Creep modelling of soft soils: September 2014

Introduction
From field and laboratory observations
to simple creep models and their parameters
Towards extended creep models

David Muir Wood, Chalmers University, Goteborg

(Dundee University, Bristol University)
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Creep modelling of clay
- stress/strain reversal
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kaolin revisited: yield points?
one-dimensional consolidation histories
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kinematic hardening extension

vield locus carried around with stress state — 'bubble' —
strongly influenced by recent history

stiffness falls as yield 'bubble' approaches bounding surface
— controlled by distance b

when loading with 'bubble’ in contact with bounding
surface model is identical to Cam clay S 2
B o
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creep modelling of clay - stress reversal

loading creep N

competing mechanisms g |
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creep modelling of clay - stress reversal
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creep modelling of clay - stress reversal

f e reversal of stress or strain path for clays (and other T
soils) shows reverse plasticity and hysteretic,
dissipative response in unloading-reloading cycles

e Yielding of clays (and other soils) is convincingly
described using kinematic hardening combined with
bounding surface plasticity

e anticipate that viscoplasticity of clays should also be
described by a kinematic hardening/bounding surface
modelling framework

e ‘Overstress’ approach applied to two mechanisms of
creep: referred to '’bounding surface’ and to kinematic
yield surface ('bubble’)

e expect ’loading’ creep to dominate as unloading beglns

e expect reversal’ creep to dominate as overconsolldat@ J
Increases
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Creep modelling of peat
= soll + fibres?

Qé\\]ERSITPOA
| J
>4

DUNDEE



7. Applications?

o Peat: partially decayed plant matter

e recognisable mass of roots and woody tissue at the
surface = partially decayed layer = soil-like material at
depth of ~10m

e highly compressible
e Important contribution of fibrous material

| B
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4. Mixtures of soil (sand) with flexible fibres

=

flexible polypropylene fibres

fibres 35mm long, 0.1Tmm
diameter

analogy for roots?

mixtures with Hostun sand
d50=0.38mm,Cy=1.9
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4. Mixtures of soil (sand) with flexible fibres

freeze sample cutinto slices count visible fibres
1 vertical

N— — ___~ radial

deduce distribution of orientations
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\_ moist tamping leaves most fibres within nt/4 of horizontal @‘ % J
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5. Modelling of sand/fibre mixture

loading
platen

L0

lower box

simple shear of soil with fibres =
'equivalent' to central zone of shear box Z
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5. Modelling of sand/fibre mixture

oy/2 compression 0Y/2
X 260n, extension
a.
o€,
o¢ o¢
Oeg/2
extension Os/2 b.
z
compression

tensile strain in soil =
tensile strain in fibres

o hypothesis 1: tensile strains in solil try to stretch fibres
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5. Modelling of sand/fibre mixture

fibre in T
tension

additional
shear stress

additional
normal stress

o hypothesis 2: stretched fibres tend to increase normal
stress on soil and contribute to shear stress e J
» &
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5. Modelling of sand/fibre mixture

tensile strain in soil ... -

|

..not completely transferred to fibre
slip depends on normal stress

o hypothesis 3: bond between fibres and soil not perfect
o c¢/em =1—Nexp(ol/oy¢)
e c¢ Strain in fibre; ¢, strain in soll ST
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5. Modelling of sand/fibre mixture

<
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stress-strain response of fibres: Ef = 900 MPa
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o hypothesis 4: fibres (may pull out of soil or) may reach
tensile strength and snap

NERSIP
S Fq

@
|
» 4

DUNDEE
_n 6



-

high ¢': fibre break:
9 G;Z_lie reakage low o';:fibre pull-out

fibre
force: | apparent fibre
p sob stiffnessincreasing

with increasing ¢,
70- .

0 0.05 01 0.15 02

soil strain: e,

initially elastic = \
perfectly plastic pull-out: -

fibre force: P

5. Modelling of sand/fibre mixture

apparent fibre stiffness
increasing with vertical

stress - increasing bond

limiting slip surface: P = k ',

: N
A
©N

1004

50+

0.

0

200 400
600
800
. , 1000
vertical stress: ¢, 200

fibres break when limiting stress
“reached: force drops to zero for
continued straining

T 0

0.05

soil matrix
. 01 strain: gy,

A Y
Y

0.15 ~.

initially elastic =

02 breakage (loss of force)

o hypothesis 4: fibres may pull out of soil or may reach
tensile strength and snap

|
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5. Modelling of sand/fibre mixture

fibres within angle 60 at
angle 6 to horizontal

unit area of cross-section

o hypothesis 5: fibres treated as forces with orientation
(not continuous material)
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5. Modelling of sand/fibre mixture

= mobilised

Sy strength
~
Y ~.
~

. ®
. critical state -
critical ~

specific
‘ volume

3.changein ~
specific volume NG-State - -~f— 2.volumetric strain
(state parameter) + . increment (dilatancy)
! expansion contraction
stress level 0 :
? dilatancy '
a:;gibiﬁ . 4.changein T S
& . available strength
* mobilised strength

B T available strength
critical state

1.shear strain increment

0 shear strain
state parameter

o Severn-Trent sand: simple mathematical relationshigsis:.
automatic convergence on critical state
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shear box tests on

7. Applications?

) , simulations
fibre-sand mixtures
increased
strength 08~ fibres: 1%
fibres: 1% stress |
0.8 ratio
Stre'SS 0.6
ratio
0.6
0.4
0.4
0.2
0.2
0.0 L 1 ) 0 | | |
0 3 10 15 0 0'szhear straino'4
shear box displacement: mm
-0.04 -
-1.0r ] vertical
vertical fibres: 1% strain -
movement
mm -0.02 -
-0.5| . 0.5%
increased
dilatancy, y, B y
0.0 s 0
0% 0%
. 0.01 = = !
0 0.2 04
0.5 ' ! ! shear strain
0 5 10 15

o

shear box displacement: mm

-

simulations of
shear box tests
on fibre-sand
mixtures

filbre orientations
—m/d <6 <m/4

dominant effect
from fibrespace
densification

DUNDEE
—n. 2/]


DMuirwood
Typewritten Text

DMuirwood
Typewritten Text

DMuirwood
Typewritten Text


7. Applications?

o Peat: partially decayed plant matter

e recognisable mass of roots and woody tissue at the
surface = partially decayed layer = soil-like material at
depth of ~10m

e highly compressible
e Important contribution of fibrous material
L treat as fibres + clay? J
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5. Modelling of sand/fibre mixture

fibre in .

additional tension

shear stress

viscous effects 1in
------------- fibre response?

additional
normal stress

o hypothesis 2: stretched fibres tend to increase normal
L stress on soil and contribute to shear stress e J
» &
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5. Modelling of sand/fibre mixture
viscous effects 1n soil:fibre interaction?
tensile strain in soil ... -

|

..not completely transferred to fibre
slip depends on normal stress

o hypothesis 3: bond between fibres and soil not perfect
o c¢/em =1—Nexp(ol/oy¢)
e c¢ Strain in fibre; ¢, strain in soll ST
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5. Modelling of sand/fibre mixture

viscous effects 1in soil:fibre interaction?

apparent fibre stiffness
increasing with vertical
S stress - increasing bond
limiting slip surface: P =« c';

fibres break when limiting stress

high ¢': fibre break:
9 G;Z_lie reakage low o';:fibre pull-out

ff;i:;:: 90r apparent fibre o . .t. ” | t. I:> o ’ reaChedIfOFCG drOpS to zero fOF
P e g initiatly €lastic =\ continued straining
o perfectly plastic pull-out .
60+ \ SN
sof - . \\ -
1004 B 0
30r ) : ) 2
2 fibre force:P | ; - RS
y 0.05
0 50+ g = - ) )
0 0.05 ‘I ' 01 0.15 02 ) ﬁrv. . ‘ SOII matrlx
soil strain: e, Tl L h .
v . S . 01 strain: g,
0 g . ‘ ERRER .
O 200 ' - 0.15 _
400 0o initially elastic =
. , 800 4000 02 breakage (loss of force)
vertical stress: ¢', 200

o hypothesis 4: fibres may pull out of soil or may reach
tensile strength and snap
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shear box tests on
fibre-sand mixtures

fibres: 1%

increased
strength

0

-1.0
vertical

movement
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shear box displacement: mm
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fibres: 1%
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shear box displacement: mm

Eibre—sand mixtures modelled ... fibre-clay?: ) J
viscous effects 1n soil model?

15

7. Applications?
simulations

fibres: 1%

e Simulations of
shear box tests
on fibre-sand

0.8

stress |

ratio
0.6

0.4

0.2
mixtures
0 | | |
° Pthear strain o fibre orientations
R —m/4 <0 <m/4
-0.04
vertical | e dominant effect
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shear strain
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Creep modelling of sand
- role of particle breakage/damage
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creep modelling of sand

stress

~"isotache

strain

stress

~ combined

strain

stress

" |acceleration strain

temporary effects of| ~
strain and strain rate|

stress

_Ppositive and
"~ negative

strain
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Figure 1. SEM images of Ottawa sand and Lake Michigan
Dune Sand grain surfaces (image width ~ 100 pm). Figure 4. Damage of a large asperity at a contact loaded
with 0.7 N (SEM image width 70 &~ um).



Figure 2. SEM image of Lake Michigan Dune Sand (image
width ~ 10 pm).

