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Introduction 
From field and laboratory observations  

to simple creep models and their parameters 
Towards extended creep models 
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Creep modelling of clay
- stress/strain reversal
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kaolin revisited: yield points?  
one-dimensional consolidation histories 

data from Al-Tabbaa (1987) 

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400

mean effective stress p': kPa

deviator stress q: kPa b.



q 

kPa 
q 

kPa 

q 

kPa 

q 

kPa 

p' kPa p' kPa 

p' kPa p' kPa 

plastic strain increments: approximate normality to kinematic yield loci 

kaolin: Al-Tabbaa, 1987 



kinematic hardening extension 

yield locus carried around with stress state – 'bubble' – 
strongly influenced by recent history 

stiffness falls as yield 'bubble' approaches bounding surface 
– controlled by distance b 

when loading with 'bubble' in contact with bounding 
surface model is identical to Cam clay 



creep modelling of clay - stress reversal
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loading creep
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creep modelling of clay - stress reversal
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creep modelling of clay - stress reversal

reversal of stress or strain path for clays (and other
soils) shows reverse plasticity and hysteretic,
dissipative response in unloading-reloading cycles

yielding of clays (and other soils) is convincingly
described using kinematic hardening combined with
bounding surface plasticity

anticipate that viscoplasticity of clays should also be
described by a kinematic hardening/bounding surface
modelling framework

’overstress’ approach applied to two mechanisms of
creep: referred to ’bounding surface’ and to kinematic
yield surface (’bubble’)

expect ’loading’ creep to dominate as unloading begins

expect ’reversal’ creep to dominate as overconsolidation
increases
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Creep modelling of peat
= soil + fibres?
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7. Applications?

Peat: partially decayed plant matter

recognisable mass of roots and woody tissue at the
surface ⇒ partially decayed layer ⇒ soil-like material at
depth of ∼10m

highly compressible

important contribution of fibrous material

– p. 10/10
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4. Mixtures of soil (sand) with flexible fibres

flexible polypropylene fibres

fibres 35mm long,  0.1mm 

diameter

analogy for roots?

mixtures with Hostun sand 

d50 = 0.38mm, Cu = 1.9
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4. Mixtures of soil (sand) with flexible fibres

 

   

vertical

radial

deduce distribution of orientations

moist tamping leaves most fibres within π/4 of horizontal

freeze sample      cut into slices         count visible fibres
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5. Modelling of sand/fibre mixture

Q

P

z

x

τ

τ

σ'z

σ'z

cross-sectional area A

loading 

platen

upper box

lower box

τ

σ'z

εz εs

simple shear of soil with fibres

'equivalent' to central zone of shear box

– p. 1/9



5. Modelling of sand/fibre mixture
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5. Modelling of sand/fibre mixture

θ

fibre  in 

tension
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hypothesis 2: stretched fibres tend to increase normal
stress on soil and contribute to shear stress
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5. Modelling of sand/fibre mixture

tensile strain in soil ...

... not completely transferred to fibre

slip depends on normal stress

hypothesis 3: bond between fibres and soil not perfect

εf/εm = 1 − λ exp(σ′

z/σrf )

εf strain in fibre; εm strain in soil
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5. Modelling of sand/fibre mixture
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5. Modelling of sand/fibre mixture
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5. Modelling of sand/fibre mixture
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hypothesis 5: fibres treated as forces with orientation
(not continuous material)
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5. Modelling of sand/fibre mixture
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7. Applications?
shear box tests on 

fibre-sand mixtures
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7. Applications?

Peat: partially decayed plant matter

recognisable mass of roots and woody tissue at the
surface ⇒ partially decayed layer ⇒ soil-like material at
depth of ∼10m

highly compressible

important contribution of fibrous material

– p. 10/10
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5. Modelling of sand/fibre mixture

θ
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hypothesis 2: stretched fibres tend to increase normal
stress on soil and contribute to shear stress
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5. Modelling of sand/fibre mixture

tensile strain in soil ...

... not completely transferred to fibre

slip depends on normal stress

hypothesis 3: bond between fibres and soil not perfect

εf/εm = 1 − λ exp(σ′

z/σrf )

εf strain in fibre; εm strain in soil

– p. 5/9
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5. Modelling of sand/fibre mixture
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7. Applications?
shear box tests on 

fibre-sand mixtures
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Creep modelling of sand
- role of particle breakage/damage
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creep modelling of sand

stress stress
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strain strain
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Figure 1. SEM images of Ottawa sand and Lake Michigan
Dune Sand grain surfaces (image width ≈ 100 µm).

Figure 2. SEM image of Lake Michigan Dune Sand (image
width ≈ 10 µm).

Figure 3. AFM scan of Ottawa sand grain surface
(2 × 2 µm).

an increase in small strain stiffness at the macroscopic
scale. The delayed fracturing of the microscopic fea-
tures at contacts is referred to here as contact static
fatigue. The hypothesis advocated in this paper iden-
tifies contact static fatigue as a key cause in ageing of
silica sands.

4 FRACTURE KINETICS

The response of inter-granular contacts to loads
involves fracturing of many surface features and debris
fragments as the contact consists of many contact
“points.” However, this fracturing continues at con-
stant load, because the probability of bond breaking
between atoms does not drop to zero even if the load
no longer increases. The rate process theory applied to

Figure 4. Damage of a large asperity at a contact loaded
with 0.7 N (SEM image width 70 ≈ µm).

fracture kinetics (Krausz & Krausz 1988) leads to an
estimate of the bond breakage frequency as

where kT/h is the frequency of atomic vibrations
(k and h are the Boltzmann and Planck constants,
respectively, and T is the absolute temperature). Q is
the energy barrier needed to be overcome for the bond
to be broken or restored (healed), whereas !Q is the
change in the energy barrier due to an external poten-
tial (such as the load). Delayed fracturing at contacts
is consistent with the rate process concept as applied
to fracture kinetics.

5 SINGLE CONTACT TEST

An asperity at a contact between a silica sand grain
and a glass plate is illustrated in Figure 4a. The contact
was loaded with a force of 0.7 N, and the damage in
Figure 4b was found 15 min. after the application of
the load (Michalowski & Nadukuru 2012).

