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Abstract 

This paper develops an optimal harvesting model for the wild Atlantic salmon (Salmo salar), where 

various age classes of the population is included. It is shown that the marginal value–fecundity 

relationship of the spawning population, comprising young and old fish, is crucial for the optimal 

fishing composition. If the marginal value–fecundity ratio is higher for the old spawning population, 

this age-class should be harvested more aggressively than the young spawning population, and vice 

versa. It is also shown that changes in prices and interest rate have similar as well as different effects 

than in the standard fishing biomass model. Changes in the relative price for the harvestable age 

classes could either increase or reduce the optimal harvest intensity, or have no effect. While a higher 

interest rate tends to increase the exploitation pressure, there also exist intervals in which the optimal 

harvest program is not affected by changes in the interest rate. 
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1. Introduction 

For many years, the North Atlantic salmon (Salmo salar) has been one of the most important fish 

species in Norway because of its social, cultural, and economic importance. It was traditionally 

harvested for food, but today is most important to recreational anglers. Norwegian rivers are the most 

important spawning rivers for the Atlantic stock, and about 30% of the remaining stocks spawn there. 

The wild salmon are harvested by commercial and recreational fisheries. The marine harvest is 

commercial and semi commercial, whereas the harvest in the spawning rivers is recreational (NOU 

1999). The amount harvested in marine and river fisheries has been more or less similar over the last 

few years, but the value of river fishery is much higher because of the higher willingness to pay for 

sport fishing (NOU 1999, Olaussen and Skonhoft 2008). 

However, the abundance of wild salmon stocks has been declining during the last few decades. Stock 

development has been especially disappointing since the 1990s because of a combination of various 

factors, such as sea temperature, diseases, and human activity, both in the spawning streams and 

through the strong growth of salmon sea farming (NASCO 2004). As the wild stock began to decrease 

during the 1980s, the Norwegian government imposed gear restrictions to limit the marine harvest. 

Drift net fishing was banned in 1989, and the fishing season of bend net fishing, taking place in the 

fjords and close to the spawning rivers, has been restricted several times. At the same time, the sport 

fishing season in the spawning rivers has been subject to various restrictions (NOU 1999). However, 

despite all these measures taken to secure and rebuild the stock, the abundance of wild salmon seems 

to be at only half the level experienced in the 1960s and 1970s. It is believed that the rapid expansion 

of the farmed salmon industry has played the most important role in this decline and today, farmed 

salmon is regarded as the main threat to the viability of the wild salmon population because of the 

spread of diseases, escapees, and environment pollution (Hindar et al. 2006). In Liu et al. (2013) 

possible biological as well as economic effects of farmed salmon escapees are analyzed and 

numerically illustrated.  

Wild salmon fishing has been studied in many papers from an economic perspective. Routledge 

(2001) studied a mixed stock versus single stock fishery related to Pacific salmon while Laukkanen 

(2001) analyzed the northern Baltic salmon fishery in a sequential fishing biomass model. Olaussen 

and Skonhoft (2008) also analyzed a sequential harvesting biomass model, but with recreational 

fishery in the rivers as its focus. The economics of the Baltic salmon fishery is studied in an age 

structured dynamic model in Kulmala et al. (2008), comprising migration and seasonal harvest and 

competing harvesting by commercial and recreational fishermen. Uncertainty is also included, and the 

model is parameterized and solved numerically for a Finnish river stock. In what follows, an age-

structured wild salmon model is analyzed as well, but within a much simpler framework than that of 

Kulmala et al. The goal is, from a theoretical point of view, to study how the harvesting of different 
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age classes influences recruitment and stock abundance, and the main focus is to find the harvest 

composition that maximizes the economic yield (MEY) under various economic conditions. We will 

think of the fishing related to a river recreational fishery such that the harvesting value is made up of 

the angler willingness to pay for the catch minus the cost of organizing the fishery and no stock 

dependent costs are included. 

Age-structured models are far more complex than biomass models. On the one hand, it is relatively 

straightforward to formulate a reasonably good age-structured model and numerically simulate the 

effects of variations in fishing mortality between age classes and over time. On the other hand, it is 

notoriously difficult to understand the various biological and economic forces at work in such models. 

Tahvonen (2009) has analyzed some of these issues in which he finds some results in a dynamic 

setting, but under quite restrictive assumptions (i.e., only one agent, or one fleet, causing fishing 

mortality). Early contributions analyzing age-structured models include Reed (1980), who studied the 

maximum sustainable yield problem. He found that optimal harvesting comprises, at most, two age 

classes. Further, if two age classes are harvested, the elder is harvested completely. This model is 

extended in various directions in Skonhoft et al. (2012). Getz and Haight (1988) reviewed various age-

structured models, and formulated the solution for the maximum sustainable yield problem as well as 

the maximum yield problem over a finite planning horizon. The following analysis has similarities 

with Reed (1980) and Skonhoft et al. (2012), but we study a different biological system in which all 

the spawning fish, i.e., salmon, die after spawning. This contrasts with the above mentioned works, 

where the spawning fish (e.g., cod) survive and enter an older age class after spawning. As will be 

seen, this difference has important implications for the optimal harvesting policy. In addition, just as in 

Tahvonen (2009), and also the age structured models in Quaas et al. (2013) and Diekert et al. (2010),  

our analysis is framed in a dynamic setting. While our analysis is directly related to Atlantic salmon, 

we will find that it fits various Pacific salmon species, such as pink and chum salmon, which also die 

after spawning (see, e.g., Groot and Margolis 1991). 

The paper is organized as follows. In the next section, we describe the population model where two 

spawning, and hence two harvestable, age classes are included.  In section three, we formulate and 

characterize the maximum economic yield fishing (MEY) program under  assumption of perfect 

fishing selectivity. The steady state solution and the dynamics are examined in section four. Section 

five provides a numerical illustration of the model. In section six, some possible extensions of the 

model are studied. As perfect selectivity is a questionable assumption, we first take up the selectivity 

problem and relax this assumption and assume the same fishing mortality for both harvestable age 

classes. This analysis is also supported by a numerical simulation where differences compared to the 

perfect selectivity case are illustrated. Next, we relax our assumption of constant marginal willingness 
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to pay for recreational fishing as implied by the MEY program. Section seven concludes the paper 

where we briefly also discuss the selectivity question.  

