SHMAC: An Infrastructure for Heterogeneous Computing Systems Research

Thematic session on Evaluation of Heterogeneous Systems and their Applications HiPEAC Computing Systems Week, Tallinn

> 9. October 2013 Magnus Jahre Associate Professor and Coordinator of NTNU EECS

www.ntnu.no

Energy Efficient Computing Systems (EECS)

EECS Technical Motivation

Energy efficiency is becoming the primary design goal across all market segments

Extremely energy sensitive systems

- Lifetime of system is equal to battery life
- Lower energy consumption can open new markets

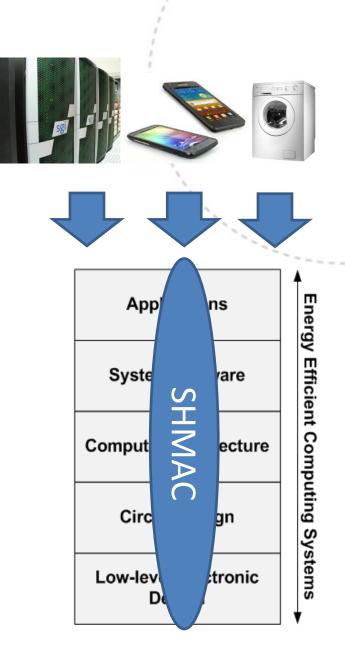
Mobile systems

- Energy: Users want long battery life
- Limited size of cooling system results in strict power constraints

Desktop computers

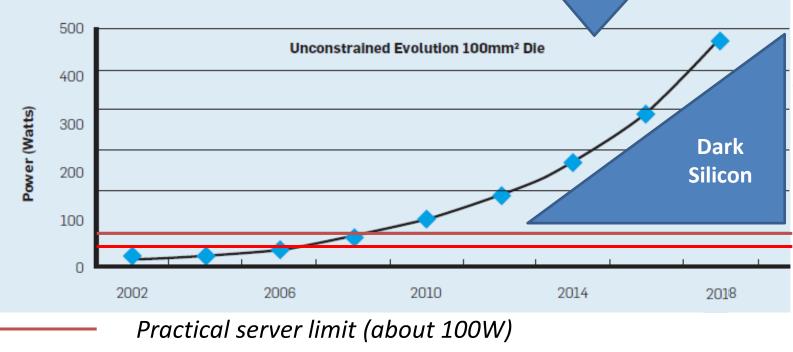
- Fixed power budget due to cooling challenges
- Cannot improve performance without improving energy efficiency

Data centers and HPC


- Energy bill dominates operating cost
- Power consumption is a significant engineering challenge

www.ntnu.no

Energy Efficient Computing Systems (EECS)


EECS Structure

- Vertical approach
 - Leverage strong groups working horizontally
- Application agnostic
 - Matches focus of high-volume international industry
 - Choose demonstrator applications that clearly demonstrates proposed innovations
- People
 - 6.2 affiliated permanent staff
 - 10 affiliated PhD students
 - 5 affiliated researchers/lecturers

Business as usual?

Business-as-usual scenario: Add more cores and increase clock frequency

Practical desktop limit (about 65W)

Paradigm shift from area- to energy-constrained computing

Result: Heterogeneous computing platforms

Energy Efficient Computing Systems (EECS)

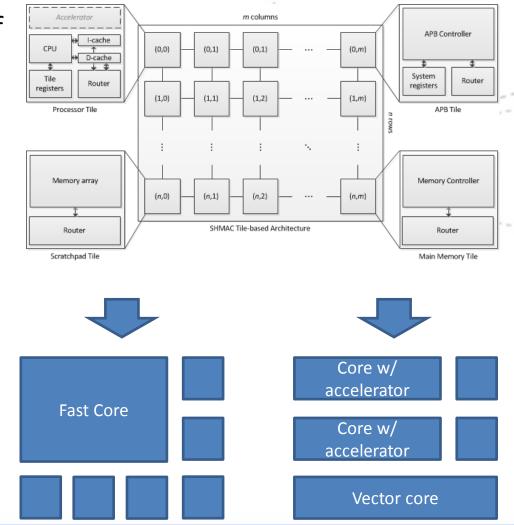
The SHMAC Project

Dark silicon effect makes heterogeneous processors likely

Software for heterogeneous processors is an open research problem

- Heterogeneity of off-the-shelf components is limited
- Simulators have unlimited heterogeneity but are slow