To test the time-dependent development of fractur-
ing, a device was constructed with a goal of loading
two grains in contact, to study the time-dependent
relative displacement of grains (convergence) under
constant force. The schematic of the device is illus-
trated in Figure 5a and the apparatus is shown in
Figure 5b.

Two grains of Ottawa 20–30 (crushed) sand were
subjected to a force of 0.8 N in the device for 21 days.
The nearly-immediate relative displacement after the
grains were loaded reached 29.5 µm, and the delayed
displacement is illustrated in Figure 6.

After the initial displacement, the convergence (rel-
ative displacement of the two grains) increased by
almost 2 µm in three weeks (Test 1 inTable 1).The rate
of convergence started at about 11 nm/h, to plateau
after about 17 days. Other tests, performed for a
shorter time (Tests 1 & 2 in Table 1), indicated that
the load has a major influence on the rate of the initial
process.

It is evident that the response of inter-granular con-
tacts to loads does not cease when the loading rate
drops to zero, but the contacts remain active for days
and weeks.
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Figure 1. SEM images of Ottawa sand and Lake Michigan
Dune Sand grain surfaces (image width ≈ 100 µm).

Figure 2. SEM image of Lake Michigan Dune Sand (image
width ≈ 10 µm).

Figure 3. AFM scan of Ottawa sand grain surface
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particle breakage/suffusion

100

80

60

40

20

0

% finer

particle diameter: mm
0.05 0.1 0.2 0.5 1 2

100

0

% finer

particle diameter
logarithmic scale

loss of fines
IG decreasing

crushing
IG increasing

a.

b.

particle breakage broadens grading

internal erosion (suffusion) narrows grading

– p. 10/1



particle breakage/suffusion
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particle breakage/suffusion
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particle breakage + Severn-Trent sand
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particle breakage + Severn-Trent sand
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creep modelling of sands

complex patterns of response observed - ‘descriptive’
titles but little attempt to understand physical
mechanisms (Tatsuoka et al.)

time effects in sands relate to the amount of grain
crushing (Lade)

creep effects observed in absence of particle breakage
(Airey)

experimental evidence consistent with static fatigue:
time dependent fracturing of micro-morphologic
features at inter-granular contacts (Michalowski)

model for soil with varying particle size distribution
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Creep of Soft Clay:  
“Classical” to “Current 
Practice” 

Hans Petter Jostad  
Discipline leader in numerical modeling at NGI 
Adjunct Professor at NTNU 

 

2st CREEP Course, Trondheim, Norway,  

 15-16. September 2014 



Key questions: 

What is the definition of creep? 
Do we have creep deformations at the same time as we 

have deformations due to pore pressure/stress 
changes? 

When does creep start? 
What controls the (volumetric) creep deformation? 
How to expand from 1D to a general 3D stress state? 
 



Motivation 
How to calculate long term settlements in soft clay? 

A) Primary and secondary compression phases? 
B) Coupled consolidation and creep? 
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Secondary consolidation (creep) 
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The classical approach for creep settlements! 



Bjerrum's delayed compression concept 

Unique relationship between creep rate, effective (vertical) stress and void ratio 



Key questions related to long term settlements 
Extrapolation of laboratory data; rate? 
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Unique end-of-primary (EOP) void ratio 

Need this assumption in order to divide into primary- and secondary phases 

tp 

A or B most correct? 



Unique end-of-primary (EOP) void ratio 

Arguments against the approach: 
 
• How does a soil element “feel” that it is in a primary consolidation state? 

- Elements close to a drainage condition with almost constant effective 
stresses during the consolidation phase 

- Time of primary consolidation governed by a low permeable layer  
 
• Difficult to define a unique EOP state 

- uexcess/q = 0.1, 0.05 or 0.01 
 



Main challenges 
Due to significantly different time scale in field and laboratory conditions, the 

deformation in the field must be described (extrapolated) by a creep model 
based on input from laboratory tests. 
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Sample disturbance (apparent creep) 
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Verification/calibration of creep models 

Back-analyses of measured field data 
Generally large number of uncertainties 

Back-analyses of idealised model tests (e.g. oedometer tests 
with different specimen heights) 
Extrapolation is still necessary 

Long term laboratory tests 
Extrapolation is still necessary 

 
 



Oedometer test (Incremental Loading Tests) 

u(t) σ'v+ ∆σv 

Ho 

t 

σ'v 

∆σ'v 

∆ε 

u(t) 

clay 
sample 

creep 

drainage 

Need to separate into contributions  
from effective stress changes and creep: 
 
- Creep “starts” when u ~ 0 or after 1 day (as a reference)? 
- Or, all plastic strains are time dependent (Soft Soil Creep Model) 

δv 



Janbu’s resistance concept (EP+VP) 

σv‘ σvo‘ 

ε 

σvc‘ 

increasing  
time 

'1 1v v

t

d d
dt M dt R
ε σ

= +
Mt = f(σv’) 
 
R = f(σv’, e or ε) 

t 

constant σv‘ 

ε 

1 
R 

1 
Mt 

teqv 

NCL -reference strain 
at a reference time 

Ro 

NCL 

tref 

Mt 

1 

Creep is added to the elasto-plastic strains  

σv‘ 

Need these 
relationships! 

OC 



Janbu’s time resistance 
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The accumulate creep strain is the 
state parameter for creep rate 



Effective stress dependency 
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Example 
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A large contribution of creep may 
occur during primary consolidation 

Ro = 0.3 and 1 year, r = 100, 300 and 500 



Isotaches – lines of constant (creep) strain rate   
unique relationship between effective stress – strain (void ratio) – strain rate 
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These curves may be non-linear (curved)! 