Figure 3. AFM scan of Ottawa sand grain surface
(2 x 2 pm).
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particle breakage/suffusion

crushing
100 — Igincreasing 100 —
80
% finer % finer
60
40 -
. loss of fines
20 — : | decreasing
0 I I | 0 I
005 01 02 05 1 2 artlcle dlameter
particle diameter:mm ogarithmic scale

e particle breakage broadens grading
e Internal erosion (suffusion) narrows grading
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particle breakage/suffusion

1.2 —

. . 2 ‘
‘ void ratio | removal e
P d

1.0 |—of fines L’

08:\\~_?——"’

0.6 E _ .-~ emin
0.4 \T' “ 7 | | |

fines content: %
: S T : >
fine particles filling * fine particles pushing

gaps - natural result  larger particles apart -
of crushing unnatural?

e broader gradings pack more efficiently

e limiting densities increase
o critical state line falls
Q
. state parameter increases - soil feels looser
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specific
volume

state parameter

particle breakage/suffusion

L prmmmmmmmmmmmmmmm e So
~
= ~
mobilised strength S
. ~

available

v strength
X S critical i critical state
.. state line critical state available strength : S~ )
N fall ) , stress:dilatancy
. aus
. strength stiffness unchanged
unchanged unchanged expansion contraction
mean effective stress: . 0 plastic distortional strain 0o
state parameter plastic dilatancy

characterise grading and grading evolution

link grad
particle
other as

Ing evolution and critical state line
oreakage criterion - stress (strain?)

pects of model unchanged (first order)

DUNDEE
_n 12



particle breakage + Severn-Trent sand

AF
1.5 _ 19 r F
Stress I'atio (\\ Cl‘itical State
q/p' - ‘ line /=0
LOF speciﬁc' A
volume v
05k 1.5+
a. critical state
c _— lnels1
0.0 ' ' ' ' ' 135 60 1000 10000
0.0 0.2 0'4_ 0'6_ 0.8 1.0 mean effective stress p’ (kPa)
axial strain
volumetric 1.0-
strain 0-04r contraction I ' no crushing for test AF
G
0.02+ 0.8}
0.00 . . T T . 0.6
OO\ 02 04 06 08 1.0 '
-0.02+ axial strain
04}
-0.04+
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-0.06} d
expansion  AF 0.0A . |
-0.08% 100 1000 10000
mean effective stress p’ (kPa)
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particle breakage + Severn-Trent sand

-

evolution of
critical state on

AF
1.5 1.9~
stress ratio critical state
q/p’' A B line /=0
1.0 L7
’ DA specific §C
DAF
volume v D path AEAF
051 1.5¢ I\ E N
a. critical state
C. e line ]G=1
0.0 ! ' ' ' ' 13500 1000 10000
0.0 02 0'4, 0'6, 0.8 1.0 mean effective stress p’ (kPa)
axial strain
volumetric 1.0-
strain V-04 contraction AEAF ] ' no crushing on unloading
G E
0.02 0.8
ADAF /
0.00 D
0 o 00—
-0.02
0.4+
-0.04
0.2+ d
-0.06 S '
expansion  ABAF 0.0 A B/. .
-0.08% AF 100 1000 10000

mean effective stress p’ (kPa)
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creep modelling of sands

complex patterns of response observed - ‘descriptive’
titles but little attempt to understand physical
mechanisms (Tatsuoka et al.)

time effects in sands relate to the amount of grain
crushing (Lade)

creep effects observed in absence of particle breakage
(Airey)

experimental evidence consistent with static fatigue:
time dependent fracturing of micro-morphologic
features at inter-granular contacts (Michalowski)

model for solil with varying particle size distribution
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Creep of Soft Clay:
“Classical” to “Current
Practice”

Hans Petter Jostad
Discipline leader in numerical modeling at NG
Adjunct Professor at NTNU

2st CREEP Course, Trondheim, Norway,
15-16. September 2014

e




Key questions:

What is the definition of creep?

Do we have creep deformations at the same time as we
have deformations due to pore pressure/stress
changes?

When does creep start?
What controls the (volumetric) creep deformation?
How to expand from 1D to a general 3D stress state?

.
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Motivation

How to calculate long term settlements in soft clay?
A) Primary and secondary compression phases?
B) Coupled consolidation and creep?

de_(&ej da'+(aej +{8edT}+ oe do
dt \dc'), dt (ot ). |oT dt ) |66 dt
stress induced creep (temperature) (chemical)

e[l (@) e l(3)

Primary (consolidation) Secondary (creep)

™~
™
e
- b
™

e




Secondary consolidation (creep)

primary < E > secondary
' > Log(t)

Settlements

The classical approach for creep settlements!

N |"‘\ \ ?




Bjerrum's delayed compression concept
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VERTICAL PRESSURE IN LOGCGARITHMIC SCALE

Unique relationship between creep rate, effective (vertical) stress and void ratio

N =




Key questions related to long term settlements

Extrapolation of laboratory data; rate? Extrapolation of laboratory data; time?

. Long time oedometer tests
Hypothesis Reference
\ Curve A Ladd (1973), Mesri Time (min)
& Rokhear (1978 1.E+03 1 day 1.E+04 1.E+05 1.E+06
Curve B Barden (1969) 0.0 A ' I
Brinch Hansen (1961) .
Taylor (1942) 0.5 A 400 days
1.0
.E \
£ 1.5 —
n oy pipo=1.2 -~ §
l \ /CUNS A © 2.0 17 p'/po'=1.5 ~ \\
____________________ \._ . g 25 p’po'=1.75 ~.
\ \ p/po'=1.6 N
3.0 T plpo=2.3 —#
~
\(CUW‘;\E\*‘ - 3.5 4] == =—KRYKON,r=150 | —
Note: Same Ac’/c’,, for —~. 40 —— — KRYKON, r=300 several years
both samples S :

Log Time —=

Behaviour around p.' (destructuration)?  Effect of varying load history?

Effective stress kPa

P/ P

5% 7 0.6 1.0 1.5 2.0 3.0
100 2 300 400 500 600 700 T
0% f ‘ ‘ ‘ ‘ ‘ ‘
‘ “ ®
5%
< g » Ro a
@© 4
£ 0% g, (20)
6
15% oyr
20 % 0.1yr* 8 24 hrs
4 A Testl
25 % 0.001 yr 10 |— ® Test2
. =
—R=01—R=1—R=10 —R =100 — R = 1000 Test4 SN
Time resistance (years) 12 [




Unique end-of-primary (EOP) void ratio

Hypothesis Reference

\ Curve A Ladd (1973), Mesri

& Rokhsar (1974)

Curve B Barden (1969)
Brinch Hansen (1961)
Taylor (1942)

-— Strain

Note: Same Ac’/c’, for —~.
I~ .
both samples

Log Time —=

Need this assumption in order to divide into primary- and secondary phases
A or B most correct?



Unique end-of-primary (EOP) void ratio

Arguments against the approach:

* How does a soil element "feel” that it is in a primary consolidation state?
- Elements close to a drainage condition with almost constant effective
stresses during the consolidation phase
- Time of primary consolidation governed by a low permeable layer

« Difficult o define a unique EOP state
- Upyeess’q = 0.1,0.05 or 0.01



Main challenges

Due to significantly different time scale in field and laboratory conditions, the
deformation in the field must be described (extrapolated) by a creep model
based on input from laboratory tests.

Long time oedometer tests

1 day Time (min) 500 day
1.E+03 ! 1.E+04 1.E+05 . 1.E+06
0.0 A ' '
0.5 -
1.0 :
1.5 i
8_ p'/po'=1.2
o 2.0 1 p'/po'=1.5 ™~ e
' po'=1.7 ~ :
wW 25 4 p'/po'=1.75 S I
p/'po'=1.6 ~ .
3.0 17 p'/po'=2.3 \\ \ i
3.5 | = ==KRYKON, r=150 \‘L
e == KRYKON, r=300 TN
4.0 : >

several years



Sample disturbance (ap

10

Effective stress (kPa)
100

1000

T—
N

/]
/8
/4
s

Strain (%)
|_\
N

— Block

—54 mm

N\

N
AN

parent creep)

Is soil disturbance the reason for

good agreements between standard
consolidation analyses (without creep)

and field observation?

Tangent modulus (MPa)

—e—Block

—=—54 mm

100 200 300 400
Effective stress (kPa)

500

Mocza'MIOC
a=5-=15
i




Verification/calibration of creep models

Back-analyses of measured field data
Generally large number of uncertainties

Back-analyses of idealised model tests (e.g. oedometer tests
with different specimen heights)

Extrapolation is still necessary
Long term laboratory tests
Extrapolation is still necessary




Oedometer test (Incremental Loading Tests)

c',+ Ac, u(t) G'y u(t)

.

drainage

N T AR TN
SRS A

Ac’,,

creep

Ag

Need to separate into contributions
from effective stress changes and creep:

- Creep “starts” when u — O or after 1 day (as a reference)?
- Or, all plastic strains are time dependent (Soft Soil Creep Model)

N =




Janbu’s resistance concept (EP+VP)

Increasing
time

v NCL -reference strain M
¢ at areference time €

q 1 d I 1 Mt = f(GV) Need these
gv _ O-v relationships!

it M. dt R R = (0, € or 2)

Creep is added to the elasto-plastic strains




Janbu’s time resistance

o eqv t

v

R=R,+r(t-t,) i

A
A B 1 I t B 1 I R gcreep
Ecreep = ? . t - ? n Ri > Toqu O e ntT

(0]

, constant

Agcreep = &t — &y (Gv') &

R — Roe(r Agcreep) /
RO | 1

o t t,
The accumulate creep strain is the ' %
state parameter for creep rate ——> poreoverirykk =0




Effective stress dependency

Stress or OCR dependent?