2. Population model and harvest 

Atlantic salmon is an anadromous species that has a complex life cycle with several distinct phases. 

Freshwater habitat is essential in the early development stages, as this is where it spends the first one 

to three years from spawning to juvenile rearing before undergoing smoltification and seaward 

migration. Then, it stays for one to three years in the ocean for feeding and growing and, when mature, 

returns to the natal, or ‘parent’ rivers to spawn. After spawning, most salmon die, and less than 10% of 

the female salmon spawn twice (Mills 1989). The Atlantic salmon is subject to fishing when it 

migrates back to its parent river in spring - summer. In Norway, the sea fishing takes place in fjords 

and inlets with wedge-shaped seine and bend nets during a short fishing period (June – July). This 

fishing is commercial, or semi commercial. In the rivers, salmon are caught by recreational anglers 

with rods and hand lines, also during a short fishing season (June – August). As indicated, the river 

recreational fishery is by far the most important from an economic point of view and only this fishery 

is included here. This means that we abstract from possible complications by considering a sequential 

fishery; that is, sea fishing taking place first and then river fishing (but see Olaussen and Skonhoft 

2008).  

In what follows, a specific salmon population (with its native river) is considered in terms of the 

number of individuals at time t in  three young age classes, 
1,tN  (1 yr ≤ age <2 yrs), 

2,tN  (2 yrs ≤ age 

< 3 yrs) and 
3,tN (3 yrs ≤ age < 4 yrs), and two adult, spawning classes, 

4,tN (4 yrs ≤ age < 5 yrs), and 

5,tN  (5 yrs ≤ age <6 yrs). Recruitment is endogenous and density dependent, and the old spawning 

salmon has higher fertility than the young spawning salmon. Natural mortality is fixed and density 

independent and, as an approximation, it is assumed that the whole spawning population dies after 

spawning. It is further assumed that the proportion of the young mature stock that returns to spawn is 

fixed. This proportion may be influenced by a number of factors, such as the type of river (‘small’ 

salmon river vs. ‘large’ salmon river) and environmental factors (NOU 1999). As fishing takes place 

when the fish returns back to its native river, only the mature salmon 
4,tN  and 

5,tN  are subject to 

fishing. Figure 1 illustrates the life cycle of a single cohort of the salmon population considered. A far 

more detailed description of the life cycle of the Atlantic salmon is found in, e.g., Verspoor et al. 

(2003). 

 Figure 1 about here 

 The dynamics of the fish population is described as follows. We have first: 
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(1)      
1, 1 ,a t a a tN s N   ; 1,2,3a   

and 

 (2)      
5, 1 4 4, (1 )t tN s N    , 

where as (a = 1, 2, 3, 4) are the age-specific natural survival rates, which are assumed to be density 

independent and constant over time, and 0 1   is the proportion of the young mature stock that 

returns to spawn, also assumed to be fixed. It is assumed that all mature fish returns back to the native 

river. 

 

As indicated, only the returning mature stocks are subject to fishing mortality, and when the 

proportion of the returning fish stock to be harvested in time t  is denoted by 
,0 1a tf  (a = 4, 5), 

the number of fish harvested in period t becomes
4, 4, 4,t t tH N f and

5, 5, 5,t t tH N f . Accordingly, the 

numbers of spawning fish of the young and old mature populations in the same period are

4, 4, 4,(1 )s

t t tN N f  and
5, 5, 5,(1 )s

t t tN N f  , respectively. With 4  and 5  as the fecundity 

parameters, and where the old mature fish is more productive than the young mature fish; that is,

5 4  , the size of the spawning population in year t is given as the fecundity weighted sum 

4, 5,4 5t t

s s

tB N N    (see, e.g., Getz and Haight 1988, Ch. 3), or: 

(3) 
4 4, 4, 5 5, 5,(1 ) (1 )t t t t tB N f N f      . 

 

The spawning population in period t determines the size of stock recruitment, and thus the number of 

recruits that survives and enters age-class 1 next year:  

(4) 
1, 1 4 4, 4, 5 5, 5,( ) ( (1 ) (1 ))t t t t t tN R B R N f N f        .  

The recruitment function ( )tR B  may be a one-peaked value function (i.e., of the Ricker type) or it 

may be increasing and strictly concave ' 0R  and '' 0R   (i.e., of the Beverton - Holt type). In both 

cases, zero spawning stock means zero recruitment, i.e., (0) 0R  . In our analysis and in the numerical 

simulations we use the Beverton – Holt function.
 

 

3. The maximum economic yield harvesting program 

The maximum economic yield ( MEY ) harvesting program is now examined. As already indicated, 

we are thinking of a recreational fishery where the harvesting value is made up of anglers’ willingness 

to pay for fishing minus the cost of organizing the fishery. Any possible ‘quality effect’ in the fishery 

is neglected (cf., e.g.,  McConnel and Sutinen 1979), implying that a fixed value per fish is assumed 

and no stock dependent costs are included (but see section six for relaxing this assumption). The 
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willingness to pay is higher for the larger and older mature fish than for the younger and smaller fish 

(see also  numerical section five) and the net social benefit is thus higher for the larger fish. With ap  

as the per unit net value (NOK/fish), assumed to be fixed over time, we hence have 5 4p p . The 

current value (in NOK) of the harvest is thus defined by 
4 4, 4, 5 5, 5,( )t t t t tY p N f p N f  , and our 

MEY problem is therefore described by
4, 5,

4 4, 4, 5 5, 5,
,

0

max
t t

t

t t t t
f f

t

p N f p N f 




   subject to the 

biological constraints (1), (2) and (4) and the known initial size of the stocks. 1/ (1 )r    is the 

discount factor, where 0r  is the annual interest rate which is assumed to be fixed. 