“Apparent” pre-consolidation pressure   
Plaxis - Soft Soil Creep Model (E+EVP) 
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Solution algorithm – FE program 

ln(σv‘) 

ε 
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NCL 

Current eq. condition 

( )creepr
oeRR ε=

creepε

Input: 
- Current equilibrium state: 
− σv‘ and ε 
- New increment: 
− ∆ε (predictor) 
− ∆t 

 
Output: 
- New stress state: 
− σv‘ 

 
Calculations: 
-  εo = f(σv’) 
− εcreep = ε - εo 
- R = f(εcreep) 
− ∆εcreep = ∆t /R 
− ∆σv’ = Mt(σv’) ∙ (∆ε-∆εcreep) 

 
 
 

 

ε 

σv‘ 

oε
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ε∆
creepε∆

New state 

Account for non-linear behaviour of R 

Global equilibrium iteration! 



Soil Investigation 
Soil profile from e.g. CPTU and location of depth to bedrock (or a stiff layer) 

In-situ pore pressure measurements (piezometers) 

Soil samples from different depths/soil layers 

Standard index tests 

Oedometer tests 
- constant strain rate (CRS) tests with unloading/reloading loops.  
- x days creep test (and/or CRS tests with different rates) 
- additional permeability tests? 
- incremental loading (IL) tests (specification: Dq/q=1?, duration=24 

hours or EOP, pore pressure measurements, long term creep phases, 
etc) 

 



 
Recommendations of laboratory tests 

IL tests are well suited to provide data on creep 
parameters and the location of the RTL 

CRS tests is recommended to define the shape of one 
isotache specially around the yield stress 

 

 

How should we define creep behaviour before pc? 
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What is peat / organic soil? 

Deposit of organic material, to some extent mixed with clay, silt sand 
particles 

23 september 2014 

photo: H.J.A. Berendsen 
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(http://www.grida.no/graphicslib/detail/peat-distribution-in-the-world_8660) 

5-8% total land surface 
8-11 % tropical / subtropical 
(Mesri & Aljouni, 2007) 



Distribution of peat (Nieuwkoop formation) 
and population density 

5 



ENGINEERING PROBLEMS 
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Long term settlement 

23 september 2014 

Den Haan & Kruse 2007 



Dewatering 

Kadijkselaan, omgeving Bergambacht 



Consequences 
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Year Level adjustment 
1 1976 NAP-1.43m - NAP-1.49m 
2 20 May 1994 NAP-1.49 - NAP-1.96 m 

Time [years] Time [years] 

G
ro

un
d 

le
ve

l [
N

A
P 

 m
] 

adjusting water table leads to extra settlement (location: Waterland) 



Case Rotterdam, schiewijk 
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Residual settlement 

Rotterdam overschie 



Skin friction on piled foundations 





Case Gouda Goverwelle 

Railway station 











differential settlement 

Goudse Houtsingel, near Gouda 



CHARACTERISATION 
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Organic content 

Organic content P = Morg / Mtot 

Ash content = 1-P 
 
How to determine P: 
• Determine dry solid mass (Ms), by drying sample for 24 h at 105°C 
• Determine remaining mass (m1) after drying for 4 h at 500 °C 
• Loss on ignition N = (Ms – m1)/Ms.  

• Ash content = 1.04(1 - N) 
• P = 1 – 1.04(1 - N) 

 
An error of 4% is assumed for organic particles that are lost in finding 
Ms 

23 september 2014 



Definition 
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(B.B.K. Huat et al 2014) 



Characterisation 

23 september 2014 

Den Haan & Kruse (2007) 



Further classification 

Many options: 
• Von Post classification (decomposition) 
• Fiberosity 
• Botanical background 
• Conditions during deposition (eutrophic, mesotrophic, oligotrophic) 
• Type of additive (clay, sand etc.) 
• …….. 

23 september 2014 



Von Post classification  (field identification) 
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(Landva 2007) 



Fibrosity  
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(Source: TR-GCV , TAW 1996) 

Either, dry, sieve and count or visual inspection 



Botanical background, sedge 
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(Meier-Uhlherr et al 2011) Photo G. Erkens 



Botanical background, Sphagnum 
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Photo G. Erkens 2012 

(Meier-Uhlherr et al 2011) 



(after Visscher 1949, Lowe & Walker 1997 ) 

Lake 

Conditions during deposition 

fen 

Raised bog 



Lowe & Walker 1997 



Example, eutrophic lake 

Foto: H.J.A. Berendsen 



Basin swamp Basin swamp 

Stream marsh Stream marsh 

http://sts.gsc.nrcan.gc.ca/ 
Marsh (= low wetland area, covered by reed, grass etc.) 
Swamp (= low wetland area, covered by forest) 

Examples of Marshes and Swamps 



http://sts.gsc.nrcan.gc.ca/ 

Fen 

Fen Fen 

Fen 

Fen (= low area covered by grass and reed) 



http://sts.gsc.nrcan.gc.ca/ 

Basin bog Domed bog 

Flat bog Plateau bog 

Examples of raised bogs 



Raised bog in Siberia 

Photo: W. Bleuten 





ENGINEERING PARAMETERS 

38 



Uitdam test side  

39 
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Characterisation 

biological background peat: 
mainly sedge – reed  

 
Von Post classification: H2 - 
H3, meaning that the peat is 
undecomposed (H2) or very 
slightly decomposed (H3). 
Plant remains are 
identifiable and no 
amorphous material is 
present. 



Characterisation of peat layer 

IJkdijk Stabiliteitsexperiment 41 
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Characterisation of peat layer 

IJkdijk Stabiliteitsexperiment 42 
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Comparison 

µqt, µball 
[MPa] 

Vqt, Vqball 
[ - ] 

10 cm2 cone 0.14 0.21 
15 cm2 cone 0.12 0.17 

Ball penetrometer (1) 0.11 0.17 

Ball penetrometer (2) 0.13 0.11 

NEN-EN-ISO 22476-1: accuracy required for class 2 CPT(U) is 100 kPa (0.1 MPa) 



Permeability 

• Unloaded peat has an open structure 
• Free water in (large) pores, bounded pore water in cell structure 
• When loaded a rapid decay in permeability due to closing of the 

macro pores 
 

23 september 2014 

Photo G. Erkens 



Permeability 

[m/s] [m/d] Depth 
[m] 

8.0×10-7 0.073 1.80 
2.3×10-6 0.199 3.49 
7.0×10-7 0.060 3.92 

23 september 2014 
Mesri & Aljouni 2007 

In situ Falling Head test 
From literature 
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From laboratory tests 