Solution: SHMAC = Single-ISA Heterogeneous MAny-core Computer



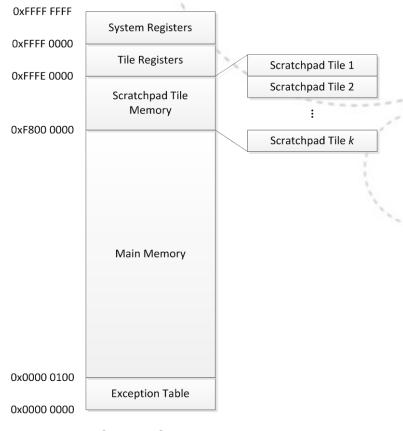
	1	•
Applications		Eller gy
System Software		
Computer Architecture		in comp
Circuit Design		Enrolent Computing Systems
Low-level Electronic Design		sterns

Energy Efficient Computing Systems (EECS)

SHMAC Architecture

- Tiled multi-core design paradigm describing a class of processor architectures
- Common instruction set and architecture model gives software portability across SHMAC instances
- SHMAC instances can contain various tile types:
 - Processors with different energy/performance characteristics
 - Optimized processors (vector, 000, etc.)
 - Accelerators

Energy Efficient Computing Systems (EECS)

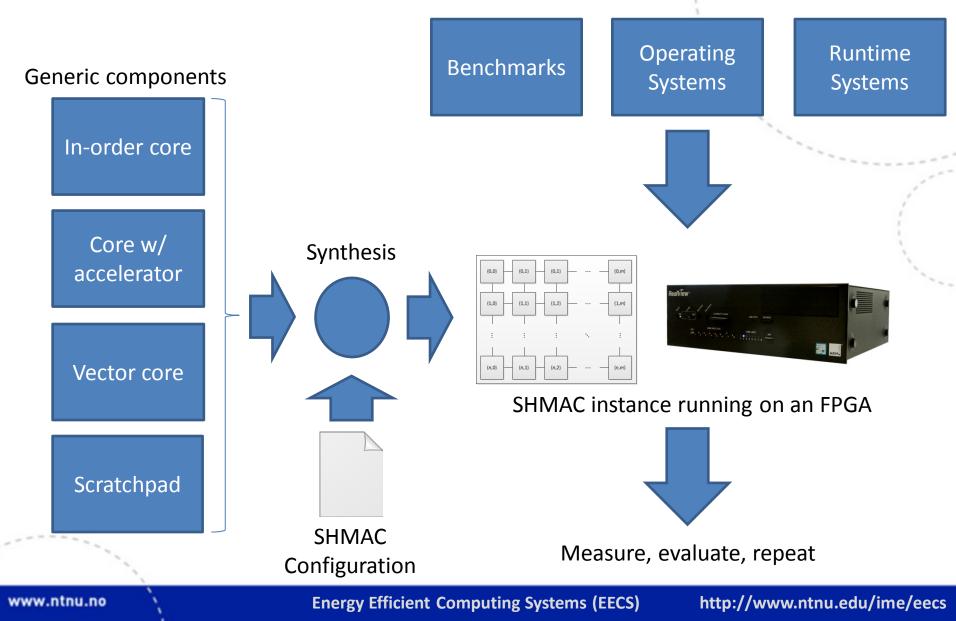

Design Goal: Software Portability

All processor tiles are functionally equivalent

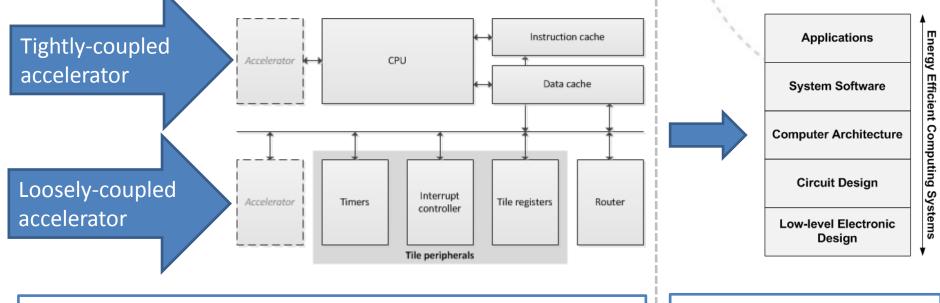
- Performance may be very different
- Different processor classes and accelerators

Uniform architecture

- All processing tiles see the same memory map
- Tile registers are per-tile, other memory locations are global



SHMAC Memory Map


Research question: What are the costs associated with the Single-ISA abstraction?