The Lagrangian of this problem may be written as  

4 4, 4, 5 5, 5, 1, 1 1, 1 4 4, 4,

0

5 5, 5, 2, 1 2, 1 1 1, 3, 1 3, 1 2 2,

4, 1 4, 1 3 3, 5, 1 5, 1 4 4,

{( ) [ ( (1 )

(1 ))] ( ) ( )

( ) ( (1 ))}

t

t t t t t t t t

t

t t t t t t t t

t t t t t t

L p N f p N f N R N f

N f N s N N s N

N s N N s N

     

    

    



 



   

   

    

     

    



 

where
, 0a t  ( 1,...,5a  ) is the current value shadow prices of the fish population in the various age 

classes. The first order necessary control conditions are: 

(5) 4, 4 4 1, 1

4,

( '( ) ) 0t

t t t

t

L
N p R B

f
    

 
 

 
; 

4,0 1tf  , 0,1,2...t   

and 

(6) 5, 5 5 1, 1

5,

( '( ) ) 0t

t t t

t

L
N p R B

f
   

 
 

 
; 

5,0 1tf  , 0,1,2...t   . 

Assuming positive stock sizes and 
, 0a tN  ( 1,...,5a  ), we next have the necessary stock, or 

portfolio conditions, describing the evolvement of the shadow prices, as: 

(7) 
1, 1 2, 1

1,

[ ] 0t

t t

t

L
s

N
   


   


, 1,2,3...t  ,    

(8) 
2, 2 3, 1

2,

[ ] 0t

t t

t

L
s

N
   


   


, 1,2,3...t  , 

(9) 
3, 3 4, 1

3,

[ ] 0t

t t

t

L
s

N
   


   


, 1,2,3...t  , 

(10)  
4 4, 1, 1 4 4, 4, 5, 1 4

4,

[ '( ) (1 ) (1 )] 0t

t t t t t t

t

L
p f R B f s

N
        


      


, 1,2,3...t   

and 
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(11) 
5 5, 1, 1 5 5, 5,

5,

[ '( ) (1 ) ] 0t

t t t t t

t

L
p f R B f

N
   


    


, 1,2,3...t   . 

 

The control conditions (5) and (6) indicate that the marginal harvesting value of each age-class should 

be equal to, below or above its marginal cost, determined by the discounted shadow value of the 

reduced number of fish in age-class 1 in the next period. Following the Kuhn-Tucker theorem (when

4, 0tN  ), condition (5) holds as an equation with optimal fishing mortality
4,0 1tf  . On the other 

hand, if it is not beneficial to harvest at all, this condition reads
4 4 1, 1( '( ) ) 0t tp R B     while it 

states 
4 4 1, 1( '( ) ) 0t tp R B    when it is profitable to fish the whole young mature age-class. 

Condition (6) can be given similar interpretation for the harvest of the old mature fish. From these two 

control conditions it is observed that the price – fecundity ratio /a ap 
 
( 4,5)a   steers the fishing 

mortality and the fishing composition. This outcome differs from the Reed (1980) paper and Skonhoft 

et al. (2012) who found that the marginal fishing value (NOK/fish) together with natural mortality 

(‘biological discounting’) determined the optimal fishing composition. As already indicated the reason 

for this difference is that the fish dies after spawning in our salmon model while it, corrected for 

natural mortality, enter an older age class after spawning in the Reed and Skonhoft et al. ‘cod’ model. 

The portfolio conditions (7) - (9) indicate how the shadow price of the young stocks evolve over time, 

while (10) and (11) state the shadow price relationship between the harvestable mature age classes and 

recruitment. 

 

A closer look at the control conditions (5) and (6) reveals that if the price – fecundity ratio, or 

marginal gain – loss ratio, is higher for the old age-class, i.e., 5 5 4 4/ /p p  , then the harvesting 

fraction will be higher for the old mature class than for the young class. The optimal harvesting policy 

can then be further specified as comprising the possibilities i)
5, 1tf  and 

4,0 1tf  , or ii) 
5, 1tf 

and 
4, 0tf  and iii)

5,0 1tf  and 
4, 0tf  . In the opposite case with a higher marginal gain – loss 

ratio for the young mature age-class, we find that the optimal control conditions can be satisfied as iv)

4, 1tf  and 
5,0 1tf  , or v) 

4, 1tf  and 
5, 0tf  , or vi)

4,0 1tf  and 
5, 0tf  . A possibility may 

also be that the marginal gain – loss ratio is equal for both age classes; that is, 5 5 4 4/ /p p  . This 

yields case vii) with 
4,0 1tf   and

5,0 1tf  . As will be shown below, the optimal harvest in this 

last case can be arbitrarily allocated among the two age classes. 

 

4. Steady state and dynamics 
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4.1 Steady state analysis 

We have shown that the optimal fishing strategy is steered by the relative marginal value – fecundity 

ratio of the two mature age-classes. This policy is valid also in a steady state, where the number of fish 

in each age class, the shadow prices and the fishing mortalities are constant through time. When 

combining Eqs. (1) - (4) and dropping the time subscript, we find that the steady state should satisfy 

the following equations: 

(12) 4 ( )N sR B , 

(13)      5 4 4 (1 )N s N    

and 

(14) 4 4 4 5 5 5(1 ) (1 )B f N N f      , 

where 1 2 3s s s s comprises the survival rate of young fish from age 1 to 4. In addition, the control 

conditions (5) and (6) should hold in steady state as well. From Eqs. (7) - (11) we may also derive an 

expression for the steady state shadow price for age-class 1: 

(15) 3

1 4 4 4 4 1 4 5 5 5 5 1{ '( ) (1 ) (1 ) [ '( ) (1 ) ]}s p f R B f s p f R B f                . 

 

The price – fecundity ratio in the Salma salar angler fishery is typically higher for the old mature class 

than for the young mature class (more details in numerical section five). Therefore, we basically 

analyze the situation where 5 5 4 4/ /p p   holds such that the fishing mortalities is described by the 

above possibilities i) 5 1f  and 40 1f  , or ii) 5 1f  and 4 0f  , or iii) 50 1f  and 4 0f  . 

When combining Eqs. (13) and (14), we find 4 4 5 5 4 4[ (1 ) (1 ) (1 )]B f f s N        . 

Examining this equation and Eq. (12), it is straightforward to verify that option i) represents the most 

aggressive harvesting policy and hence yields the lowest number of fish that returns to spawn as well 

as the lowest size of the spawning population. On the other hand, if option iii) is optimal, we find the 

largest spawning population B  as well as the largest steady state populations 4N and 5N . As the 

combination of Eqs. (13) and (14) is a linear function, whereas Eq. (12) is a strictly concave function 
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with Beverton – Holt recruitment (see also numerical section), an internal solution requires that the 

slope of 4 4 5 5 4 4[ (1 ) (1 ) (1 )]B f f s N        , or 4 4 4 5 5 4/ [ (1 ) (1 ) (1 )]N B f f s        , 

is less steep than 4 ( )N sR B when the size of the spawning population approaches zero.  