Compression indices 

IJkdijk Stabiliteitsexperiment 47 

min max average 

w0 [%] 518 1236 875 

e0 [-] 3.81 8.14 6.19 

CR [-] 
Cc 

0.39 
2.53 

0.58 
4.04 

0.45 
3.21 

Cα/CR 0.06 0.14 0.08 

RR/CR 0.07 0.17 0.13 

Cα/Cc = 0.06 ± 0.01  

17 oedometer tests from test site 

Mesri & Aljouni 2007 

From literature 



K0-CRS test 
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K0-CRS tests 

IJkdijk Stabiliteitsexperiment 49 
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CIUC tests 
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CIU tests 
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CIU tests 
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DSS, OC, σvc = 50 kPa 
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DSS, Field stresses 
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Anisotropy 
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Den Haan & Kruse (2007) 



SETTLEMENT / CREEP  
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Linear strain - Natural strain 
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Oedometer test results in linear and natural strain 

Den Haan 1994, 1996 
Den Haan & Sellmeijer 2000 
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Isotach model based on natural strain,  Den Haan (1994) in 
incremental form  
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Results from 107 CRS tests 
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Results from 93 CRS tests 

y = 0.0969x-1.478 
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Case: Railway line Rotterdam – Germany 

Soil profile 



Calculation vs measurements 

3.0 m 
3.5 m 
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Long term settlement 

Dike with medieval origin 



TO BE SOLVED  
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Creep after unloading modeling oedometer test, OCR = 1,8 
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prediction 

measurement 



Creep after unloading modeling oedometer test, OCR = 1,8 
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Test 5 



Further research 

- Creep in 3D, little experience for modeling peat related problems  
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Influence of gas 

Gas is not considered, but plays a role 
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Den Haan & Kruse 2007 



 Rate-dependency based EVP modelling 

approach for clays: from 1D to 3D 

Zhen-Yu YIN 

Associate Professor, Ecole Centrale de Nantes, France 

Guest Professor, Shanghai Jiao Tong University, China 

15 September 2014 

【PIAP-GA-2011-286397】 2nd CREEP Workshop & School, NTNU 
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1. Background- Phenomena and problems 

2. Rate-dependency of clay 

(1) 1D + remolded clay 

(2) 1D + intact clay 

(3) 3D + remolded clay 

(4) 3D + intact clay 

(5) Applications  

 

3. Conclusions 

 



1. Phenomena and problems 
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Porcelain 

Agriculture 



1. Phenomena and problems 
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ancient construction  

Clay 

Fondation 

Construction 1173  

Inclination: 5.5o 

Settlement: 5m 

Pisa tower 

Clay 



1. Phenomena and problems 

Shanghai  city 

Clay layer 100~300 m 

5 

Modern construction   

1998 

Water table 

Subsidence 

Constructions 

pumping of 

ground water 



1. Phenomena and problems 
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Future construction 
Airport of Kansai, Japon 

(Settlement up to  9 m) 

Artificial island in UK 

Project of island in the Netherlands 
Large settlement 

Embankment fill 



1. Phenomena and problems 
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Natural hazards 

Landslide in La Conchita, 

California, 1995 

I-1

I-2
II

III

Danba, Sichuan, China, 2005

Displacement 

Time 

Stable? 

Rupture? 
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1. Background 

2. Rate-dependency of clay 

(1) 1D + remolded clay 

(2) 1D + intact clay 

(3) 3D + remolded clay 

(4) 3D + intact clay 

(5) Applications  

 

3. Conclusions 

 

SEM photo 
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Vertical stress 

Base 

bague 
Sample 

Creep curve 

(second. Comp. coef.) 
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Vertical Displacement 

Stress 

control 

Some creep based models 

 Yin JH et al. (1989, 1994, 2002) 

 

 

 

 

 Kutter & Sathialingam (1992); Vermeer  (1999) 
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 Strain-rate dependency 

Ring Specimen 

Strain control 

Vertical Displacement 

Oedometer apparatus 
Strain-rate dependency of s’p0 
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2.1 Rate-dependency – 1D & Remolded 

CRS-Oed (ECN) 



 Strain-rate dependency 

12 

2.1 Rate-dependency – 1D & Remolded 

Yin Z-Y*, Karstunen M, Hicher PY. Soils 

and Foundations, 2010, 50(2): 203-214. 

Berthierville clay 



 Strain-rate dependency 

13 

2.1 Rate-dependency – 1D & Remolded 

Murro clay 

Karstunen M, Yin Z-Y*. Géotechnique, 2010, 

60(10): 735-749. 



 Strain-rate dependency 

14 

2.1 Rate-dependency – 1D & Remolded 

Yin Z-Y*, Chang CS, Karstunen M, Hicher PY. 

International Journal of Solids and Structures, 2010, 

47(5): 665-677. 

0.5

5

0.001 0.01 0.1 1 10 100

N
o

rm
a

li
ze

d
 y

ie
ld

 s
tr

es
s 

s
p

0
/s

v
0

Volumetric strain-rate（%/h）

Berthierville

St-Cesaire

Gloucester

Varennes

Joliette

Ste-Catherine

Mascouche

St-Alban

Fort Lennox

Louiseville

Batiscan

Backebol

Bothkennar

St-Herblain

Tungchung

Wenzhou

Xiaoshan

0.002%/h

27%/h

1

sp<sv0

Rate of conventional test

(~0.1%/h)



 Strain-rate dependency 

Ring Specimen 

Strain control 

Vertical Displacement 

Oedometer apparatus 
Strain-rate dependency of s’p0 

0ln ps 

1 2 3e e e 

ln ve

ev 

ln(s’v) 

fast 

slow 

1ps
2ps

3ps

0

0

. :  
pv

r r

v p

Ex



se

e s

 
  

 
 

15 

2.1 Rate-dependency – 1D & Remolded 
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2.1 Rate-dependency – 1D & Remolded 
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 Inter-particle bonds and debonding 
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2.2 Rate-dependency – 1D & Intact 
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2.2 Rate-dependency – 1D & Intact 



 Equations of 1D model 
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2.2 Rate-dependency – 1D & Intact 

1D-EVP model for natural soft clays. Yin et al. (2011) 
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 Methodology 
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(1) Scaling function with flow rule 
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(1) Scaling function with flow rule 
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 Reference surface? 
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2.3 Rate-dependency – 3D & Remolded 
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 Stress history effect on reference surface 

2.3 Rate-dependency – 3D & Remolded 



Initial reference surfaces of some typical natural soft clays 

St-Herblain (France) Vanttila (Finland) Wenzhou (China) 

Yin et al 
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 Yin et al (2010), International Journal of Solids and Structures. 