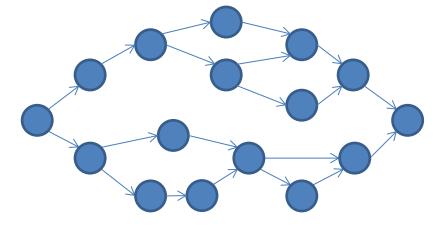
Energy Efficient Computing Systems (EECS)

Leveraging Reconfigurability

Project Example 1: Integrating Accelerators

Accelerator research topics:

- Tightly vs. loosely coupled accelerators
- Which accelerators should be included?
- How can accelerators be leveraged by programmers?


The most efficient solution will most likely require both software and hardware changes

Key SHMAC Components:

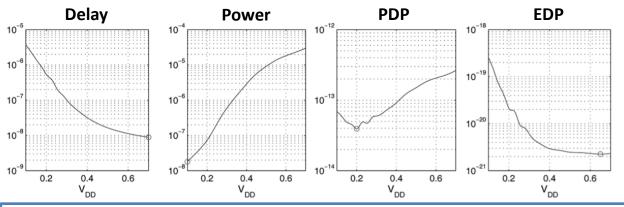
- Accelerator support
- Processor tiles
- Memory tiles
- System Software
- Benchmarks

Project Example 2: Task Based Parallelism (TBP) for Heterogeneous Systems

TBP: Program is organized as DAG of tasks (nodes) and dependencies (edges)

Energy Applications System Software Computer Architecture **Circuit Design** Low-level Electronic Design

Efficient Computing Systems

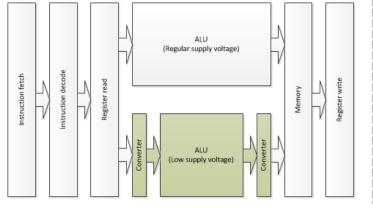

Task scheduling for energy efficiency :

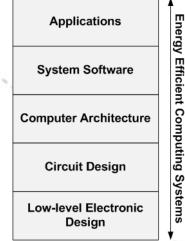
- How should tasks be scheduled in a heterogeneous environment?
- Which hardware feedback mechanisms are needed?

SHMAC advantages: Efficient software development, large diversity in systems, possibility to add feedback components **Key SHMAC Components:**

- **OS** support
- **Benchmarks**
- **Processor tiles**
- Memory tiles

Project Example 3: Exploiting Near-/Sub-threshold technology




Reducing the supply voltage to near the threshold gives:

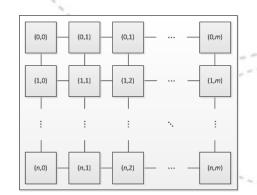
- Energy per switching is reduced by one order of magnitude
- Latency increases by 3-4 orders of magnitude

How can this technology be leveraged at the microarchitecture level?

Tape-out necessary to validate implementation

Key SHMAC Components:

- Processor tiles
- System Software
- Benchmarks


Energy Efficient Computing Systems (EECS)

SHMAC Enables Collaboration

SHMAC combines generic components and powerful abstractions

Reimplement/extend the part(s) involved in your research project

SHMAC best suited for cross-disciplinary projects where hardware and software innovations are combined

• Different partners can focus on different parts of the system

EECS is one of seven groups at NTNU that receives special support towards Horizon 2020

Energy Efficient Computing Systems (EECS)

Future Directions

Status: Minimal set of tiles to support software development

Future hardware

- Efficient accelerator integration
- Vector core
- Out-of-order core

Future software

- Benchmarks (micro, macro)
- Operating Systems (conventional, multikernel)
- Runtime systems

Significant effort: 1 Post doc., 2 PhD students, 15 master students

Concluding Remarks

SHMAC Project

- An infrastructure for heterogeneous systems research
- Potential tool for a large variety of research projects
- Significant effort at NTNU

External Funding

- Strong relations to international high-volume industry
- Ambitious strategy for securing external research funding

Thank You!

Visit our website: <u>http://www.ntnu.edu/ime/eecs</u>

Energy Efficient Computing Systems (EECS) http://