 

In case i) control condition (5) holds as 4 4 1'( )p R B  , Eq. (14) as 4 4 4(1 )B f N    and (15) 

as 3

1 4 4 5[ (1 ) ]s p s p       . These three equations together with Eq. (12) then determine B ,

4N , 4f and 1 . All economic as well as biological factors influence stock sizes and harvest in this 

case such that small shifts in, say, the fishing prices and the interest rate will change the optimal size 

of the spawning population and harvest of the young mature age class (more details below). Under 

harvest option ii) with 5 1f  and 4 0f  , the relationship between the spawning population and the 

size of the young mature stock is determined simply through Eq. (14) as 4 4B N  and Eq. (12). 

Hence, the optimal stock sizes are now not directly influenced by small changes in fishing values or 

interest rate. The age class 1 shadow price is in this case found through Eq. (15) as

3

1 4 1 4 5[ '( ) (1 ) ]s R B s p         . Case iii) with 50 1f  and 4 0f  implies

5 5 1'( )p R B  from control condition (6), while Eqs. (14) and (15) read
 

4 4 5 5 5(1 )B N N f     and 4

1 4 1 4 5{ '( ) (1 ) }s R B s p       , respectively. Therefore, these 

three equations together with Eqs. (12) and (13) jointly determine the stock sizes, the spawning 

population and the age class 1 shadow price and the old mature fishing mortality when harvest option 

iii)  is optimal. All parameters generally now influence the optimal stock size and the harvest of the 

old mature age class.   

 

When the marginal gain – fecundity ratio is identical for the two mature age-classes, 5 5 4 4/ /p p  , 

we have case vii) with 
40 1f  and 

50 1f  . The two extreme situations with 4 5 0f f  , 

indicating no harvest and no income, and 4 5 1f f  , which means extinction, can for obvious 
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reasons not be optimal and are excluded. With these two extreme solutions
 
excluded, the control 

conditions (5) and (6) read 4 1 4'( )R B p   and 5 1 5'( )R B p   , respectively, which are identical 

because 5 5 4 4/ /p p  . With two equations giving the same information, there are multiple optimal 

steady state harvest rates.

 

If we define this set of the optimal harvest rates by

4 4 5 4 5(1 ) (1 )(1 )f s f h        , then h should satisfy condition 4 1 4'( )R B p   , or 

5 1 5'( )R B p   , where 4B hN is the optimal spawning population following Eqs. (13) and (14). 

The optimal size of the young mature age-class is from Eq. (12), 4 4( )N sR hN , and the shadow 

price of age-class 1 from Eq. (15) is 3

1 4 4 5[ (1 ) ]s p s p       . With h determined, we thus find 

that all harvest rates satisfying 4 4 5 4 5(1 ) (1 )(1 )f s f h        , or

4 4 5 4
5

5 4

(1 ) (1 )

(1 )

f s h
f

s

   

 

   



, indicating a negative linear relationship between 4f and 5f , are in 

accordance with the steady state maximum economic yield fishing policy.
 
All parameters now 

influence the optimal stock sizes and the harvest of the old and young mature age-class.
 

 

Finally we have the hypothetical situation (see numerical section five) with a higher price – fecundity 

ratio for the young mature age-class and 4 4 5 5/ /p p  , and where the optimal control conditions 

can be satisfied as iv)
4 1f  and 

50 1f  , or v) 
4 1f  and 

5 0f  , or vi)
40 1f  and 

5 0f  . 

How the optimal steady state solution can be determined in each of these cases can be handled in a 

similar way as in the opposite situation where 5 5 4 4/ /p p  and is not discussed further here.  

 

The above analysis has demonstrated the price – fertility ratio difference between the two harvestable 

age classes as instrumental in determining the optimal fishing strategy. If 5 5 4 4/ /p p   holds, then 

harvest of the old mature age-class should be prioritized, and the young mature population should be 

left unexploited before the old mature age class is harvested completely. In the opposite situation 

harvest should start with the young mature age-class, and with 5 5 4 4/ /p p  both age-classes can 
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be harvested and there are multiple optimal steady state harvest rates.

 

We have also discussed possible 

parameter effects in the various cases. We now proceed to look more closely at the impacts of the 

interest rate and the relative price of the two age-classes on the optimal harvest policy where we 

basically discuss the situation 5 5 4 4/ /p p  , or 5 4 5 4/ /p p   . The details of the analysis is 

found in the Appendix.  

 

Figure 2 describes the optimal harvest strategy in the interest rate and relative price space. In the most 

plausible situation where the price – fecundity ratio is higher for the old mature age-class; that is, the 

location is above the horizontal line 5 4 5 4/ /p p   , there exists an interest rate denoted by 2r  below 

which it is optimal to harvest only a proportion of the old mature age-class and nothing of the young 

age-class; that is, option iii) with 4 0f  and 50 1f  . The optimal harvest of the old age-class 

increases as the interest rate increases, but is not affected as the old mature stock becomes more 

valuable and the relative price 5 4/p p increases. 

 Figure 2 about here 

The interest rate 2r is defined in such a way that the marginal cost of reducing the spawning population 

1 '( )R B , evaluated at 4 0f  and 5 1f  , is equal to the marginal profit of harvesting the old mature 

population 5 5/p  (again, see the Appendix for more details). When the interest rate equals the critical 

value 2r , the marginal benefit of increasing the harvest of the young age-class from zero is smaller 

than the associated marginal opportunity cost if 5 5 4 4/ /p p  . Therefore, the optimal strategy is to 

harvest all fish in the old mature age-class, but still nothing of the young age-class. This harvest option 

ii) remains optimal when the interest rate is higher than but sufficiently close to 2r . Given the harvest 

option ii) with 4 0f  and 5 1f  , the marginal cost of further reducing the spawning population

1 '( )R B  decreases as the interest rate increases and eventually becomes equal to the marginal 

benefit of harvesting the young mature age class 4 4/p   when the interest rate reaches 1r . With an 
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interest rate 1r r  fishing of the young age class also becomes profitable and the fishing intensity for 

the young mature age-class increases with interest rate and we reach harvest option i). Note that when 

interest rate equals 2r , a larger relative price 5 4/p p  implies a greater loss of a marginal increase in 

the harvest of age-class 4 (from 0).  Therefore, the larger 5 4/p p is, the larger increase in the interest 

rate from 2r is required to make the harvest of the young mature age-class profitable.  The line market 

with 1r in Figure 2 delimits this interest rate over which it is optimal to harvest a positive proportion of 

the young mature age-class, in addition to harvesting the entire stock of the old mature age-class. 