/
R=R,+r(-t)

O C R Effective stress kPa

100 200 300 400 500 600 700
0 % 4 1 1 1 1 1 1

£
g 10%
n \\\

15% oyrt

1 ! 1
20 % 0.1yr A >
1 1 [1
1
- 0.001 yr Gyo Oyc o,

—R=01—R=1-—R=10-—R =100 —R =1000
Time resistance (years)




Example

Creep strain (%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
35
4.0
4.5
5.0

Ro = 0.3 and 1 year, r = 100, 300 and 500

Accumulated creep strain Creep strain rate
Ro=0.3 and 1 yr, r =100, 300 and 500 Ro=0.3 and 1 yr, r =100, 300 and 500
time (year) time (year)
10 20 30 40 50 0.001 0.01 0.1 1 10 100
0.00
_____________________ < o001 -
§
———————————————————— [J]
T 010
c
‘©
s 1.00
(%]
Q
- - o ]
s e g 1000
—— | T T mmm===aa “ P >
1 -
| 100.00 -
|
I
! 1000.00
Ro=0.3 yr, r=100 Ro=0.3yr, r=300 Ro=0.3yr, r=500 —>—R0=0.3 yr, r=100 Ro=0.3yr, r=300
_ _ L he _ L hel _ Ro=0.3yr, r=500 = = =Ro=1yr, r=100
Ro=1yr, r=100 Ro=1yr, r=300 Ro=1yr, r=500 — — -Ro=1yr, =300 — — Ro=1yr, r=500

A large contribution of creep may
occur during primary consolidation

)



|sotaches — lines of constant (creep) strain rate

unique relationship between effective stress — strain (void ratio) — strain rate

\
\

\
\
Current in situ stress condition \\

A&

creep

> In(c,)

R=R,

R=R,+rAt R= Roe(r Ao

These curves may be non-linear (curved)

N

)

/
[ f
'\,\ k\
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“Apparent” pre-consolidation pressure
Plaxis - Soft Soil Creep Model (E+EVP)

() (G

NCL N=—
€ v t; = 24 hr H

1, (RY . (RY o v foe) o
AE ey :rln[Rjzﬂ In(Rj:(/l —K )|n£,j_(/1 x")In(OCR)

0 GV

* * * *
A —K A —K

(r A& o0 ) 0 1:ref u
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Solution algorithm — FE program

Input: 5.l

- Current equilibrium state: > In(c,)
- o, and e g
- Newincrement: | NN

— Ag (predictor)
— At

Current eq. condition

Output:
- New stress state:
J— GV‘

New state

Calculations: \Z (e )
- g, =f(c,)) € R = Roe creep

~ Ecreep = &- &g
- R= f(gcreep) Account for non-linear behaviour of R

— Ag = At /R

creep
— Ao, =M(o,) - (Ae-Aggreep) Global equilibrium iteration!

/T TN
]

v




Soll Investigation

Soil profile from e.g. CPTU and location of depth to bedrock (or a stiff layer)
In-situ pore pressure measurements (piezometers)

Soil samples from different depths/soil layers

Standard index tests

Oedometer tests
- constant strain rate (CRS) tests with unloading/reloading loops.
- X days creep test (and/or CRS tests with different rates)
- additional permeability tests?

- incremental loading (IL) tests (specification: Dg/q=1?, duration=24
hours or EOP, pore pressure measurements, long term creep phases,
etc)



Recommendations of laboratory tests

IL tests are well suited to provide data on creep
parameters and the location of the RTL

CRS tests is recommended to define the shape of one
Isotache specially around the yield stress

How should we define creep behaviour before pc?
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What is peat / organic soil? Ty

Deposit of organic material, to some extent mixed with clay, silt sand
particles
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Global peatland area by
country
(in percentage)

0 or no data
less than 0.5

0.5t02.0
20to0 5.0

B 50t010.0
B more than 10.0

Source: Parish et al., 2008.

(http://lwww.grida.no/graphicslib/detail/peat-distribution-in-the-world_8660)

5-8% total land surface
8-11 % tropical / subtropical

(Mesri & Aljouni, 2007)
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and population density
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ENGINEERING PROBLEMS
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Dewatering

“Kadij kseiga?




Cconsequences

adjusting water table leads to extra settlement (location: Waterland)

1960 1970 1080 1990 2000 2010 2020 1960 1970 1080 1990 2000 2010 2020
120 ‘ : ‘ ‘ : 120 — ‘ ‘ . ‘
E -125 1 1 J -125 L T -
|
1
% -1.30 F 1.30
1
.Z, 135 { 1.35 '%\
% -140 “i—l( ® metingen 1.40 ‘.‘T} X metingen
—_— b ~~~~ T —O—model \\ —0o— model
-8 e L= R—peiverlaging 1994 e . peilverlaging 1994
> -150 -150 \JI‘
O J_ il T
D 155 -1.55
1680 -160
Time [years] Time [years]
Year Level adjustment
1 1976 NAP-1.43m - NAP-1.49m
20 May 1994 NAP-1.49 - NAP-1.96 m

23 september 2014




Case Rotterdam, schiewijk |
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Residual settlement
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Case Gouda Goverwelle : | |
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CHARACTERISATION
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Organic content P = M, / My,
Ash content = 1-P

How to determine P:

Determine dry solid mass (M,), by drying sample for 24 h at 105°C
Determine remaining mass (m,) after drying for 4 h at 500 "C

Loss on ignition N = (M, — m;)/M¢

Ash content = 1.04(1 - N)

P=1-1.04(1-N)

An error of 4% is assumed for organic particles that are lost in finding

M

Deltares
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| OSRC Jarrett Davis USSR LGS Landva et
| System System (1946) System System al. (1983)
o Low Ash ] < 100
10 » Peat Medium Ash Peat i . Peat Peat lu;u
20 ¥ Higlh Ash % Peat 4 1 50
ol Peat : [Peaty Organic| | &
Qe L Soils 02
é g Low Ash Peaty Peaty MUCk E SIS | “E
= 0N O E’ A6
= 2 5 G Ve R R St | i b=
2 S g -
g om0 = Muck [ f.o)
o |23 ces | Muck Muck o
6y H U2 . Silty / w10 T
= g High Ash Sandy / . . %
= Giravelly . Organic Soils |~ &0
= e S +-——————— Non-Peat |[Clayey Muck - ©
80 » 420
Mineral Organic Clay Mineral
»  Sediment or Silt Soil Clay | " pall
o ! IS | N ER. ) | Organic | Soils with Organic Content |

Figure 2.5 Comparison of classification systems used for peat and organic soils (after Andrejko

et al., 1983).

(B.B.K. Huat et al 2014)
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2.8 4 @ Betuwe railway
A Polder zegveld
< Bergambacht
2.4 1 B Qostvaardersplassen
X Rotterdam (krieg 2000)
1000 5 — + Sliedrecht
— 2.0 A
&
= - 167 1 __N_
p. 1354
8007 & “m 1.2
| B 00 0.2 0.4 0.6 0.8 1.0
g Loss-on-Ignition N [-]
(c °8,
o 0 Figure 14. Correlation of solids density pg with Loss-on-Ignition value N.
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— o
g &
E
400 -
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Figure 13. Correlation of wet and dry bulk density with natural water content for various Dutch peats and organic
soils.
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Further classification
I s

Many options:

* Von Post classification (decomposition)

* Fiberosity

« Botanical background

« Conditions during deposition (eutrophic, mesotrophic, oligotrophic)
 Type of additive (clay, sand etc.)

Deltares
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Table A1.

Degree of humification (von Post system).

Degree of

humification Decomposition

Content of
Plant amorphous
structure material

Material extruded
on squeezing (passing
between fingers)

Nature of residue

None
Insignificant
Very slight
Slight
Moderate

Moderately
stong

Strong

Very strong

Easily identified None
Easily identified None
Still identifiable Slight

Not easily Some
identified

Recognizable,  Considerable
but vague

Indistinct Considerable

(more distinct

after squeezing)
Faintly High
recognizable

Very indistinct ~ High

Nearly complete Almost not

Complete

recognizable

Not discernible

Clear, colourless water
Yellowish water
Brown, muddy water;
no peat

Dark brown, muddy
water; no peat

Muddy water and
some peat

About one third of
peat squeezed out;
water dark brown
About one half of
peat squeezed out; any
water very dark brown
About two thirds of
peat squeezed out; also
some pasty water
Nearly all the peat
squeezed out as a
fairly uniform paste
All the peat passes
between the fingers;
no free water visible.

Not pasty
Somewhat pasty

Strongly pasty

Plant tissue capable of
resisting decomposition
(roots, fibres)

(Landva 2007)
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40% 50%

(Source: TR-GCV , TAW 1996)

Either, dry, sieve and count or visual inspection
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Botanical background, sedge |

(Meier-Uhlherr et al 2011) Photo G. Erkens
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Botanical background, Sphagnum Ty

Ty TN T
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o

(Meier-Uhlherr et al 2011)
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Lake

TREEE11E A

fen

Etadagd B4 s tes s peeseetbbttenttg

Raised bog

(after Visscher 1949, Lowe & Walker 1997 ) D e l ta re S
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Example, eutrophic lake




Examples of Marshes and Swamps

~

0 : b £ i LopNR LR TS e AL B S (e el o . a2 ‘\"" : “ oy

b f =

http://sts.gsc.nrcan.gc.ca/
Marsh (= low wetland area, covered by reed, grass etc.)