 Karstunen & Yin (2010), Geotechnique. 

2.3 Rate-dependency – 3D & Remolded 
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Mod.-2: Reference surface rotation  

+ 

2.3 Rate-dependency – 3D & Remolded 



 Parameters of ANICREEP model 
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 Test simulation (St-Herblain clay) 
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Undrained triaxial shearing 

Undrained triaxial creep test 

1D CRS test 

2.3 Rate-dependency – 3D & Remolded 



 Test simulation (Wenzhou clay, China) 
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2.3 Rate-dependency – 3D & Remolded 
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2.3 Rate-dependency – 3D & Remolded 
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2.3 Rate-dependency – 3D & Remolded 

 Remarks: Reference surface and rotation? 

Pestana & Whittle (1999) 

Oka et al (2002) 



Outline 
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1. Background 

2. Rate-dependency of clay 

(1) 1D + remolded clay 

(2) 1D + intact clay 

(3) 3D + remolded clay 

(4) 3D + intact clay 

(5) Applications  

 

3. Conclusions 

 

SEM photo 



 Extension of debonding rule from 1D to 3D 

Debonding rule (1D to 3D) 
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2.4 Rate-dependency – 3D & Intact 
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c cip p +

00
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pi s

Time-dependent modeling of soft sensitive clay, Yin et al (2011) 

Gens & Nova (1993) 



 Parameters of ANICREEPS model 
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 Test simulation (Vanttilla clay, Finland) 
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2.4 Rate-dependency – 3D & Intact 
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 Test simulation (Vanttilla clay, Finland) 

2.4 Rate-dependency – 3D & Intact 



Outline 
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1. Background 

2. Rate-dependency of clay 

(1) 1D + remolded clay 

(2) 1D + intact clay 

(3) 3D + remolded clay 

(4) 3D + intact clay 

(5) Applications  

 

3. Conclusions 

SEM photo 



2.5 Rate-dependency – application 

 Numerical solution of EVP model 
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 Implementation of model into PLAXIS (user defined model) 
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2.5 Rate-dependency – application 

Coupled 

consolidation 

analysis 



Soft foundation soils
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 Haarajoki embankment, Finland 

All parameters determined from conventional oedometer and triaxial tests: 
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Haarajoki test embankment 

2.5 Rate-dependency – application 



 Finite element model 
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FE model 

(PLAXIS v.8) 
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2.5 Rate-dependency – application 
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2.5 Rate-dependency – application 
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2.5 Rate-dependency – application 

3D-EVP model coupling with consolidation for application. Yin et al. (2013) 



Total displacement 

Excess pore 

pressure 

2.5 Rate-dependency – application 

Over-excavation 

effect on long-

term behavior of 

tunnel 
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Total displacement 

2.5 Rate-dependency – application 

Construction time effect on excavation 
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Excess pore pressure 

2.5 Rate-dependency – application 

Pile construction (installation rate effect, by Abaqus) 
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Total displacement 

2.5 Rate-dependency – application 

Effect of explosion on clay excavation (terrorist attack, by LS-Dyna) 
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3 Conclusions 

(1) Determination of 1D strain rate-dependency formulation;  

(2) From 1D to 3D, attention to flow rule, reference surface, 

anisotropy, destruction; 

(3) Applications on geotechnical structures. 
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Use of advanced creep models and 
some pitfalls in creep modelling  

G. Grimstad 



2 

Fundamental aspects of soft clay 
behavior 
• Creep 
• Anisotropy 

– Strength 
– Stiffness 
– Yield stress 

• Structure and destructuration 
• Unloading/reloading cycles – small strain 
• Degradation during cyclic loading 
• ALL ARE LINKED! 
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“1D” Creep – (24h) incremental 
oedometer test 
• Advantages: 

– Gives first estimate of creep/consolidation parameters and the 
“vertical” pre-consolidation stress directly 

• Disadvantages 
– Time consuming compared to CRS tests 
– Only average settlement parameters for large stress increments 
– Ideally back calculation with mathematical model is needed 

(FEA) 
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Current Norwegian engineering practice 

• Using low OCR (if material has not been subjected to 
preloading an OCR of 1.0? is often used) 

• Ignoring creep 
• Adding creep after consolidation?(Hyp. A!) 
• Advanced: Janbu´s time resistance concept 
• What about the selected pre-consolidation stress? 

IMPORTANT!!! 
• What about sample quality? 
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Compression curves for Väsby clay at a 
depth of 4.0 – 4.3 m (after Leroueil 
and Kabbaj, 1987) 

Sample quality 

DeGroot et. al. (2005) 
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Janbu´s time resistance concept 

• Increment in time 
divided by the increment 
in strain (Cause/Effect). 
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1D equation 
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value is the pre-consolidation stress! 
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“Alternative approaches” to Janbu for 1D 

• Yin and Graham (equivalent time approach) – Adopted 
from Bjerrum  

• Leroueil 
• Den Haan (ABC model) 
• etc. 

 
ALL ARE THE SAME? 
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A case of SSC and SS model giving the same 
final settlement.  

Ignoring creep? 