 

As also indicated in Figure 2, given an interest rate 2r r , the optimal harvest proportion for the young 

mature age-class is greater than zero when the relative price 5 4/p p  is close to the relative fertility

5 4/  . The harvest of the young age-class decreases as 5 4/p p increases, and approaches zero after 

the relative price has reached a certain level. The relative price increase may follow after a reduction 

in the price for the young mature age-class or an increase in the price for the old mature age-class. A 

decrease in the price of the young age-class reduces the marginal benefit of harvesting this age-class, 

whereas a higher price for the old mature fish increases the marginal cost of harvesting the young 

mature age-class. Therefore, an increase in the relative price would cause the harvested proportion of 

the young mature fish to be reduced. Intuitively, when the price of the old mature fish increases 

relative to that of young mature fish, it is preferable to reduce the harvest of the young age-class so 

that the spawning population and hence, the sustained yield of the old age-class increases.  

 

The above analysis has shown that the driving economic forces of an optimal steady state harvest 

policy in our age-structured fishing model are somewhat different from the standard biomass model 

(e.g., Clark 1990). As in this model, a higher interest rate tends to increase fishing and the exploitation 

pressure, but it may also keep the optimal harvest policy unchanged. In contrast to the biomass model, 

however, a more valuable fish may either increase or reduce the fishing pressure, or not influence the 
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optimal fishing policy and the size of the standing biomass at all. We find opposite result than in the 

biomass model as the old mature stock becomes more valuable and the relative price 5 4/p p increases 

when the interest rate is above 2r . 

 

When 5 4 5 4/ /p p   and we have harvest option vii), it does not matter which of the two mature 

age-classes is harvested as long as the fishing mortalities are governed by

4 4 5 4
5

5 4

(1 ) (1 )

(1 )

f s h
f

s

   

 

   



 (see above). However, we find that the size of the optimal 

spawning population decreases monotonously as the interest rate increases; that is, / 0B r   , 

implying that the proportion of the returning fish population to be harvested increases with interest 

rate. On the other hand, changes in prices would not affect the optimal harvesting intensity as long as

5 4 5 4/ /p p   is not invalidated.  

 

To complete the analysis, Figure 2 also includes the situation where the price-fecundity ratio for the 

young mature age-class is higher than for the old mature fish, and the location is hence below the line

5 4 5 4/ /p p   . The optimal harvest strategy in this situation is parallel to what was found with the 

opposite price-fecundity ratio, except that harvest of the young mature age-class is prioritized over the 

old mature population. Specifically, harvest option vi) with fishing of a fraction of the young age-class 

and nothing in the old age-class is optimal when the interest rate is low. When the interest rate exceeds 

a certain level 3r , all returning fish in the young age-class should be harvested, while the optimal 

harvest fraction of the old mature fish becomes either zero or strictly positive. Which of the harvest 

options iv) or v) is optimal here depends on the difference between 5 4/p p and 5 4/  , i.e., whether 

the price-fecundity ratio for the young mature age-class is significantly higher or close to the old 

mature age-class.  

 

4.2 Dynamic analysis 
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Above some properties of possible steady states with a constant number of fish through time was 

analyzed. As the profit function is linear in the controls, economic theory suggests that fishing should 

be adjusted to lead the population to steady state as fast as possible; that is, the Most Rapid Approach 

Path (MRAP) dynamics. However, the MRAP is not a regular one in our age-structured fish population 

because control of fish population is realized indirectly through control of the spawning population 

and because the optimal fishing policy in the steady state, except in the situation where the price-

fecundity ratio is identical for the two mature age- classes, is a corner solution. The age structure 

implies that the population could be above that of the optimal steady state level for one age-class and 

at the same time lower than the optimal steady state level for the other age-class.  Since fishing is 

confined to the two mature age-classes, the MRAP may imply a large harvest in one period and zero 

harvest in the next.  

 

Secondly, harvest of the two mature age-classes need to be considered jointly before the optimal 

steady state is achieved, because the population in each mature age-class affects, through its impact on 

the breeding population (see Eq. 3), the optimal harvest rate for the other age-class (see the first order 

necessary control conditions 5 and 6). Consider the typical situation where the price - fecundity ratio is 

highest for the old mature age-class. The proportion of the old mature age-class to be harvested will 

then depend on the number of young mature fish. If the number of fish in this age-class is small, it 

may be necessary to reduce the harvest of old fish to obtain the desirable size of the spawning 

population. On the contrary, if the number of fish in the young mature age-class is large, it may be 

necessary to harvest all or some of the old mature fish even if the number of fish in this age-class is 

lower than the optimal steady state level.  

 

A third feature of the MRAP in our age-structured model is that if the population returning to the 

native river is above that of the optimal steady state spawning population, then it might be optimal to 

harvest such that spawning population is kept slightly under, or over, its optimal steady state level. 

The reason is that the optimal steady state marginal harvest benefit typically differs from the marginal 
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cost, determined by the discounted shadow value of the reduced number of fish in age-class 1 in the 

next period (see section three), because of corner solutions. For instance, consider the optimal harvest 

policy option ii) with 4 0f  and 5 1f  . Suppose that the stock of the young mature fish
4,tN  is 

considerably smaller than its optimal steady state level
4N while the old mature stock

5,tN exceeds its 

steady state level
5N . We then have 4 4, 5 5,t tN N B     , where 4 4B N   is the optimal size of 

the steady state spawning population. In this case it would be optimal to harvest the old mature age-

class to such an extent that 4 4, 5 5, 5,(1 )t t tN N f B      because at the optimal steady state 

spawning population the marginal benefit of harvest the old mature age-class is larger than its 

marginal cost. If
4,tN is larger than its optimal steady state level, we may conclude with the same 

reasoning that it is optimal to harvest all the fish in the old mature age-class and some of the young 

fish such that 4 4, 4,(1 )t tN f B    .  