Swamp (= low wetland area, covered by forest) Deltares




R e e

Fen (= low area covered by grass and reed)

Delltarec
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Examples of raised bogs

Basin bog

ateau-bog

)eltares
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Raised bog in Siberia

Photo: W. Bleuten
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Profiel proefperceel Uitdam
Mei 2012
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CPTU, 10 cm?4cone
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Hgts Hpall Vqt’ qua"
[MPa] [-]

10 cm2 cone 0.14 0.21

15 cm?2 cone 0.12 0.17

Ball penetrometer (1) 0.11 0.17

Ball penetrometer (2) | (.13 0.11

NEN-EN-ISO 22476-1: accuracy required for class 2 CPT(U) is 100 kPa (0.1 MPa)
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Unloaded peat has an open structure
Free water in (large) pores, bounded pore water in cell structure

When loaded a rapid decay in permeability due to closing of the
macro pores

Photo G. Erkens
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In situ Falling Head test
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Void Ratio, e
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a  Peats from literature

£
Montmorillonite /  ©
i
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Coefficient of Permeability, k , m/s

Mesri & Aljouni 2007
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17 oedometer tests from test site
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Ko-CRS test | " | | K
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DSS, Field stresses
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Figure 11. Anisotropy of peat revealed by shrinkage tests, Polder Zegveld.

Den Haan & Kruse (2007)
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SETTLEMENT / CREEP
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Oedometer test results in linear and strain

Sample A ', [kPa]
1 10 100 1000
0
0,2
g=10"
0,4 ——n=-5

—=—n=-55

——N=-6

0,6 \\x\ -- —n=-6.5
—n=-7
\ n =-5 (lin)
0,8 n =-5.5 (lin)
& n=-6 (lin)

n =-6.5 (lin)

gh/ €€

n=-7 (lin)

1,2
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Incremental form |

G,vi»l G’vi In (G ’V)

Til,start At Ti, end

In(t)

e

1. Direct strain:

O.
gl =aln (—'j
Oi

2. Equivalent time t directly after loading

b-a

o ¢
_ i-1
i =T :
O ;

3. Equivalent time 1 end load step

Tiong = 7; TAL

i,end

4. \Viscous strain

T .
,eind

gsH —C In i,ein
Ti,begin

5. Total strain and settlement

e =gl +&l', Ah=h, (l—exp(—gH))
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Germany

Case: Rallway line Rotterdam
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TO BE SOLVED
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Creep after unloading modeling oedometer test, OCR = 1.8

,,,,,,,,,,,,,,,,,,,,,,

.......................
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—fitting first steps, unloading, reduced swelling IR P P A
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Creep after unloading modeling oedometer test, OCR = 1,8

Test 5
0 SO0R000 100000300 15000000 20000000 25000000 0000030
1.00E-0F T
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5 : — —
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Influence of gas Ty

Gas is not considered, but plays a role

B i
-

Den Haan & Kruse 2007
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"@" Creep of Geomaterials

Rate-dependency based EVP modelling
approach for clays: from 1D to 3D

Zhen-Yu YIN

Associate Professor, Ecole Centrale de Nantes, France
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1. Phenomena and problems

CH@y = | Porcelain

O

argileté

laboratoire

MASQUE

ARGILE
VERTE

Peaux grasses

GREEN CLAY
EACE MASK

y ski

100% NATURAL CLAY

ARGILE BRUTE ILLITE E
Sechée et optimisée au

* Masque visage, cou
et décolleté

100

ARGILE NATURELE



1. Phenomena and problems

Pisa tower

Clay — ancient construction
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1. Phenomena and problems
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1. Phenomena and problems

Cﬂay — Future construction
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1. Phenomena and problems

Clay — Natural hazards

Displacement

Sliding of c1ay S0P
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1. Phenomena and problems

Sample scale

Micro scale

loading-rate
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Outline

2. Rate-dependency of clay
(1) 1D + remolded clay

LIM 15.0kV 10.0mm x3.00k SE(M)



2.1 Rate-dependency — 1D & Remolded

] Creep based model Some creep based models
v Yin JH et al. (1989, 1994, 2002)

Gy Vertical stress
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2.1 Rate-dependency — 1D & Remolded

] Strain-rate dependency
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2.1 Rate-dependency — 1D & Remolded

] Strain-rate dependency

AND
FOUNDATIONS

79
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2.1 Rate-dependency — 1D & Remolded

] Strain-rate dependency
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2.1 Rate-dependency — 1D & Remolded

] Strain-rate dependency

d
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2.1 Rate-dependency — 1D & Remolded

] Strain-rate dependency

Ta Ml 3
Oedometer apparatus Strain-rate dependency of o’y

» !/
Ino,
Specimen W Ring
L&
E

Vertical Displacement Ing

‘Strain control

15



2.1 Rate-dependency — 1D & Remolded
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2.1 Rate-dependency — 1D & Remolded

] Rate-dependency based model
e Jep-(1te)g, GE,O

EVP model - 1D: l
e vp —x
&, =&, + &y
e K O,
gv — / Test at reference strain-rate
1+¢, o, _
In(s",)
' P >
- Vp .r A—K| O v G Rate-dependent o,
&, =&, , 5
A | o =
P
|
1+e !
Cp =0y €XP| —— &, !
A—K g\: log(de, /dt)

» Simple & easy to determine
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2.1 Rate-dependency — 1D & Remolded

] Rate-dependency ~ Creep?

Simulations by given values of parameters:
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2.1 Rate-dependency — 1D & Remolded

O Rate-dependency — Stress relaxation?
«» Formulation of stress relaxation

B
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2.1 Rate-dependency — 1D & Remolded
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2.1 Rate-dependency — 1D & Remolded

0 Uniqueness of time-dependencies R, =_afalrlln? _ ﬂﬂ‘ﬂ K _ Cﬂae or g_

In(c', In(c',) In("))

fast
slow
, é}‘< !(2 <\é3
Relaxation Conventional CRS \ \ \
(9\/ v g\/ v g\/ v
Duration: <~ 3d Duration: <~ 14 d Duration: >10d

Yin Z-Y*, Zhu QY, Yin JH, Ni Q. Stress relaxation coefficient and
formulation for soft soils. Géotechnique Letters, 2014, 4(1): 45-51.
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Outline

2. Rate-dependency of clay

(2) 1D + intact clay
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2.2 Rate-dependency — 1D & Intact

[ Inter-particle bonds and debonding
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2.2 Rate-dependency — 1D & Intact
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2.2 Rate-dependency — 1D & Intact

O Equations of 1D model

B r r
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Outline

2. Rate-dependency of clay

(3) 3D + remolded clay
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2.3 Rate-dependency — 3D & Remolded

J Methodology

GDS (ECN)
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2.3 Rate-dependency — 3D & Remolded

] Elastoplasticity vs. Elasto-viscoplasticity

de; =&, ‘éij = 6"5 + EI}O dg; =¢&; -dt
Strain increments Gg Strain rates
(EP model) é‘i}o =dA—— (EVP model)
ofept
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Flow rule
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% Flow rule (f=q)
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2.3 Rate-dependency — 3D & Remolded

(1) Scaling function with flow rule ag

Equation from 3D to 1D:
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B
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< i [psj E umi 2253

C fore (5]




2.3 Rate-dependency — 3D & Remolded

(1) Scaling function with flow rule

Constant?

89 Triaxial | - vp

L A-x[ 09
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Rate-dependency from 1D to 3D?
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2.3 Rate-dependency — 3D & Remolded

1 Reference surface?

q=pa-0; CSL,»" 4 AC-2 (2) Reference surface
qz
AC-1
fo=—=+p(p—p)
| 1C-1ing, Ko=1 (3) Flow rule
0 P T= (Ga+20-r)/3 ~ gvp M 2 772
. g =fq T
\i\ o 277
: Iggp’ (4) Hardening rule
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2.3 Rate-dependency — 3D & Remolded

» Stress history effect on reference surface

(1) Stress His. .: IC (2) Stress His. : AC-C (2) Stress His.: AC-E
A CSL . 4
a e 91 csL
7/
/7 7/
7/
// — /\
_( “= O > > _‘~~~‘ :
0 N\ p’ O Pl S :
S
N\ \
N\
\
CSL®

1 Mod.-1: Reference surface formulation
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2.3 Rate-dependency — 3D & Remolded

Initial reference surfaces of some typical natural soft clays
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v Yin et al (2010), International Journal of Solids and Structures.

v Karstunen & Yin (2010), Geotechnique. GEoTECHNIQUE x

8 S0LDS AND
STRUCTURES

o — -




2.3 Rate-dependency — 3D & Remolded

1 Mod.-2: Reference surface rotation

25

a (kPa)

Initial Anisotropy

Otaniami clay
Depth 3 5=4.7 m
F Initial yield curva

o Changing with stresses & strains

Otaniemi clay

M =11

o/M

Depth 3.5=-4.7¥ m DR |
08
04

0.2

{
0.2

04 F

=086 |

“mduced anisotropy

30 ’ o '
doy = 0{[4;' —O!d)<d5\,p>+0)d (35, —adjdgdp}

Avantage: No additional parameters!