Illustration of dependence of OCR on the 
corresponding reference time (τ).  
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age = 10000 yrs 
 
OCR 

OCR = 1.3 
 
age 

0.010 1.163 6.79E+08 years 

0.015 1.254 1.08E+05 years 
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Anisotropy 

• First:  
– Undrained Triaxial Compression versus Undrained Triaxial 

Extension and Direct Simple Shear (Bjerrum 1973) 

• Second: 
– Preconsolidation stress from Oedometer test versus isotropic 

consolidation test (Feng 1991) 

• Third: 
– “Stress/strain induced anisotropy” – Changes in macroscopic 

yield surface (Wheeler 2003) 
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Undrained shear strength 

• Used as basis 
for the NGI-
ADP model 
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Pre-consolidation stress and ”cap” yield 
surface 
• Experiments from 

literature on finding 
cap surface – yield 
points in p’ – q space 
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Stress/strain induced anisotropi 

• Wheeler 
et al. 
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Destructuration 
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Creep - Yield surface becomes reference 
surface 
 

• Option 1 – extending by volume 
strain (ACM) 

• Option 2 – extending by plastic 
multiplier directly 

e q
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-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

p'/p r e f 
e q 

q/
p r e

 f 

  

  
d λ /dt = constant - ACM 

d λ /dt = constant - new formulation 

𝜆̇ =
1

𝑟𝑠 ∙ 𝜏
∙
𝑝𝑒𝑒

𝑝𝑟𝑟𝑟
𝑒𝑒

𝑟𝑠∙𝜁

∙ 𝑚𝐾𝐾𝐾𝐾 
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Anisotropy and creep –  
The n-SAC model 
• A non-associated creep model for structured anisotropic 

clay 
• Non-associated because: 

– prediction of the strain behavior under various stress paths, 
based on experimental evidence from e.g. Feng (1991) 

 

{ } { }
2

3 ' '
2'

3 '
2

T
d d d d

eq

T
d d

p p
p p

M p

− −
= +

 − 
 

σ β σ β

β β

{ } { }
2

3 ' '
2' 0

3 '
2

T
d d d d

eq
Q

T
f d d

p p
Q p p

M p

− −
= + − =

 − 
 

σ α σ α

α α

where p’ = mean stress; σd=deviatoric 
stress vector; βd = deviatoric rotational 
vector; M = Lode angle dependent peak of 
the reference curve of in p’-q space 

where Mf is the Lode angle dependent citical state line 
in p’-q space; αd is the deviatoric rotational vector.  
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Modelling of destructuration 

• Gens and Nova (1993) 
• pref = pmi ∙(1+x) 
 where x is the amount of structure that is unstable 
 i stands for intrinsic  

 
 

• x has to change with vp strain 𝑑𝑑
𝑑𝜆

= 𝑓(𝚽) State variables inc. x 

𝜆̇ =
1

𝑟𝑠𝑠 ∙ 𝜏
∙

𝑝𝑒𝑒

(1 + 𝑥) ∙ 𝑝𝑚𝑚′

𝑟𝑠𝑠∙𝜁𝑖
∙ 𝑚𝐾𝐾𝐾𝐾 
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Models with anisotropy and 
destructuration 
• Option 1 

– ACM -> ACM-S (Leoni 2008, Kamrat-Pietraszewska 2011) 
• Extension of SSC (Stolle et al. 1999) (PLAXIS current model) 

• Option 2 
– EVP-SCLAY1S (Karstunen and Yin 2010) 
– Ani-Creep (Yin et al. 2011) 
– n-SAC (Grimstad et al. 2010) 

• n-SAC –using creep limit and option 2:  

( ) 0
max

1
1 '

si ireq

K NC
si mi

p m
r x p t

ζ
τλ

τ

⋅
 

= ⋅ − ⋅  ⋅ + ⋅ 

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How to use/Parameters for analyses 

Model ν K0
NC Eref / pref {Eoed

ref}i / pref rsmin rsi ω φp φcs 
SSC1 0.15 0.54 200 9.5 - 267 - - 35° 
SSC2 0.15 0.54 200 6.0 - 233 - - 35° 
n-SAC 0.15 0.5 200 13.0 200 625 0.3 25° 35° 

kv = kh = 5e-5 m/day; γ’ = 10 kN/m3, K0 = 0.54, OCR = 1.36 

𝜆 =
1

𝐸𝑜𝑜𝑜
𝑟𝑟𝑟

𝑖

 𝜅 =
3 1 − 2𝜈
𝐸𝑟𝑟𝑟

 μ*= 1
𝑟𝑠

 

• Two models - SSC and n-SAC 
• Three analysis cases - SSC1, SSC2 and n-SAC 
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Oedometer simulations 
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Example: settlement problem 
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Time [day]

Uy [m]

 

SSC1 - Point A

SSC2 - Point A

n-SAC - Point A

n-SAC SSC1 
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Profiles 
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Mesh dependency due to softening 
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Effect of stiffness 
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dε/dt  = 1/(3E5 s)

  
 

”stiff” ”soft” 

DSS 

25.7 days. Looks more like perfectly plastic behavior! 
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Conclusions 

• Creep/rate and anisotropy are important if we want 
to fully understand soil behavior. 

• Sample quality is crucial and deserves more 
attention as it forms the basis for numerical 
modeling. 

• With increased sample quality and testing 
procedure, the soil models also needs to be 
improved 

• The “huge gap” between state-of-the-art and state-
of-the-practice must be closed or at least narrowed 
down! 
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Use of creep models 

• Expected new stress state to cross pc’ (24h) 
• Expected new stress state below pc’ (24h) 

NC clay 
(OCRτ=24h = 1.4 - 1.8) 

Strip load 

σv0' pc' 

σv' 
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Time resistance concept 

• Described by in e.g. Janbu (1969) 
• Used for 1D strain in KRYKON, Svanø & Emdal 

(1986) 

R 
=

 ∂
t/∂

ε 

t 

rs 

1 

”Pure creep” *

1
s

td
dRr

dt dt
ε

µ

∂ 
 ∂ = = =

( ) ( )

*

* ln /

d
dt t

t t t

ε µ

ε τ µ τ

=

∆ ∆ = − = ⋅



Example: SSC model - The effect of the 
μ*/(λ*-κ*) ratio on OCR (creep rate) 

σv0’ 
0

H
H

ln(σ’) 

σvc’1day
 

1 
κ* 

1 

λ* 

1 day 104 years 

μ*∙ln(t/ τ) 