 

5. Numerical illustration 

5.1 Data  

The above theoretical reasoning will now be illustrated numerically. Hansen et al. (1996) estimated a 

salmon recruitment function for a small/medium sized river in Norway (the Imsa River in southern 

Norway) based on the Shepherd recruitment function, which includes three parameters. In our generic 

model, we choose a simpler approach and use the strictly concave Beverton–Holt function. This 

function is specified as 0( ) / (1 / )t t tR B s aB B K   where 00 1s  is the fraction of the recruits that 

survive and enter age class 1. 0a   is the intrinsic growth rate, or maximum number of recruits per 

(fertility adjusted) spawning salmon, and 0K   as the stock level for which density-dependent 

mortality equals density-independent mortality. The size of aK  yields the maximum number of 

recruits and scales the system (‘size of the river’), which is assumed to be 40,000 (number of recruits). 

The value of a indicates the ‘quality’ of the river, and we choose 160a   (number of recruits per 

spawning salmon). The migration parameter   depends on type of river (‘small’ or ‘large’ salmon 

river), sea temperature and other factors, and is assumed to be 0.5. See Table 1 where the natural 

survival rates and the other parameters are shown. 
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Following McGinnity et al. (2003) weight (kg/fish) is a questionable fertility (fecundity) 

approximation for wild Atlantic salmon. Instead they postulate fertility to be described by a strictly 

concave function of weight (and age), indicating that the weight – fertility ratio increases with weight; 

that is, 5 5 4 4/ /w w  . When normalizing the fertility parameter for the young to one, 4 1  , and 

using the fertility–weight function in McGinnity et al. (2003)  we find 5 2.4  under the assumption 

of (average) fishing weights of 4 2.0w   and 5 5.5w  (kg/fish). These weights fit a typical medium-

sized Norwegian salmon river (NOU 1999). The fishing prices are related to recreational fishery, 

which, as indicated, is far more important economically than the marine fishery. We assume that the 

fishing permit price in a reasonably good river is about 200 (NOK/day) (Olaussen and Liu 2011). 

Based on average catch success, this permit price may translate into fishing prices in the range of 100–

400 (NOK/kg). We assume the same price for both age-classes, and use 4 5 150p p  (NOK/kg). 

With these weights and prices, we find the fixed prices as 4 300p  and 5 825p  (NOK/fish) such 

that 5 5 4 4/ 825 / 2.4 344 / 300 /1 300p p      in the baseline calculations.  

Table 1 about here 

5.2 Results1 

We first present some dynamic results. Assuming that the population and the harvest rates stabilize 

within a limited time of T years, we solved the optimization model for an infinite time horizon. This 

was accomplished by calculating the present value of the net harvest revenues from year T and 

onwards based on the revenue in year T. The value of T was determined by trial and error such that (1) 

the optimal solution converges to a steady state before T, and (2) further increase in T does not affect 

the optimal solution. The optimization results for the first 50 years are presented in Table 2. To 

illustrate the irregularity in the optimal harvest path, we choose an initial state with a large number of 

recruits, a large number of fishes in age classes 2 and 4, and a small number of fishes in age classes 1, 

3 and 5. See Table 2. As already indicated, because the profit function is linear in the controls, MRAP 

dynamics, but necessarily exactly a MRAP, is supposed to describe the optimal transitional dynamics. 

Table 2 seems partly to confirm this where the age-class distribution of the fish population and harvest 

rates approach the steady state quite fast. With the baseline parameter values, the optimal steady state 

comprises 500 fishes in the young mature age-class 4N and 125 fishes in the old mature age-class 5N . 

The initial age-class distribution implies that the fish number fluctuates around the steady state level 

for both mature age-classes in the first few years, and therefore the optimal harvest fluctuates as well. 

The optimal harvest options shift between ii) with 5 1f  and 4 0f  (years 1 and 3) and i) with 5 1f 

                                                             
1
 The model is solved by using EXCEL. The program is available from the authors upon request. Formatert: Engelsk (USA)
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and 40 1f  (years 0, 2 and 4). From year 5 and onwards, however, the fishing prevails with option 

ii).  

Table 2 about here 

It should be emphasized that at the optimal steady state with 5 1f  and 4 0f  , the benefit of the last 

fish harvested in the old mature age-class exceeds its cost of reduction in spawning population. On the 

other hand, the benefit of harvesting the first fish in the young mature age class is lower than its 

marginal cost (Eqs. 5 and 6), cf. also section 4.2. This explains why the harvest of the old mature age-

class is not sufficiently reduced to maintain the optimal steady state spawning population when the 

young mature age-class is understocked (see, e.g., years 1 and 3). Similarly, when the young mature 

age class is overstocked it is not optimal to harvest the young mature age-class to the optimal steady 

state spawning population (see, e.g., years 0, 2 and 4).  

 

Table 3 presents the detailed optimal steady state results where the optimal harvest option ii) with 

5 1f   and 4 0f  under the baseline parameter scenario in shown in row one. Increasing the interest 

rate to 5% ( 0.05r  ), changes the solution to the more aggressive case i) with 5 1f   and 40 1f  . 

This yields a smaller fish population, but also a slightly reduction in the harvest of the old mature fish 

population from 125 to 122 fishes. In contrast to this, a reduction of the interest rate to 1% changes the 

optimal solution to option iii) with 50 1f   and 4 0f  . The lower harvest rate leads to a larger 

steady state fish population, but does not affect the quantity of the harvest which still counts 125 

fishes. 

 Table 3 about here 

Sensitivity analysis also demonstrates that an increase in the price of the old mature age-class does not 

change the optimal fishing from the baseline situation (row four). On the other hand, 10% reduction in 

the price of the old mature age class, from 825 to 742.5 (NOK/fish), makes it profitable to harvest 

some of the young mature fish in addition to harvest all the old fish. That is, we reach harvest option i) 

with 5 1f   and 40 1f  . In row six in Table 3 the price of the old mature age class is reduced 

further to 720 (NOK/fish) such that the price-fecundity ratio becomes similar for both age-classes, i.e.,

5 5 4 4/ 720 / 2.4 300 / 300 /1 300p p      . Harvest option vii) with multiple steady states is 

then reached, and all harvest rates satisfying 5 41.02 0.83f f  and 0 1if   ( 4,5a  ) are optimal 
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(see section 4.1). After a further price reduction of the old mature age-class, exemplified by 5 660p 

(NOK/fish), we reach harvest option v) with 5 0f   and 4 1f  (last row). 