Wheeler et al. (2003)




2.3 Rate-dependency — 3D & Remolded

J Parameters of ANICREEP model

. M Parameters of MCC
po’ T c

. OrJOrR, Viscosity

e, kK, A, O

CCZ

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

An anisotropic elastic-viscoplastic model for soft clays

Zhen-Yu Yin *”*, Ching S. Chang?, Minna Karstunen®¢, Pierre-Yves Hicher®

* Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01002, USA
b Research Institute in Civil and Mechanical Engineering, GeM UMR CNRS 6183, Ecole Centrale de Nantes, BP 92101, 44321 Nantes Cédex 3, France
“Department of Civil Engineering, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 ONG, UK
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2.3 Rate-dependency — 3D & Remolded

 Test simulation (St-Herblain clay)

1D CRS test
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2.3 Rate-dependency — 3D & Remolded

[ Test simulation (Wenzhou clay, China)
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2.3 Rate-dependency — 3D & Remolded

(J Remarks: Flow rule b CIUC test results q S
for undrained test: _x;al strain-rate: 1.5%/h Vi .
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- 0 3 O 9 12
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w _HO(F) oy |l forany 7: £ = 1 (F)
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E..
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op’
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} 80‘ij
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2.3 Rate-dependency — 3D & Remolded

] Remarks: Reference surface and rotation?

Pestana & Whittle (1999)
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Outline

2. Rate-dependency of clay

(4) 3D + Intact clay

7 o
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2.4 Rate-dependency — 3D & Intact

J Extension of debonding rule from 1D to 3D

>
r
Zoo-pig p’
., Intact
Remolded ™., *

‘.‘:“KO

N Stress path K, | *,
v
A

q

Intrinsic
surface

Debonding rule (1D to 3D)

X = Xo€

v
_pgvp

¥

vp

_ el
X = Xo€
Gens & Nova (1993)
A
fw»
>
&4
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2.4 Rate-dependency — 3D & Intact

J Parameters of ANICREEPS model

e, K y) o, N Parameters of MCC
) ) ) p0 !

C
Ce OrJOrR, Viscosity
Xor 61 S Degradation
(remolded clay “=0")
IC:§=_(1J;$°)In % - —i* and K,: E+&-&, 2(n-2) :‘(1+Veo)|n o, 1
Ae®™ X [Aevp j . X (Mz_nz) Ae” (AeVpJ | e
Xo €XP| —— |Tyig Zo€XP| —— |07

i 4K | I A -k |
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2.4 Rate-dependency — 3D & Intact

[ Test simulation (Vanttilla clay, Finland)
T =10 days

1t =1 day (Conventional)

0 =
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g
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2.4 Rate-dependency — 3D & Intact

[ Test simulation (Vanttilla clay, Finland)

Undrained triaxial CRS tests

80

a CAUC1

o CAUC2

o CAUC3
= Simulation

7~L10%Mm

0 T T T T 1
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35
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0 T 1
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Outline

2. Rate-dependency of clay

(5) Applications

7 o
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2.5 Rate-dependency — application

O Numerical solution of EVP model Time =t, J”sﬁﬂspﬁiﬂfrf’i:ﬂ‘-f:ﬂ-fw[ﬂ]
¥
e e iy . &f
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2.5 Rate-dependency — application

O Implementation of model into PLAXIS (user defined model)
B Plaxis 82 Input - tunnclpi A —

File Edit View Geometry Loads Materials Mesh Initial Help

pedaaa B xD Coupled

: N oes v lidation
4L o [T [Tk A B 3£y conso ;
User-defined model - clay2
- il - - -

User-defined model - clay2

] General |Parameters| Interfaces

__ —Material Set | General Parameters IInterfaces I
7 Identification: |day2 Available DLL's : ||ANISCCrEE|:|.dII vI Models in DILL: iID 1: ANISCCreep vl
25.00_ Material mndel:l IUser—deﬁned model I - _ i
] — Pararmeter M arne L nit Walue i
- Material type: IL.InDrained | I_I
] 1 ¥ - 0.200
20.00_] 2 x : 0.023
T —Comments
— 3 L 017z
] 4 ® 1.740
15.nu_: 5 Mc 1.150
7] G OCR - 0.000
] 7 POP KM/ -40.000 i
] MNext |
10,00
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2.5 Rate-dependency — application

0 Haarajoki embankment, Finland

== 4m ¢ Inclinometer I1 4 Inclinometer 12
NS :
S — ! =
™ ’ Embankmeht fill ‘ : 5m z
| T \'9 Jg_t* +0m
1 1 —
| |
®-4m : . — - :
®-7m —— Haarajoki test embankment
’ Soft foundation soils ‘ .
®.10m ® Piezometer
®-15m 22m
= Till

All parameters determined from conventional oedometer and triaxial tests:

0
| b B L
® [} o
5 ° ’ - ol 5 [} °
o . o © ‘7% o
d O a 5
o ° ol o
go | ° ° ] 00 °
= o
g | I- I
A15 o i &
20 - | 4
1E-10 1E-8 0 100 2000 0.3 060 0.05 010 0.01 0.021 15 2

k, (m/s) 6" (kPa) . K Ci M,
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2.5 Rate-dependency — application

O Finite element model

Embankment fill
FE model e \/ Water table
(PLAXIS v.8) N s

1257 elements

6-noded triangle

2626 points

| Natural

clay

|

|
Embankment fill (Mohr-Coulomb)
Thickness (m) E (KN/m?) v ¢’ v c(KN/m?)  y(KN/m®)

0-3 40 000 0.3 38° 0° 1 21
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2.5 Rate-dependency — application

EXxcess pore
pressure

Total
displacement

ce3s pore pre
(Step 0)

spiacements
ssssss

b £ A 13 = @ 2R B E @ 2 pa B oA poo
$:fi:cfEGEcEcEsc5cEEg3EeEocEsE b
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2.5 Rate-dependency — application

.. ..... . I
Settlement T Hor. Disp.| |
|
0=
Au dissipation -0.05 0 0.05 0.1
Embankment at 73 years | | |
construction 2
c 0.4 -
% ¢ Centreline
= O 4 mleft E
B A 4 mright <
& 0.8 + omleft é' at 11
x 9 mright b = - o — 15 days
= Simulation & - % |~ - 1lyear
A Audissipation W 20 — = — 3 years
1.2 T T Mo o m— Simulation
1E+0 1E+2 1E+4 1E+6 25
@) Time (day) (@) Settlement (m)

. 3D-EVP model coupling with consolidation for application. Yin et al. (2013)



2.5 Rate-dependency — application

Over-excavation
effect on long-
term behavior of
tunnel

Excess pore
pressure

Total displacement

B pressures
(Step 0)

I N SR S = S R = S S = S
S S T S T

Total displacements
(Step 0)

[kN/m 2]

24500
22500
20500
18,500
16.500
14.500
12500
10,500
8500

E.500

4500

2500
0.500
-1.500
-3.500
-5.500

-7.500

-9.500
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2.5 Rate-dependency — application

Construction time effect on excavation
Total displacement

Total displacements
(Step )



2.5 Rate-dependency — application

Pile construction (installation rate effect, by Abaqus)

Excess pore pressure

SDV3
(Avg: 759%)

+4,068e+02
+3.674e+02
+3.280e+02
+2.886e+02
+2.493e+02
—1 +2,099e+02
—t +1.705e+02
+1.311e+02
+9,175e+01
+— +5,237e+01
+1.299e+01
-2.640e+01
-6.578e+01

Y ODE: exio-2.0dn  Aodauws/Exolk k6. L

Soeo: oane
g lmemen Q: Sexn Time « 0.0
= Peienacy Var: SOV
DeformedVar U DaformacionScale
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2.5 Rate-dependency — application

Effect of explosion on clay excavation (terrorist attack, by LS-Dyna)

Total displacement

Contour (Analysis system)
Dizplacement (Mag)

[3.135E-03

b.342E-03
=—4.549E-03
—4.757E-03
T 3.064E-03

T 31T1E-03
7 2.3T8E-03

1.586E-03
[T.QEBE-M
0.000E+00

Mo result
Max=7.135E-03
Min = 0.000E+00

| Time = 0.000000

z

L,

95



3 Conclusions

(1) Determination of 1D strain rate-dependency formulation;

(2) From 1D to 3D, attention to flow rule, reference surface,
anisotropy, destruction;

(3) Applications on geotechnical structures.
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Use of advanced creep models and
some pitfalls in creep modelling

G. Grimstad



Fundamental aspects of soft clay
behavior

e Creep

e Anisotropy
— Strength
— Stiffness
— Yield stress

e Structure and destructuration

* Unloading/reloading cycles — small strain
e Degradation during cyclic loading

« ALL ARE LINKED!



“1D” Creep — (24h) incremental
oedometer test

« Advantages:
— Gives first estimate of creep/consolidation parameters and the
“vertical” pre-consolidation stress directly
« Disadvantages
— Time consuming compared to CRS tests
— Only average settlement parameters for large stress increments

— ldeally back calculation with mathematical model is needed
(FEA)

r
. %



Current Norwegian engineering practice O ‘

« Using low OCR (if material has not been subjected to
preloading an OCR of 1.07? is often used)

e Ignoring creep
* Adding creep after consolidation?(Hyp. Al)
 Advanced: Janbu’s time resistance concept

« What about the selected pre-consolidation stress?
IMPORTANT!!

 What about sample quality?