1 day 104 years 

σvc’1day
 

Specifying lower OCR  



0.010 1.163 6.79E+08 years 

0.015 1.254 1.08E+05 years 

0.020 1.353 1.36E+03 years 

0.025 1.459 98.9 years 

0.030 1.574 17.2 years 

0.035 1.697 4.93 years 

0.040 1.830 1.93 years 

0.050 2.129 0.520 years 

0.070 2.880 0.116 years 

*
* *

4

1 day
10  years

tOCR

t

µ
λ κ

τ τ
τ

− =  
 
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=
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=
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*
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ζ

−
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⋅

ln(σ’) 

ln(σ’) 

σvc’24h
 σv0’ 

The effect of the μ*/(λ*-κ*) ratio on OCR (creep rate) 

ln(σ’) 

Same μ* 

Same λ* 

0

H
H

0

H
H

0

H
H

μ* decreasing with time 

λ* decreasing with stress 

“Recommended” range (PLAXIS manual) 
~0.04 - 0.07 
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The oedometer test… 

• Can we rely on OCR from IL oedometer tests? 
1) Sample disturbance? (we all know this) 
2) Stress condition? 

• Start at some unknown isotropic stress condition and consolidates 
to 12.5 kPa of vertical stress 

• Loads further along a line different from K0
NC line (i.e. stress path 

hits the reference pre-consolidation at different place than it would 
in-situ!) 

→ Do we need to simulate the oedometer test rather then interpret 
OCR from it? 

→ Should we measure horizontal stress in the oedometer? 
3) Consolidation (is the effective stress constant for most of the 

24h?, e.g. clays with low permeability) 
4) Extrapolation… (should model OCR and reality OCR be the 

same?) 
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Simulated oedometer with SSC 

 



33 

What about K0? 

• Is the in-situ K0 affected by creep (NC clay)? 
– Model says: very limited influence, i.e. K0 ≈ K0

NC 

• Has the material been unloaded (OC clay)? 
– Model says: yes, but creep will try to make K0 ≈ K0

NC if the model 
is not changing its plastic potential, since the volumetric strain 
should be equal to the vertical strain 

• Should we then set K0 ≈ K0
NC  for models like SSC? 
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OCR and K0 

• The K0 value does not change significantly in a 1D creep case due to the 
increase in OCR. Since 1D creep requires dε1

vp = dεv
vp, then the stress state 

is fixed to one point at the potential surface. 
• In PLAXIS if one specify a OCR (due to creep alone), the suggested initial 

horizontal stress generated (suggested K0) is based on the assumption of 
unloading. Remember to change this back to a value close to the real K0

NC 

q 

p’ 

K0
NC line 

1 
2/3 

PLAXIS OCR treatment 



35 

Stress increment in the field 

• No need to fit the whole lab curve… 
– What is the experienced stress change? 
– For most of the soil it is little change (around pc’ or less) 

0

H
H

ln(σ’) 

pc’24h
 σv0’ 

Accept wrong OCR – Fit at large 
stress change, well above pc’ 
 
Accept that Inital creep rate is too 
big 
 
In most cases: Fit for the actual 
stress change in the region around 
pc’, higher λ* gives lower OCR for 
same μ* 
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The MIT–MDPW embankment  

• Latest paper looking at back calculating this is from 2012 
(Fatahi et al.) 
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The trial embankment 
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Alternative models 
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Oedometer simulations 
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Results 
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Conclusions 

• Evaluate the parameters over relevant stress increments 
• Do not blindly take OCR from odeometer tests 

– Stress path 
– Sample disturbance 

• The “simple” SSC model performs OK when we are after 
vertical deformation profile and pore pressure. As long 
as we take some care for the OCR we use in modelling. 
– NC clay does not usually have OCR of 1.1… 
– OCR in SSC is a material parameter that defines initial state of 

the soil (i.e. the state variable p0
eq), it is not more holy than the 

other parameters that we use to fit our model to “reality” 

0*,  *,  *,  ,  ,  ,  NCc Kλ κ µ ν ϕ



Creep of Soft Clay:  
    Exercise 

Hans Petter Jostad  
Discipline leader in numerical modeling at NGI 
Adjunct Professor at NTNU 

 

2st CREEP Course, Trondheim, Norway,  

 15-16. September 2014 



CREBS 

• 4 Workshops on CREep Behaviour of Soft clay) 

• NGI (Oslo, Norway, January 2006) 

• Univ. Stuttgart (Pisa, Italy, September 2007) 

• Univ. Chalmers (Gothenburg, Sweden, July 2009) 

• Deltares (Delft, Netherland, January 2014) 

 

Establish a common basis of understanding “long term 
compaction in soft soil” 

 - analyse a set of well defined hypothetical cases 



 
Example calculations  

• Comparison of results obtained by different calculation 
programs (for a set of well defined cases) 

• Comparison of material models 

• Interpretation of laboratory tests (model dependent) 

• Recommendations of laboratory tests and field 
investigation 

• Not a competition! 

 



Hypothetical cases 

1. NC-behaviour (OCR=1) 

2. NC-behaviour with apparent pre-consolidation  

3. Varying time history (pre-loaded several years) 

4. Layered soil profile (different permeability) 

5. Stress distribution with depth (some shear strain) 

 
The real case: Oslo Railroad Customs Building 

 - 50 years with measurements (may include additionally 30 years) 



 
6 Participants  
• University of Stuttgart 

• Dr. Martino Leoni and Professor Pieter Vermeer 

• University of Strathclyde (and Ecole Central de Nantes) 

• Dr. Zhen-Yu Yin and Professor Minna Karstunen 

• University of BRISTOL 

• Dr. David Nash 

• Chalmers University of Technology (Gothenburg) 

• Mats Olsson and Professor Claes Alén 

• Swedish Geotechnical Institute (SGI) 

• Per-Evert Bengtsson and Rolf Larsson 

• Norwegian Geotechnical Institute (NGI) 

• Professor II Hans Petter Jostad 

 

 



 
Models 

• Plaxis (FE) with Soft Soil Creep and Anisotropic Creep (3D) 

• EVP, MCC, rotated modified CC, no structure, one creep parameter  

• Plaxis (FE) with EVP SCLAY-1S (3D) 

• EVP, rotated modified CC, over-stress formulation, structure, two 
creep parameters 