 

The above sensitivity analysis is consistent with the theoretical analysis presented in section 4.1 and 

Figure 2 (see also the Appendix). For the given biological parameter values (Table 1), the critical 

interest rate r2 is slightly above 2 %. Accordingly, when the price-fecundity ratio is highest for the old 

mature age-class, the optimal fishing mortality is governed by option iii) with 50 1f   and 4 0f 

as long as the interest rate is lower than about 2 %. When the interest rate exceeds this critical level, 

the fishing mortality for the old mature age-class becomes fixed at its maximum level 5 1f  , whereas 

the fishing rate for the young mature age-class depends on the interest rate and the relative price of the 

two age-classes. 

 

For a further illustration of the effect of the interest rate and the relative price on the fishing mortality, 

we calculate the optimal spawning population associated with two different interest rates and a variety 

of prices for the old mature age-class. Only prices higher than 5p =720 (NOK/fish) is considered such 

that the old mature age-class always has the highest price-fecundity ratio. We then find that the 

optimal steady state spawning population increases for the fixed interest rate 3 % because the young 

mature age-class fishing mortality decreases. See Figure 3. When 5p reaches a certain level, the fishing 

mortality of the young mature age-class reduces to zero and harvest option ii) is reached, and the 

optimal spawning population is not affected by further price increase anymore. When the relative price 

is close to the relative fecundity for the two age classes, a higher interest rate exemplified by 5%, leads 

to a lower spawning population, implying that the fishing mortality for the young mature age class 

increases with the interest rate. When the relative price is sufficiently high, however, the optimal 

spawning population is not affected by the interest rate also in this case. These results confirm the 

behavior of the optimal steady state solution described in Figure 2 within the region where the interest 

rate is higher than the critical value r2 and the price fecundity ratio is highest for the old mature age-

class.    

 Figure 3 about here. 

6. Some extensions of the model 
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In the above analysis we have assumed perfect fishing selectivity. We now relax this assumption, and 

consider non-selective fishing pattern with the same fishing mortality for both the young and old 

harvestable age classes; that is, 4, 5,t t tf f f  . The Lagrangian of this new MEY problem reads 

4 4, 5 5, 1, 1 1, 1 4 4,

0

5 5, 2, 1 2, 1 1 1, 3, 1 3, 1 2 2,

4, 1 4, 1 3 3, 5, 1 5, 1 4 4,

{( ) [ ((

)(1 ))] ( ) ( )

( ) ( (1 ))}

t

t t t t t t

t

t t t t t t t t

t t t t t t
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
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
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   
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The first order necessary control condition is now: 

(16) 4 4, 5 5, 1, 1 4 4, 5 5,[( ) '( ) ( )] 0t

t t t t t t

t

L
p N p N R B N N

f
     

 
   

 
; 0 1tf  , 

0,1,2...t  .  

The necessary stock, or portfolio conditions, are Eqs. (7), (8) and (9) while 

(17)  
4 1, 1 4 4, 5, 1 4

4,

[ '( ) (1 ) (1 )] 0t

t t t t t t

t

L
p f R B f s

N
        


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
, 1,2,3...t   

and 

(18) 
5 1, 1 5 5,

5,

[ '( ) (1 ) ] 0t

t t t t t

t

L
p f R B f

N
   


    


, 1,2,3...t   

replace Eqs. (10) and (11).  

 

The control condition (16) now indicate that the stock weighted marginal harvesting value should be 

equal to, below or above its marginal cost, now determined by the stock weighted discounted shadow 

value of the reduced number of fish in age-class 1 in the next period. Again, following the Kuhn-

Tucker theorem, this condition holds as an equation with optimal fishing mortality 0 1tf  while the 

corner solutions now indicate no fishing at all, or fishing down the whole spawning population. The 

last option will lead to extinction, and can be optimal only when the interest rate is ‘high’. Notice that 

our formulation of the non-selective fishing decision problem differs from the perfectly selective case 

only because of the restriction on the permissible fishing mortalities. Therefore, MRAP dynamics still 

remain optimal, and thus the fishing mortality should be determined such that the population 

approaches the optimal steady state as fast as possible. Notice also this outcome differs from what is 

found in the literature on age structured harvesting models with imperfect harvesting selectivity where 

cycles, or ‘pulse harvesting’, seem to be intrinsic feature (e.g., Tahvonen 2009). Unlike Tahvonen, and 

others, however, stock variables are not included in our control conditions. See also Naevdal et al. 

(2012).  
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The optimal steady state will generally differ from that of the perfect selectivity case, depending on the 

relative price-fecundity ratios for the two mature age classes. Considering steady state and ignoring

0f  which not can be optimal, the control condition must hold as an equation. Condition (16) reads 

then:  

(19) 4 4 5 5 1 4 4 5 5( ) '( ) ( )p N p N R B N N       , 

and where the optimal spawning population is: 

(20) 4 4 5 5[ ](1 )B N N f     , 

and the shadow price for age-class 1 derived from Eqs. (7) – (9), (17) and (18) reads: 

(21) 3

1 4 4 1 4 5 5 1{ '( ) (1 ) (1 ) [ '( ) (1 ) ]}s p f R B f s p f R B f                . 

Eqs. (19) - (21) together with Eqs. (12) and (13) enable us to determine the optimal steady state with 

non-selective fishing. 

 

If the price-fecundity ratio for the two mature age-classes are equal, 5 5 4 4/ /p p  , it is easy to 

prove that the optimal steady state population with non-selective fishing is the same as in the perfectly 

selective fishing case. The optimal harvest rate becomes then

4 4 5 4 5

4 5 4

(1 ) (1 )(1 )
1

(1 )

f s f
f

s

   

   

   
 

 
 where f4 and f5 are the optimal age specific steady state 

harvest rates under perfectly selective fishing.   In this case, as explained above (section 4), it does not 

matter which age-class is harvested as long as the total harvest is kept at the optimal level. Therefore, 

the constraint that the harvest rates for the two mature age-classes should be equal implied by non-

selective fishing, will not affect the optimal solution. 