Sample quality O

Vertical effective stress [kPa]

1 1|0 100 0 mERa
30 T TRl
2.8 — 95 .
=X
2.6 — W
= o
2 2.4 — &
(1] —
.“5 .8 15 — —
S 2.2 — g Depth=7.4m
20 - 20 H © Sherbrooke Block _|
. —&8— EOP - 200 mm Laval sampler O Fixed F.,ISton
) < Free Piston
18 —=#— EOP -50 mm Swedish sampler i
' -3 - 24 hr-200 mm Laval sampler 25 Lol :
16 — =t~ — 24hr-50 mm Swedish sampler \m 10 100 1000

Vertical Effective Stress, o', (kPa)
Compression curves for Vasby clay at a
depth of 4.0 — 4.3 m (after Leroueil DeGroot et. al. (2005)
and Kabbaj, 1987)



Janbu’s time resistance concept O ‘

e Increment in time Time,
divided by the increment <
In strain (Cause/Effect).
E{J
L J
r'y
CL:E “*Pure creep’’
S ‘ ;
o I
|
Ryef
= f=
b A Time




1D equation

dt
de'

(t)=r,-(t-7)+Ry =1t

vp 1
de, = L = Ag,” =—In—
dt  r-t I,
d eq eq
dpfj; = p;f = Agl =¢In
(C;V
I"S{

"Pure creep”

tref t

R = ot/Ce

ln(prefeq = peq)' 1=z

~R . whent

>>tp

ref

(D, (t= 1)

»

1

In(z)/r,

peq In(t)/r,

€q
pref

P2 is important for creep rate! Initial
value is the pre-consolidation stress!

»



“Alternative approaches” to Janbu for 1®

* Yin and Graham (equivalent time approach) — Adopted
from Bjerrum

e Lerouell
 Den Haan (ABC model)
e eflc.

ALL ARE THE SAME?



lgnoring creep? O

) :
p[} }Cf fnlf(?f ‘-lv lnp -
——‘r—:rg'—;—" _\"—j"“""""' “““““ T o e e a
25 AT . Ast P Py Pp Pp In(p)
* & | | | .
- p -k - -
C 1 *
AeSS Ag? A&SSC peq T -
v W v 1
&y Ag OCR,, = p—iﬁ. —— ' Alnt
0 ) - N
/8 |
ocr, =" \
' Py T
D . p:‘{ creep isotaches ‘T,
p:'i{f . A A N ) ’ | h N rd OCR? = — A
SSC: OCR,,, :( ) ] N Copy increasing 7 £
A \ \ .
S v , (decreasing £ ) | 7,
]ch N . e N g, O('nge =1 *
SS: OCR =| —~ . RN T, v
Po increasing 7 \
decreasing rate |
/ Yo lllustration of dependence of OCR on the

corresponding reference time (7).
A case of SSC and SS model giving the same

final settlement.



The effect of the p*/(A*-k*) ratio on OCR (creep rate)
H

“Recommended” range (PLAXIS manual)

~0.04 - 0.0/

u* age = 10000 yrs OCR=1.3
A*x >
_ 1 OCR age
rS
0.010 1.163 6.79E+08 years
0.015 1.254 1.08E+05 years
0.020 1.353 1.36E+03 years
0.025 1.459 98.9 years
0.030 1.574 17.2 years
0.035 1.697 4.93 years
0.040 1.830 1.93 years
2.129 0.518 years
2.880 0.113 years

H,

~
SO
[~
D\

Same A*

|
!

@
ke‘?.fs

u* decreasing with time

In(o”)



Anisotropy

e First:

— Undrained Triaxial Compression versus Undrained Triaxial
Extension and Direct Simple Shear (Bjerrum 1973)

e Second:

— Preconsolidation stress from Oedometer test versus isotropic
consolidation test (Feng 1991)

e Third:

— “Stress/strain induced anisotropy” — Changes in macroscopic
yield surface (Wheeler 2003)

11



Undrained shear strength

e Used as basis 0-5
for the NGI-
ADP model 041

0.3

/S0

0.2r

0.1r

| | | | |
90 60 30 0 30 60 90
B
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Pre-consolidation stress and "cap” yield. ‘
surface
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Stress/strain induced anisotropi

Wheeler
et al.

q (kPa)

g (kPa)

=30

-30

CAE2513
n=0,66
a=0,11

(1]
p’ (kPa)

g (kPa)

q (kPa)

-40

CAE2544
n=-0,59
a=0.15

CAD2276
n=0.25
=015

6l 80
p' (kPa)
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Destructuration

Void ratio [-]

©C O O Mk P PP DN
N OO o O M O 0 ON

o\ [kPa]

Burland (1990)

2500 : :
---©--- Eberg clay, 6.47 m
n --4+-- Eberg clay, 6.13 m
2000}
1500}
0 &
1000} |
\ ¢:> __________ Ja——---—"“"”::Z:E
——Undisturbed sampleX\ IR g o |
" |n situ state ‘ &
1 " Reconstituted at wL % 200 200 500 800 1000 1200
| Predicted ICL o
— SCL
‘ | ‘ | Christensen (1985)
1 10 100 1000 10000
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Creep - Yield surface becomes reference
surface ® {

12 T T T T
—— dMdt = constant - ACM

—— dNdt = constant - new formulation

e Option 1 — extending by volume
strain (ACM)

« Option 2 — extending by plastic
multiplier directly

rs:¢
: 1 p¢d
A:rs-r.<eq> "Mgonc

pre f

a/ |§rqef

-0.6 | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2
D]
PPt 16



Anisotropy and creep —

The n-SAC model ® X

A non-associated creep model for structured anisotropic
clay

 Non-associated because:

— prediction of the strain behavior under various stress paths,
based on experimental evidence from e.g. Feng (1991)

3

T
Z{Gd - P 'Bd} {Gd - P 'Bd} where p’ = mean stress; 6 =deviatoric
P =p'+ 3 stress vector; B, = deviatoric rotational
(I\/I 2 —BdTﬂdj p' vector; M = Lode angle dependent peak of
2 the reference curve of in p’-g space
3

Q=p+ 3 — pgq =0 where M;is the Lode angle dependent citical state line
(I\/I f2 _*udT“d j p' in p’-qg space; a is the deviatoric rotational vector.
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Modelling of destructuration & iﬁi

e Gens and Nova (1993)

pref — pmi (1 +X)
where x Is the amount of structure that is unstable
| stands for Iintrinsic
. 1 ped TsiCi
A= i T ((1 + x) 'pmi’> Twone
« x has to change with vp strain % = f (@) Statevariablesinc. x

18



Models with anisotropy and
destructuration

 Option 1
— ACM -> ACM-S (Leoni 2008, Kamrat-Pietraszewska 2011)
» Extension of SSC (Stolle et al. 1999) (PLAXIS current model)

e Option 2
— EVP-SCLAY1S (Karstunen and Yin 2010)

— Ani-Creep (Yin et al. 2011)
— n-SAC (Grimstad et al. 2010)

 N-SAC —using creep limit and option 2:

19



How to use/Parameters for analyses

e Two models - SSC and n-SAC
 Three analysis cases - SSC1, SSC2 and n-SAC

SSC1
SSC2

0.15 0.54
0.15 0.54
0.15 0.5

n-SAC

m_m-__mm-

200
200 6.0 233 - - 35°
200 13.0 200 625 0.3 25° 35°

k, =k, = 5e-5m/day; y’ = 10 kN/m3, K, = 0.54, OCR = 1.36

3(1 —2v)

K =
Eref

A= . pu*= -
 (pref r
{Eoed S

20



At/Ae (days)

R =

Ao/Ae [kPa]

Eoed =

Oedometer simulations

400 -
350 -
300 -
250 -
200 -
150 -
100
50

14000

Time [days]

12000

10000

8000

6000

4000

2000 M

a ¢

200

400 600

Vertical stress, o [kPa]

800

1000

——-SSC1
-m-5SC2
n-SAC

CI11

— il
1111111 e fnpeu

FAVAWAVAWLWAWIY

Avavd

FAVAVAN

JAVAY

¢ SSC1
m SSC2
n-SAC

Two way drainage
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settlement problem

Example

AT T A i
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XS :
KAASTIN sy

2

INNT
N/
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AW,

Uy [m]

SSC1 - Point A

SSC2 - Point A

n-SAC - Point A

Ll 1l

L

Ll L1l

L

Ll Ll

L

Ll L Ll

L

Ll L L Ll

L

Ll Ll

L

-1.5

le3 le4 1e5 1e6
Time [day]

100

10
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Vertical displacements [m]

Horizontal displacements [m]
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Mesh dependency due to softening

Vertical displacement [m]

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Time [days]

0.5 1 1.5

2.5

-
-
Sewo

——— Application of load, fine mesh

------ Undrained creep phase, fine mesh

— = Application of Load, coarse mesh
-== Undrained creep phase, coarse mesh

-
-
-
- en an o T > an w o= P P P

Shadings of
“structure”
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' [kPa]

ny

Effect of stiffness

30

104 |

G, = 105 kPa
5|/ de/dt = 1/(3E5 s)
0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
g, *2

Y\

25.7 days. Looks more like perfectly plastic behavior!
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Conclusions o (

e Creep/rate and anisotropy are important if we want
to fully understand soil behavior.

o Sample quality is crucial and deserves more
attention as it forms the basis for numerical
modeling.

