwards, for each sample the 10 most similar 
training instances were retrieved. Similarity was computed as the 
cosine similarity measure of the corresponding periodicity func-
tions. The retrieval matrix obtained with the above procedure is 
presented in Table 6. Rows correspond to samples drawn from 
the model and columns correspond to training instances retrieved 
from each class. The last row shows the mean value of c for each 
class computed over all Gibbs steps. Interestingly, for some clas-
ses, retrieval rates are very high, as for example for ChaCha and 
Samba. As expected, samples from Waltz and Viennese Waltz 
are similar and as a consequence many Waltz samples are closer 
to Viennese Waltz training instances and vice-versa. Rumba is 
confused with Samba, and similarly to Table 4, many Jive sam-
ples are close to Waltz instances. An interesting effect which 
should be further investigated is the case of Quickstep and Tango 
samples, which were closer to the Samba and the ChaCha train-
ing instances respectively. However it should be noted that this 
experiment corresponds only to a random snapshot; several trials 
indicated a high sensitivity of these results to both training 
epochs of the RBM and Gibbs sampling steps. Such an effect, 
should be investigated in the future. Nevertheless,  the overall 
results of Table 6 indicate that in most of the cases the samples 
drawn from the model are closer to the actual training instances 

 Predictions 
 2/4 3/2 3/4 3/8 4/1 4/2 4/4 6/4 6/8 

2/4 83 0 4 1 0 0 12 0 1 

3/2 0 42 9 0 0 31 18 0 0 

3/4 7 0 83 0 0 0 10 1 0 

3/8 36 0 12 19 0 0 2 0 31 

4/1 0 0 0 0 86 14 0 0 0 

4/2 0 1 0 0 2 92 4 0 0 

4/4 5 0 3 0 0 1 91 0 0 

6/4 0 0 61 0 0 0 13 26 0 

6/8 5 0 6 2 0 0 1 0 86 

 
Table 2. Confusion matrix for the meter estimation task on the Es-

sen Folk Song Collection. Values are percentages (%). Rows corre-

spond to ground truth and columns to predictions. 

 

 Essen Finish Folk 

Method 9 class 2 class 9 class 2 class 

Proposed 80.7 89.2 75.0 93.8 

Toivianen[28] 83.2 95.3 68 96.4 

Eck [ 6] - 90 - 93 

 

Table 3. Comparison with other reference methods for the 2-

class and 9-class meter estimation. 

 

 Predictions 
 CH JI QS RU SA TA VW W 

CH 88.3 0 2.7 3.6 0.9 4.5 0 0 
JI 3.3 60 0 3.3 3.3 1.7 5 23.3 
QS 0 0 97.6 2.4 0 0 0 0 
RU 1 4.1 1 77.6 0 4.1 5.1 7.1 
SA 1.2 1.2 4.7 8.1 79.1 1.2 1.2 3.5 
TA 5.8 0 0 0 0 89.5 0 4.7 
VW 0 1.5 0 1.5 0 0 58.5 38.5 
W 0 2.7 0 1.8 0 0.9 4.5 90 

Table 4. Confusion matrix for the dance style classification task 

on the Ballroom dataset. Values are percentages (%). Rows cor-

respond to ground truth and columns to predictions. 

 

Proposed Gouyon[29] Peeters[30] Dixon [31] 

81.95 79.6 (90.1) 81 (90.4) 84 (96) 
 

 
Table 5. Classification accuracies (%) on the Ballroom dataset 
of the proposed method along with three reference methods. 
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of the corresponding class, than to those of all other classes. Au-
dio examples of the samples can be found in1 

6. CONCLUSION AND FURTHER WORK 

In this paper we presented a method for constructing a rhythm 

representation that is capable of reconstructing an audio signal 

that resembles the rhythmic properties of the original. Besides 

the reconstruction efficiency, the derived features proved to be 

successful for tackling two important rhythm analysis tasks, 

namely dance style classification and meter estimation. Without 

any prior knowledge of the tasks, the performance of the pro-

posed method is comparable to state-of-the-art methods. 

The accent feature reconstruction error introduced by the pe-

riodicity analysis step, should be investigated further in future 

work, as for example using other oscillator types. Another possi-

ble solution could be to increase the tempo analysis range. How-

ever, a balance between reducing this error and keeping the size 

of the network on a relative small size should be preserved. 

The building block of the proposed network, the Restricted 

Boltzmann Machine, apart from being exploited as a generative  

model for reconstructing the input and as feature detector to tack-

le rhythm related tasks, has another important property. It pro-

vides a framework for generating samples from classes. Such an 

extension in the audio domain is a powerful tool since it will 

provide a deeper insight of what rhythmic features and classes 

are learnt. 

Convolution plays an important role in rhythm processing, 
since many rhythm analysis methods involve a convolution step 
with a bank of template filters that correspond to certain frequen-
cies, in order to compute a periodicity function. Instead of jointly 
learning rhythmic and timing information of the accent features 
by the periodicity analysis step, a Convolutional Restricted 
Boltzmann Machine acting directly on the time-domain accent 
features and representing rhythmic information could be explored 
as an alternative approach. 
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