• Briscon (FD) with a general isotache model (1D) 

• EVP, structure, stress dependent creep parameter 

• Embankco (FD) with an isotache model (1D) 

• EPVP, structure and threshold value for creep 

• GeoSuite (FE) with two slightly different isotache models (1D) 

• EPVP, structure by stress dependent creep  

 

 



Hypothetical case 2 

Hclay = 30 m 

q = 50 kPa (light) and 90 kPa (heavy) 

γ' = 10 kN/m3 

OCR = 1.4 (10 000 years old) 

e0 = 1.17 (po'=143 kPa) 

kv = 0.02 m/year 

Ip = 18-25% 

Hsand = 10 m 
Μ = 10 MPa   γ' = 10 kN/m3 

drainage 

Closed bottom 

GWT 



Main assumption 

1. Fully saturated clay (incompressible pore water) 

2. 1D Condition  
a. 1D pore water flow with defined drainage conditions 
b. Negligible horizontal strains (oedometer condition) 

3. Uniform material (only changes in stress levels and initial void 
ratio) within the soil layers 

4. Assumed “perfect” oedometer test data?  

       Effect of sample disturbance? 

 

 



Soft Soil Creep – input parameters 
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Oedometer test data 
Test no. 693, po' = 143 kPa
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Hypothetical cases 

Hclay = 30 m 

q = 50 kPa and 90 kPa 

γ' = 10 kN/m3 

OCR = 1.4 

e0 = 1.17 (po'=143 kPa) 

kv = 0.02 m/year 
σvo' 

σvo'+ q Hsand = 10 m 
Μ = 10 MPa 

γ' = 10 kN/m3 

drainage 

Closed bottom 

σvc' 

GWT 
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Interpretation – reference strain (24 hours) 
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Interpretation - creep phase (NC-regime) 
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Interpretation - creep phase (OC-regime) 
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 Comparison of stress-strain-time curves 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

100 120 140 160 180 200

Ve
rt

ic
al

 st
ra

in
 (%

)

Effective vertical stress (kPa)

Reference strain at 24 hrs at top of clay layer

Krykon

SCC/ACM

Briscon

EVP-SCLAY1S

Embankco

Chalmers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60 80 100

Ve
rt

ic
al

 st
ra

in
 (%

)

Time (years)

Time dependent strain at top of clay layer

Krykon

SCC/ACM

Briscon

EVP-SCLAY1S

Embankco

Chalmers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60 80 100

Ve
rt

ic
al

 st
ra

in
 (%

)

Time (years)

Time dependent strain at bottom of clay layer

Krykon

SCC/ACM

Briscon

EVP-SCLAY1S

Embankco

Chalmers

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

400 420 440 460 480 500

Ve
rt

ic
al

 st
ra

in
 (%

)

Effective vertical stress (kPa)

Reference strain (24 hrs) at bottom of clay layer

Krykon

SSC/ACM

Briscon

EVP-SCLAY1S

Embankco

Chalmers

q = 50 kPa 



 Results – Case 1  



 Results – Case 1  
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 Results – Case 2  
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 Results – Case 5  
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Conclusions 
• Large differences in settlements for well defined idealized examples 

• The main reason is uncertainties in the creep behaviour before the 
yield stress (apparent pre-consolidation pressure) 

• The differences may have been even larger due to uncertainties in 
the pre-consolidation pressure (if not given!) 

• The programs and material models seems to work well (except 
EMBANCKO?) 

• Difficult to check the results obtained with the general 3D models 
(especially EVP-SCLAY1) 

• Difficult to compare models due to different sets of input parameter 
even when they are based on the same framework 



Creep Modelling of Soft 
Soils 

Final remarks 
 
 

Jelke Dijkstra 



Final Remarks 

• Should we start incorporating kinematic hardening models to 
capture unloading/reloading + creep (DMW) 
– Already a model in development (Chalmers/NGI) 
by Nallatamby Sivasithamparam 



Final Remarks 

• Should we start incorporating kinematic hardening models to 
capture unloading/reloading + creep (DMW) 
– Already a model in development (Siva@NGI) 

• Fibre overlay model + clay model = peat? (DMW) 
• Creep in sand is not only governed by grain crushing (DMW) 
• Hypothesis B is the only physical realistic explanation (HPJ) 
• Extrapolation of laboratory time to in situ time scales remains 

challenging: 24 hrs << 50 years (HPJ) 
– Long-term field data is not easy to come by either 

• Separation of consolidation & creep stage is challenging (HPJ) 



Final Remarks 

• Consider sample disturbance in the determination of the 
relevant parameters from lab data (HPJ) 
– can we correct oedometer data for apparent pre-

consolidation pressure?  
– It is disappointing that you only know AFTER the test if your 

sample is of insufficient quality 
• Peat classifcation is ambiguous (CZ) 

– So let’s use the simplified Russian system …   
 



Final Remarks 

• Classic approach for calculation of consolidation and creep is 
surprisingly effective in 1D (CZ) 
– What is creep in peat anyway? 
– Is decay of peat also exponential, such as 

•   chemical reactions, electric charge, discharge of fluid 
from a vessel, atmoshperic pressure, heat transfer, 
luminescence, biological half lives, electromagnetic 
radiation, radioactivity, thermoelectricity, damped 
mechanical oscillators etc. 

– Field data for calibration of predicitons 
– Extension to 2D & 3D required 

 



Final Remarks 

• Measurement at very low (effective) stress levels are not trivial 
to perform (CZ) 

• Viscoplastic models capture the phenomenological system 
response very well (Yin) 
– Though not all input parameters are intuitive (or shown) 
– Sensitive for the structure parameters  

• Smart use of simplified models will, in some cases, approach 
advanced models. Determine your parameters around your 
design point and tell Plaxis the ‘age’ of the soil (GG) 

• Ranking of the most important parameters for Soft Soil Creep 
OCR, OCR, OCR, and OCR (GG) 

 
 
 



Outlook 

• Should we consider mesoscale modelling? 

Matsushima (2014) 



Outlook 

• Or even on the molecular scale? 
• Ebrahimi et al. 2014 
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