« With increased sample quality and testing
procedure, the soil models also needs to be
Improved

 The “huge gap” between state-of-the-art and state-
of-the-practice must be closed or at least narrowed
down!
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Use of creep models

« Expected new stress state to cross p.’ (24h)
- » Expected new stress state below p.’ (24h)

Strip load

\
NC clay Il

(OCR_,,, = 1.4 - 1.8)




Time resistance concept

e Described by in e.g. Janbu (1969)
e Used for 1D strain in KRYKON, Svang & Emdal

(1986)
ot
d _
B (85) ~drR 1
”Pure creep” s dt o dt o
=i '
de 4
- dt t

28



Example: SSC model - The effect of thg
M*/(A*-k*) ratio on OCR (creep rate)

Specifying lower OCR o :E .(-p@q \

S\"

’
(0] ,
— vO Oyc 1day

’
Oyc 1day

In(o’)



The effect of the p*/(A*-k*) ratio on OCR (creep rate)
H

Ho |7
| "X N
|
/,l* t 1%’:(* ﬂ“*if* :
A*—ic* OCR, =~ te =7-OCR, * |
_ |
r.- _
; £=10° years OCR =1.3 i
|
0.010 1.163 6.79E+08 years H }
Ho |-
0
0.015 1.254 1.08E+05 years :
|
0.020 1.353 1.36E+03 years I
|
|
0.025 1.459 98.9 years |
|
|
0.030 1.574 17.2 years :
H ! Same A*
0.035 1.697 4.93 years — !
HO
0.040 1.830 1.93 years
Q
0.050 2.129 0.520 years REON
0.070 2.880 0.116 years W* decreasing with time

In(o”)

“Recommended” range (PLAXIS manual)
~0.04 - 0.07



The oedometer test... 'Y

« Can we rely on OCR from IL oedometer tests?
1) Sample disturbance? (we all know this)
2) Stress condition?

e  Start at some unknown isotropic stress condition and consolidates
to 12.5 kPa of vertical stress

« Loads further along a line different from K N¢ line (i.e. stress path

hits the reference pre-consolidation at different place than it would
In-situ!)

— Do we need to simulate the oedometer test rather then interpret
OCR from it?

— Should we measure horizontal stress in the oedometer?

3) Consolidation (is the effective stress constant for most of the
24h?, e.g. clays with low permeability)

4) Extrapolation... (should model OCR and reality OCR be the
same?)
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Simulated oedometer with SSC @ ‘

700

600
/./

500 //

~C 400
e
"'!u..._“l
=
i
= 300
O
200
100- /,-f”.
0 I Uy Y Y Y Y Y Y Y
0 100 200 300 400 500 600 700 800

p' [kN/m?]
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What about K,? o @

 Is the in-situ K, affected by creep (NC clay)?
— Model says: very limited influence, i.e. K, = K ;N¢

e Has the material been unloaded (OC clay)?

— Model says: yes, but creep will try to make K, = K N¢ if the model
IS not changing its plastic potential, since the volumetric strain
should be equal to the vertical strain

» Should we then set K, = K,;N¢ for models like SSC?
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OCR and K, O

 The K, value does not change significantly in a 1D creep case due to the
increase in OCR. Since 1D creep requires de,'P = dg P, then the stress state
Is fixed to one point at the potential surface.

* In PLAXIS if one specify a OCR (due to creep alone), the suggested initial
horizontal stress generated (suggested K,) is based on the assumption of
unloading. Remember to change this back to a value close to the real K,N¢

""" PLAXIS OCR treatment
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Stress increment in the field @ ‘

* NoO need to fit the whole lab curve...
— What is the experienced stress change?
— For most of the soil it is little change (around p.’ or less)

Accept wrong OCR — Fit at large
H stress change, well above p_’

Accept that Inital creep rate is too
big
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The MIT-MDPW embankment o

o Latest paper looking at back calculating this is from 2012
(Fatahi et al.)

Ventical Stresses; o’ - o’p and ¢, (kPa)

0 100 —
0 . Sp4
Sand : TATAY Ly
L, Profile 2: ¢ IR ] "
% _ _ I
10FB2 | BBC1 PORZAZ o] ST :
C1 Ml . Tk Tk |
s o - T X 1 | X J
E .CI? v A -é ! 1 ?P;z & .
a 20F Y'd ( o -
L) D2V XAVAVAVAVAVAY
_w_Ez BBC 2 ¥4 ‘ . {
:Fl 1 g . [ '
" . []
L 2 Program ’ t b ¥ T ' '
v, He 1966 }PIO . . Y| 1 ' ¥ G
= 1977 ® P19 ) - 4
- 1980_._ Pll r -
A P P
B)

@ @ @®
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Vertical Stresses; ¢’ o a'p and o, (kPa)

nﬂ 100 200 300 400
sm v - - ~ y—y I T
LA Profile 2: o"
[ Bl \
-10 :Bz BBC 1 tttt-t.dt:t-gﬂttith PrOﬁlG l: U.P
4 % |
51 [ow
g |
g 20 D
'3 ?1 L o
d B2 « 50
2ok E3 | BBC2 .
 Fl
';2 Program | Ocd.(1 day)| Oed (EOF)
: 1966 A a
_‘o._ ........ 1977 r o
[ F3 1980 0
’,I P 1 . L P S Y— a— | B Y i e
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The trial embankment

Construction Year

20 0 1 2 3 4 56
Initial Measurements PiEZCEthEFS end of Construction
T Inclinometers CD620
o 15 : — H‘ —— —
g Settlement Rods
= H— +12.2m
2 § Stage 3
i A
I
E CD1 =01/09/1967
- Stage 2
- Remove/Replace
E 2 |peat
- +2.75m . 3
= 18.7kKN/m
+1.5m l ITS 6 Stage 1
0 : “lfs = ls?lkamJ _ ;

0 100 200 300 400 500 600 700 1000

Construction Day (CD)
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Alternative models O
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Oedometer simulations O

Vertical effective stress, o [kPa)
10 100 1o

Oedometer simulation

£ el EL -10m
=
5 |
Zoao b cDo
2 43 —a— IL-85C
= » —@— 12L-88C
— . D 2053
16 | ——D 36500
-18 ¢+
20
Vertical effective stress, o [kPa])
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il
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Vertical displacement [m]

Vertical displacement [m]
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Elevation [m]

Excess Pore Pressure [kPa)

Excess Pore Pressure [kPa]
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Conclusions o

« Evaluate the parameters over relevant stress increments

* Do not blindly take OCR from odeometer tests

— Stress path
— Sample disturbance

e The “simple” SSC model performs OK when we are after
vertical deformation profile and pore pressure. As long
as we take some care for the OCR we use in modelling.

— NC clay does not usually have OCR of 1.1...

— OCR in SSC is a material parameter that defines initial state of
the solil (i.e. the state variable p,®9), it is not more holy than the
other parameters that we use to fit our model to “reality”

A%, k%, u*, v, o, ¢, K©
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Creep of Soft Clay:
Exercise

Hans Petter Jostad
Discipline leader in numerical modeling at NG
Adjunct Professor at NTNU

2st CREEP Course, Trondheim, Norway,
15-16. September 2014

e




CREBS

4 Workshops on CREep Behaviour of Soft clay)
 NGI (Oslo, Norway, January 2006)
e Univ. Stuttgart (Pisa, Italy, September 2007)
e Univ. Chalmers (Gothenburg, Sweden, July 2009)
* Deltares (Delft, Netherland, January 2014)

Establish a common basis of understanding “long term
compaction in soft soil”

- analyse a set of well defined hypothetical cases




Example calculations

 Comparison of results obtained by different calculation
programs (for a set of well defined cases)

 Comparison of material models
* Interpretation of laboratory tests (model dependent)

« Recommendations of laboratory tests and field
Investigation

 Not a competition!




Hypothetical cases

NC-behaviour (OCR=1)

NC-behaviour with apparent pre-consolidation
Varying time history (pre-loaded several years)
Layered soll profile (different permeability)
Stress distribution with depth (some shear strain)

a b~ DD PRE

The real case: Oslo Railroad Customs Building

- 50 years with measurements (may include additionally 30 years)




6 Participants

University of Stuttgart

e Dr. Martino Leoni and Professor Pieter Vermeer
University of Strathclyde (and Ecole Central de Nantes)
* Dr. Zhen-Yu Yin and Professor Minna Karstunen
University of BRISTOL

* Dr. David Nash
Chalmers University of Technology (Gothenburg)

* Mats Olsson and Professor Claes Alén

Swedish Geotechnical Institute (SGI)

* Per-Evert Bengtsson and Rolf Larsson

Norwegian Geotechnical Institute (NGI)

 Professor Il Hans Petter Jostad



Models

Plaxis (FE) with Soft Soil Creep and Anisotropic Creep (3D)
« EVP, MCC, rotated modified CC, no structure, one creep parameter
Plaxis (FE) with EVP SCLAY-1S (3D)

« EVP, rotated modified CC, over-stress formulation, structure, two
creep parameters

Briscon (FD) with a general isotache model (1D)

 EVP, structure, stress dependent creep parameter

Embankco (FD) with an isotache model (1D)

« EPVP, structure and threshold value for creep

GeoSuite (FE) with two slightly different isotache models (1D)

« EPVP, structure by stress dependent creep



Hypothetical case 2

q = 50 kPa (light) and 90 kPa (heavy)

LELLL L] owr

drainage
M=10 MPa 7' = 10 kN/m3 Hsang =10 m
v" = 10 kN/m3 B
I_Iclay =30m

OCR = 1.4 (10 000 years old)
e, = 1.17 (p,'=143 kPa)

k, = 0.02 m/year

Ip = 18-25%

Closed bottom




Main assumption

1.
2.

Fully saturated clay (incompressible pore water)

1D Condition
a. 1D pore water flow with defined drainage conditions

b. Negligible horizontal strains (oedometer condition)

Uniform material (only changes in stress levels and initial void
ratio) within the soil layers

Assumed “perfect” oedometer test data?

