

Innovation and Creativity

RECX – A Norwegian Centre for X-Ray Diffraction, Scattering and Imaging

Julian Tolchard

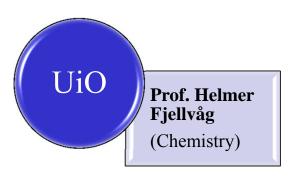
Overview

- Organisation
- Motivation
- Capability
 - What relevance is it to you?
 - How do you use it?

RECX Organisation

What is RECX?

- Norwegian Centre for X-ray Diffraction, Scattering and Imaging <u>RE</u>source <u>Centre X-rays</u>
 - Admittedly not a very "catchy" name
- Virtual centre across UiO and NTNU
- Funded jointly by Forskningsrådet, UiO, and NTNU
 - 25.5MNOK from Forskningsrådet
 - >20MNOK from UiO and NTNU
- New equipment / personnel
- "Donation" of existing equipment to centre
- 5 year commitment (initially)



Where is RECX?

- Dept. of Chemistry, UiO (http://www.mn.uio.no/kjemi/english/research/about/infrastructure/xrd-lab/)
- Dept. of Physics, NTNU
 (http://www.ntnu.edu/physics/xray)
- Dept. of Materials Science and Engineering, NTNU (http://www.ntnu.edu/mse/powder-diffraction-lab)

Who is RECX?

Ass. Prof. Ragnvald Mathisen (Physics)

Ass. Prof. **Dag Breiby** (Physics)

Prof. Tor Grande (Materials)

Dr. David Wragg (Chemistry)

Ole Tore **Buset** (Physics)

Tolchard

Dr. Julian

(Materials)

Why establish a National Centre?

- Maintain academic strength in x-ray scattering / imaging
- Formally link existing academic labs
 - Provide a framework for exchange of knowledge/expertise/capability
- Improve communication between industry and academia
 - Norway has a relatively high level of industrial XRD usage
- Provide "capability" to the Norwegian X-ray community
 - Access to equipment and competence

What are the goals?

- Improve competence in x-ray scattering/imaging techniques
- Maintain and expand academic use of x-ray methods
 - Both at lab scale and at major central facilities
- Direct use of the infrastructure by external users:
 - 4 universitities and colleges
 - 3 research institutes
 - 8 Norwegian companies
- To establish RECX as a meeting place for x-ray based research and analysis in Norway
- Keep growing beyond our 5 year mandate

RECX roadmap

- We are up and running now
 - Three established, well equipped labs
- Equipment tenders in process
 - Decision Nov/Dec 2012
 - Installation spring/summer 2013
- Website early 2013
- Be fully operational by 2014
- Workshop early 2014
 - Show off our full capabilities

RECX capability

Equipment overview

UiO

- 2 x Siemens D5005
- Huber powder XRD
- Bruker D8 DaVinci (Cu Ka1)
- Powder XRD (Cu Ka1)
- Powder XRD (Mo, Cu)
- Bruker D8 Apex single xtal
- Single Crystal XRD
- SAXS
- Thin Film XRD

NTNU Physics

- SAXS
- Bespoke Diffractometer
- X-Ray Micro Tomograph
- Pilatus detector for SNBL
- High flux source
- Energy dispersive detector

NTNU Materials

- Siemens D5005 (Cu Ka1)
- Bruker D8 Advance (Cu Ka1,2)
- Bruker D8 Focus (Cu Ka1,2)
- Powder XRD (Cu Ka1,2)
- Powder XRD (Mo, Cu)

Equipment overview

- Numerous temperature stages
 - Both at NTNU and UiO
- In-situ Li ion batteries
- Sample stages and holders for every occasion
 - Micrograms of powder to lumps of steel, air sensitive samples
- State of the art analysis software and databases

Capability

- Powder Diffraction
 - High throughput, high resolution
 - Cr, Cu, Mo radiation / reflection and transmission geometry
 - Multi temperature (80K-1800K), High pressure gas (1000C, 20bar)
- Single Crystal Diffraction
 - Structure evaluation and solution
- Pair Distribution Function analysis (local structure)
- SAXS (particle size/shape)
- Thin film analysis (grazing incidence and reflectometry)
- Micron resolution tomography
- Design your own experiment...

RECX capability - examples

Powder/Single Xtal Diffraction

• Evaluation/determination of a crystal structure



Fig. 15.—Rock-salt.