Effect of sample disturbance?

/ D 3
\l e )
) / : 2
| I"
!
I', ] i
\ N .
N 5 /



Soft Soll Creep — input parameters

In(GVo‘) In('GVC‘) t t:

In(c,) ref

e

t 1

* * * r — -

A& ey = H 1 In(t} = (X =) In(OCR) p

ref

1:r
A —x" p— R0 - ei

2

(r A& gree ) u 1:ref u
R=Re"*=)—ROCR ¥ =" OCR




Oedometer results — standard IL test

20 mm sample with drainage at top and bottom

Odometer test 693

(24 hours results)

Test 693 (load step 280 kPa creep phase)

Effective vertical stress (kPa) time (min.)
0 500 1000 1500 0.1 10 100 1000 10000
0.0 0.00 3
2.0
5.8 days creep phase 0.50
4.0 /
= / ~ 1.00
.% 80 €, = 1.17 (po' = 143 kPa) % 1.50
@ Results after 1 day =
2 100 N  2.00
o —
£ 120 AN @©
() ) 8
= e 2 250
14.0 \ E
>
16.0 3.00
18.0 ——— 3.50
20.0 4.00
.._\_\_\\ \




Oedometer test data

Testno. 693, p,' =143 kPa
Time (min.)
0.1 1.0 10.0 100.0 1000.0 10000.0
0.00 *—i : i ‘
%\ —
1.00 \ N —
2.00 \ \
<
S NN
= 3.00 \ ~—
ju 0-10 kPa \
(7]
< 4.00 { —10-20 kPa
& 20-40 kPa \\\
= —_
g ——80-130 kPa
——130-180 kPa
6.00 +
——180-280 kPa
——280-320 kPa
7-00 11 320-640 kPa
——640-1280 kPa
8.00 ‘
v



Hypothetical cases

q = 50 kPa and 90 kPa

LA PP ew

drainage M =10 MPa
' H =10 m
Svw + 9 v =10 kN/me | Nsand = 10
v' = 10 kN/m3
OCR=14 Hclay =30m

eo= 1.17 (p,'/=143 kPa)
k, = 0.02 m/year

cSVC

Closed bottom

N e N
\_\ \ | | :

\\‘\




Strain (%)
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Interpretation — reference strain (24 hours)

Odometer test 693

Vertical strain (%)

Odometer test 693
(24 hours results) (24 hours results)
Effective vertical stress (kPa) Effective vertical stress (kPa)
500 1000 1500 10 100 1000 10000
0.0 04
40 ) ~ Disturbed, M, =1.5- m - p./ 5 '§:
N
6.0 N — : : 3 \ Cd 0167
8.0 \“\s _ |Virgin loading, Myc =14 - (5, — p,) S 10 1+g
e
o0 X Unloading, M, = 5 ' < \
20 = nioading, M, = > - m - p. Ei 15 C&a.._\ N
Iy N 7Z : e 002 \*\
. +e,
20
16.0 =N / | N,
18.0 - > -
20.0 25




Interpretation - creep phase (NC-regime)

i) R=R,+ r (t-t,)

0 2000 4000 6000 8000 10000

0.0 4 5
os §
5 : _—
1.0
5 ~— 3 / 1 r
ocl5 Q) /
= o 1
| >
% 2.0 ; 2 &
525 - /
330 i — 1 g
835 - 0 I;
4.0 0 2000 4000 6000 8000

time (min)




Interpretation - creep phase (NC-regime)

Test ho. 693
Time (min.)
0.1 1.0 10.0 100.0 1000.0 10000.0

0.0 '
~ C, t
—~ A‘C"creep = Iog( J

%% ""“—---\\
N

\ t
= 0.3337Ln(x) + 0.4865 _ *
\ A‘g‘creep = U In e

S b

1.0 AN
—10-20 kPa
— 80-130 kPa \\

%t
\\ ~N
50 k \
20-40 kPa
——130-180 kPa \
\
Y

Incremental strain (%)

0-10 kPa
3.0 11— 40-80 kPa
4.0 H — 180-280 kPa

——280-320 kPa
—— 320-640 kPa
50 || ——640-1280 kPa
Series11
Series12
—Log. (Series11)
—Log. (Series12)

=

= 0.287Ln(x)|+ 3.0484

/

6.0 4




Interpretation - creep phase (OC-regime)

100/r

\11/‘(1 +e0) (%)

Incremental Strain

y/(1+e0) vs stress ratio - model/ d1

B4
r = 300
035 .4
—a— Experimental / \
— 83
——— Sin function // \ -
— 825 L d = 3
02 /
815 [
&1
4
I
v
©
0.1 1 10
Test no 693 - predicted strain vs time- model 3-d1
Time (mins}
10000

0.1 1 10

0%

2%

0-10 kPa
w—10-20 kPa
20-40 kPa
w—40-80 KPa
49 4 m— 00-130 kPa
= 130-180 kPa
= 180-280 kPa
5% || ==——280-320kPa
= 320-640 kPa
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3%

8%
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—EVP-SCLAY1

NB! Creep from one increment affects

the creep in the next increment
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EVP-SCLAY1S -

Odometer test 693
(24 hours results)

e =1215

e=1.17, ¢, = 143 kPa)
{ine
o 1.1 1 Static yield point
e —_
E y {0_1@Ln(x}+ 19707
2104 —
£ \
0.9 4
{0012
0.5 4y 001Nk * .
(3.} 10 Eﬂegi[]IEE vertical stress {;EUﬂPa}
A=
€ v’ K A

Interpretation

Time (min.)
10 100 1000 10000 100000

10-20 kPa
20-40 kPa
40-80 kPa
80-130kPa
130-180kPa
180-280 kPa
280-320kPa
320-640 kPa
640-1280 kPa

av (%)

G O O x % + O @

—EVP-5CLAY1

(Q} 20 -

1.215 0.2 0.012 0.162

1.24 047 21 0.8 14 1.4x1018




Comparison of stress-strain-time curves

Reference strain at 24 hrs at top of clay layer

Effective vertical stress (kPa)

Reference strain (24 hrs) at bottom of clay layer

Effective vertical stress (kPa)
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Results — Case 1

Surtace settlement[m]

Casel ( q =50 kPa, Closed bottom)
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Results — Case 1

Excess pore pressure @ 40 m [kPa]
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Results — Case 2

Surtface settlement [1m]
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Results (strain after 50 yr)

Case 2 (q = 50 kPa,Open bottom)
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Results — Case 5

Surface settlemment [1n1]
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Conclusions

o Large differences in settlements for well defined idealized examples

 The main reason is uncertainties in the creep behaviour before the
yield stress (apparent pre-consolidation pressure)

 The differences may have been even larger due to uncertainties in
the pre-consolidation pressure (if not given!)

 The programs and material models seems to work well (except
EMBANCKO?)

 Difficult to check the results obtained with the general 3D models
(especially EVP-SCLAY1)

 Difficult to compare models due to different sets of input parameter
even when they are based on the same framework
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Final Remarks

® Should we start incorporating kinematic hardening models to
capture unloading/reloading + creep (DMW)

— Already a model in development (Chalmers/NGI)
by Nallatamby Sivasithamparam ]

M,

-
*****

NCS

M,

NCS: Normal Consolidation Surface
CSS: Current Stress Surface

BS: Bubble Surface

CSBS: Current Stress Bubble Surface
CS: Current Stress




CHALMERS

Final Remarks

® Should we start incorporating kinematic hardening models to
capture unloading/reloading + creep (DMW)

— Already a model in development (Siva@NGI)
® Fibre overlay model + clay model = peat? (DMW)
® Creep in sand is not only governed by grain crushing (DMW)
® Hypothesis B is the only physical realistic explanation (HPJ)

® Extrapolation of laboratory time to in situ time scales remains
challenging: 24 hrs << 50 years (HPJ)

— Long-term field data is not easy to come by either
® Separation of consolidation & creep stage is challenging (HPJ)



CHALMERS

Final Remarks

® Consider sample disturbance in the determination of the
relevant parameters from lab data (HPJ)

— can we correct oedometer data for apparent pre-
consolidation pressure?

— It is disappointing that you only know AFTER the test if your
sample is of insufficient quality

® Peat classifcation is ambiguous (C2)
— So let’s use the simplified Russian system ...
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Final Remarks

® Classic approach for calculation of consolidation and creep is
surprisingly effective in 1D (C2)
— What is creep in peat anyway?
— Is decay of peat also exponential, such as

® chemical reactions, electric charge, discharge of fluid
from a vessel, atmoshperic pressure, heat transfer,
luminescence, biological half lives, electromagnetic
radiation, radioactivity, thermoelectricity, damped
mechanical oscillators etc.

— Field data for calibration of predicitons
— Extension to 2D & 3D required
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Final Remarks

® Measurement at very low (effective) stress levels are not trivial
to perform (C2)

® Viscoplastic models capture the phenomenological system
response very well (Yin)

— Though not all input parameters are intuitive (or shown)
— Sensitive for the structure parameters

® Smart use of simplified models will, in some cases, approach
advanced models. Determine your parameters around your
design point and tell Plaxis the ‘age’ of the soil (GG)

® Ranking of the most important parameters for Soft Soil Creep
OCR, OCR, OCR, and OCR (GG)
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Outlook

® Should we consider mesoscale modelling?

Matsushima (2014)
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Outlook

® Or even on the molecular scale?
® Ebrahimi et al. 2014
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