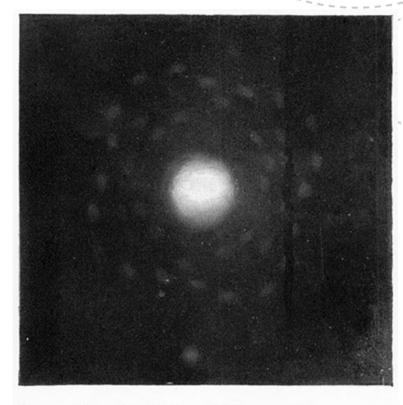
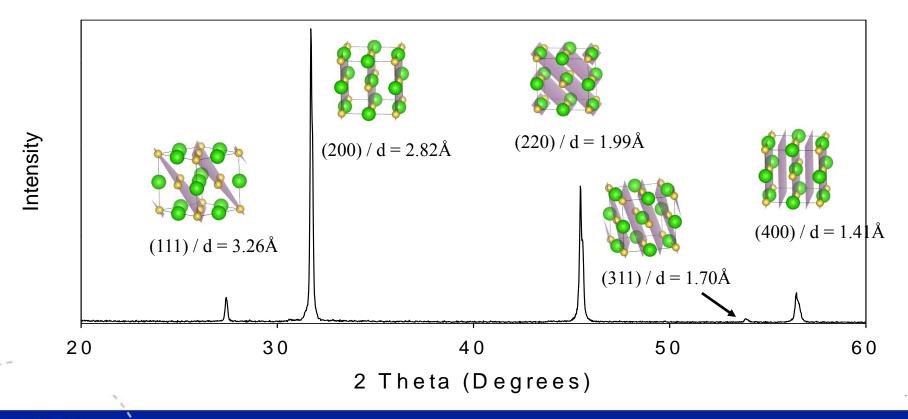
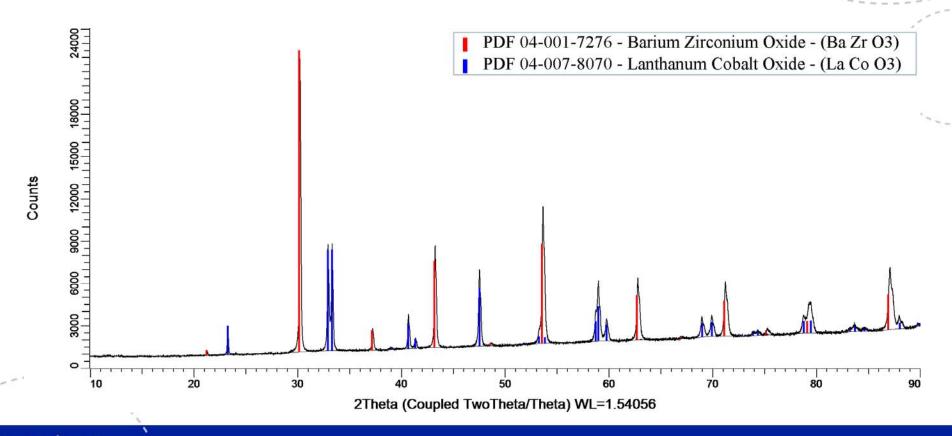
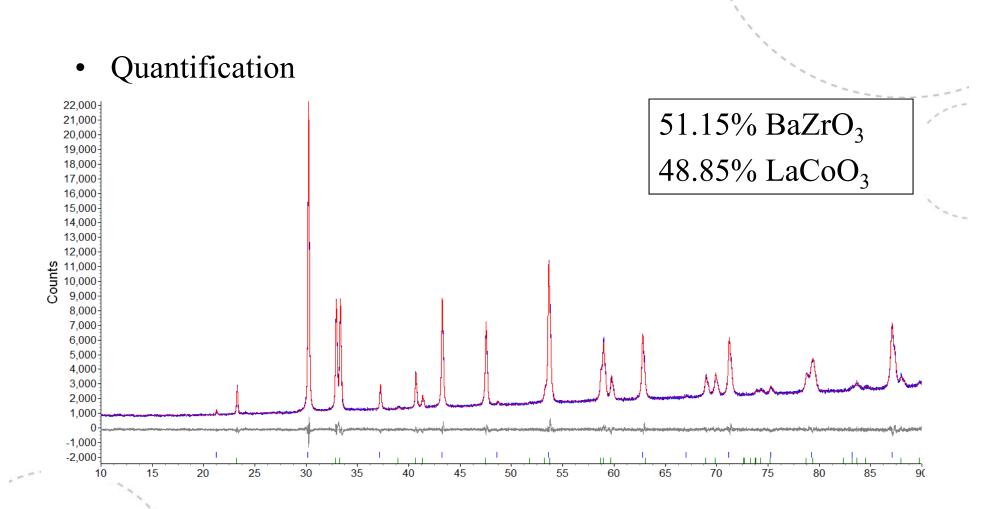



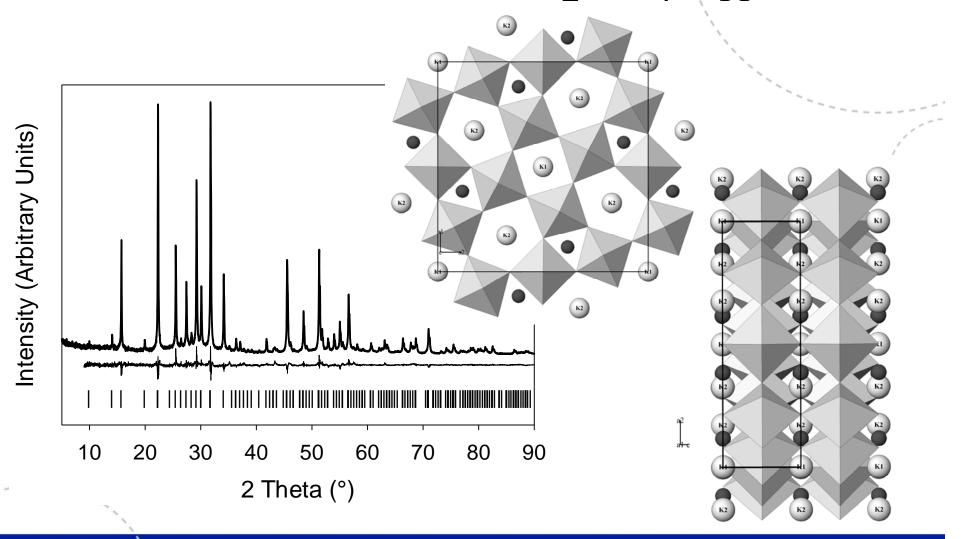
Fig. 8.—Rock-salt, 2.5 mm. thick.


Powder/Single Xtal Diffraction

• Evaluation/determination of a crystal structure

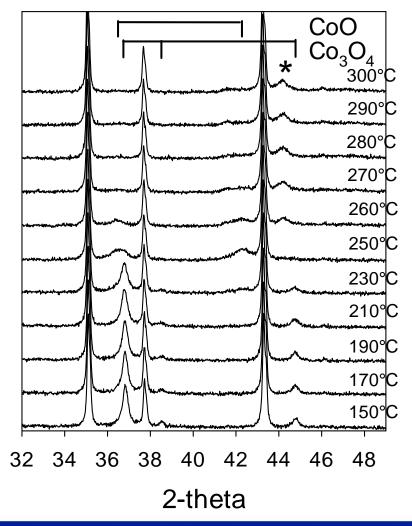


Multi-phase analysis (PXRD)


"Fingerprinting"

Multi-phase analysis (PXRD)

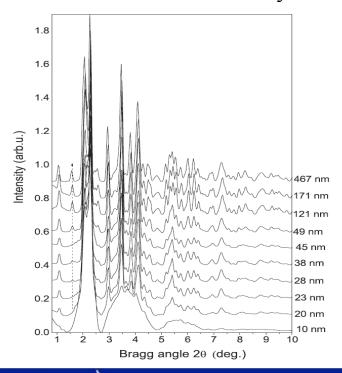
Structure analysis - K₂Nb₄O₁₁

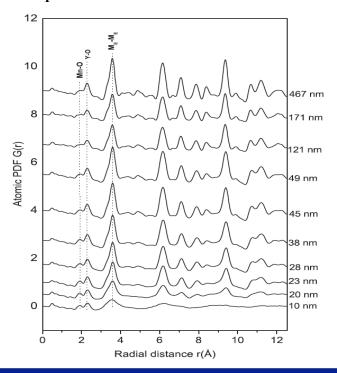


In-situ measurements

- Replicate application conditions
 - Temperatures, atmospheres, potentials

Intensity

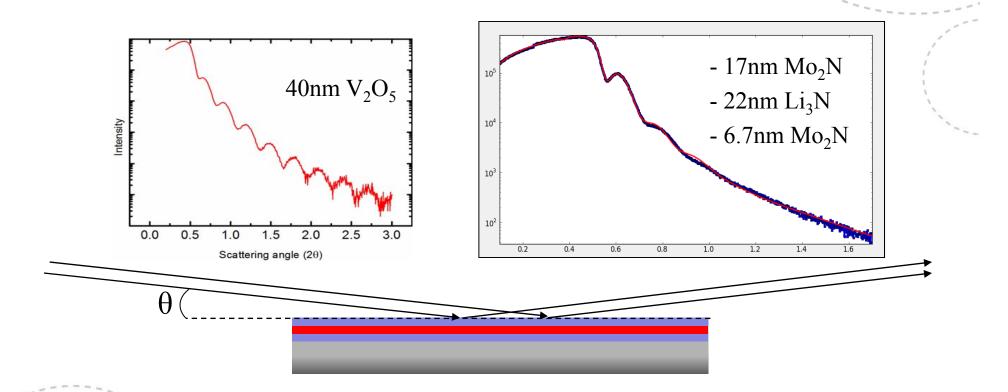

- Fischer-Tropsch catalyst
 - Co₃O₄/Al₂O₃
- Active catalyst forms in-situ
 - Nano Cobalt
- Assess effect of promoters etc
- Many applications
 - Phase transitions
 - Multiphase quantification
 - Reaction kinetics



Roya Deghan-Niri, PhD Thesis, 2012

Pair Distribution Functions

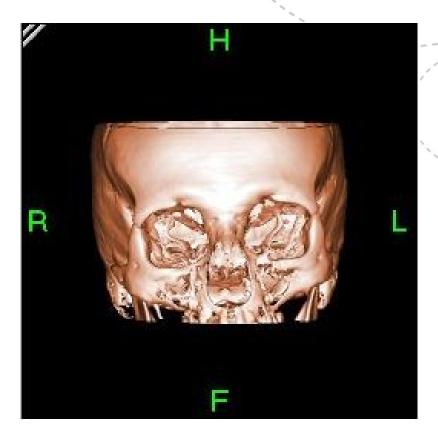
- "Recalculation" of diffraction data in terms of local structure
 - Takes account of non-bragg scattering
 - Powerful nano analysis / local structure technique


Thin Film/Texture analysis

- Nanometer thick films/multilayers on substrates
 - Thickness/smoothness/orientation of single and multilayer films
- Dimensionally oriented samples (texture analysis)
 - Grain orientation in metals/ceramics etc
- Tailoring and enhancement of properties
 - Electrical, magnetic, mechanical
- Important industrial applications
 - Semiconductors, electronics, optics etc
 - Metallurgy and engineering

Thin Film Analysis

• Film thickness/smoothness (Reflectometry)


SAXS

- Low angle x-ray scattering
 - Access to extremely long d-spacing values (10-100nm)
- Scattering related to longer length scales
 - Particle size, shape and distribution
 - Colloids, dispersions. Agglomeration
 - Porosity, pore spacing
- Look at solids, liquids, gels, sheets, fibres...
- Even thin films
 - Grazing incidence geometry
 - Nano-particles in a layer/matrix

Computed Tomography

Computed Tomography

- Three dimensional reconstruction of a object using x-ray attentuation
- Non-destructive
- Widely known medical uses
- Industrial and research applications also
 - Failure analysis, quality control
 - Mineral distributions in rock
 - Porosity / channel structures
 - Composites

So what does RECX offer?

- All of the above, and more...
- Data collection / experiments not possible in smaller labs
 - Higher resolution instruments, Tomography, Single Crystal XRD
 - In-situ / high temperature measurements
 - Large routine sample batches difficult for us due to manpower
- Focus on education and competence
 - Assistance with data collection, data analysis, problem solving
- Joint projects
- Networking and communication
- What do you want?

Accessing RECX

- To start, no formal system
 - We don't really know what the demand will be
- Directly contact the support staff:
 - Julian Tolchard (julian.tolchard@material.ntnu.no)
 - David Wragg (david.wragg@smn.uio.no)
- We need to know what you want to do
 - We can arrange which site / instrumentation to use
 - Plan experiment with you
 - Organise who collects the data, does the analysis, give training if needed
- It is not free
 - Costs will be reasonable and negotiable

Any Questions?