 

On the other hand, when the price-fecundity ratio is different, i.e., when 5 5 4 4/ /p p  , the optimal 

harvest rate differs between the two mature age-classes under perfectly selective fishing. The uniform 

harvesting pattern in non-selective fishing then obviously gives an economic loss compared to the 

selective harvesting scheme. We may also suspect that the harvesting pressure increases and the stock 

sizes and the spawning biomass reduce compared to the selective harvesting scheme in steady state. 

However, analytical comparisons of the optimal steady state associated with the two fishing schemes 

are difficult. Instead, we made the comparison numerically using the example described in numerical 

Section 5. The results (see Table 4) show that with different price-fecundity ratio, non-selective 

fishing leads to a lower optimal steady spawning population. The difference seems more sensitive to 

shifts in the interest rate than in price changes. With respect to the present value harvest benefits, we 



21 

 

find that the gain from selective fishing increases as the discount rate decreases and when the 

difference in price-fecundity ratio between the two mature age-classes increases.  

 

 Table 4 about here 

 

Our assumption of constant marginal willingness to pay for fishing may also be questioned. With still 

no ‘quality effect’ present, but assuming decreasing marginal willingness to pay as indicated by the 

concave function ( )tU Y , the current utility may be written as

4 4, 4, 5 5, 5,( ) ( )t t t t t tU U Y U p N f p N f   when again having perfect fishing selectivity. The control 

conditions now read: 
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 
; 

5,0 1tf  , 0,1,2...t   . 

It is easily recognized that these conditions can be given more or less the same interpretation as 

conditions (5) and (6). Therefore, when again assuming higher marginal gain – loss ratio for the old 

age-class, 5 5 4 4/ /p p  , we find that the harvesting of the old age-class also now should be 

prioritized with fishing mortalities described by the above possibilities i), ii) and iii) (section three). 

However, because of the decreasing marginal benefit, we may suspect that the optimal harvesting 

policy may be less aggressive than in the linear benefit situation.  

 

Alternatively, we may assume that the utility of the age classes is additive such that the current benefit 

may be written as 4 4 4, 4, 5 5 5, 5,( ) ( )t t t t tU U p N f U p N f  with (.)aU , 4,5a   , as concave 

functions. Under this benefit assumption, we find that the ratio 5 5 5' (.) /U p  versus 4 4 4' (.) /U p 

steers the optimal fishing priority. Therefore, the stock sizes now influence whether fishing of the old 

or young mature class should be prioritized. To demonstrate analytically how these stock effects work 

are not considered further here. 

 

7. Concluding remarks 

In this paper, we have studied the maximum economic yield management of an age-structured wild 

Atlantic salmon (Salmo salar) population with two spawning and harvestable age classes. Under our 

basic assumption of perfect fishing selectivity and constant marginal willingness to pay for 
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recreational fishing, the main finding is that the price – fertility ratio difference between the two 

harvestable age-classes is instrumental in determining the optimal fishing strategy. This outcome 

differs from Reed (1980) and Skonhoft et al. (2012) who found that price, or weight, together with 

natural mortality were the decisive factors. Thus, both economy and biology play a role also in these 

studies as well, but the importance of the biological factors is different. The reason for this 

discrepancy is the different biological characteristics of the fish stocks, as the mature salmon die after 

spawning in our model, whereas a fixed fraction of the spawning fish survive and enter older age 

classes in the Reed and Skonhoft et al. ‘cod’ model. Our analysis and findings are based on the 

Atlantic salmon, but the results will also apply to, e.g., the various Pacific salmon stocks, which also 

die after spawning. 

Given that the weight -fecundity ratio increases with weight (and age) (McGinnity et al. 2003), and 

also that the price -fecundity increases with age, we find that the optimal fishing mortality will be 

highest for the old mature age-class. We further find that three possible optimal harvest options are 

possible, and where the various steady state options are related to the size of the interest rate and the 

relative harvesting price. While higher interest rate leads to either unchanged or increased exploitation 

pressure, we find that higher price of the old mature age-class actually may reduce the harvesting 

pressure and hence increase the size of the spawning population. This finding is different from the 

standard biomass model (e.g., Clark 1990). However, notice that no stock dependent harvesting costs 

are included in our model. In our model, it is the relative price between the two harvestable age-classes 

that is of importance. The model is illustrated numerically where some irregularities in the optimal 

transitional harvesting pattern during the first few years are observed when we start with a skewed 

initial age distribution of the salmon population. After this transitional period the age-class distribution 

of the fish population and harvest rates approach the steady state quite fast.  

We have assumed perfect fishing selectivity in the basic version of the model, but in real life there is 

no such thing. We have therefore considered the non-selective, or uniform, fishing pattern as well. The 

optimal fishing policy is characterized, and the economic loss compared to the perfect selectivity 

situation is illustrated numerically. We find that the economic loss ranges from 0 to about 14 %, 

depending on the discount rate and the relative price-fecundity ratio of the two mature age-classes. 

While it is difficult to select between harvesting old and young mature fish, it can in a river 

recreational fishery be influenced by several factors. It includes regulation of the fishing gear, but 

possibly more effectively through seasonal regulation. Catch and release policy with properly 

designed size limits may also be an option. Seasonal regulation will affect fishing selectivity because 

young mature and old mature salmon to some extent migrate back to the parent river sequentially, with 

the broad pattern being that the young mature return before the old (see, e.g., NOU 1999). Hence, 



23 

 

seasonal regulations combined with e.g., age-class targeted catch and release policy, are possible ways 

to more efficiently target the Atlantic salmon fish stock.  
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Appendix 

The effects of prices and interest rate 

In section 4.1 the impacts of interest rate and the relative price on the optimal steady-state population 

and harvest is discussed. In what follows, a formal analysis of these impacts is presented. For this 

purpose we need an explicit expression of the shadow price of the fish stock in age-class 1. Solving 

Eq. (15) for 1 and using the definition of 1/(1 )r   , yields:  

(A1) 4 4 4 5 5
1 4

4 4 5 4 5

[(1 ) (1 ) ]

(1 ) '( )[ (1 ) (1 ) (1 ) /(1 )]

s r f p s p f

r sR B f s f r

 


  

  


      
. 

 

Situation 1: 5 5 4 4/ /p p   and harvest of the old mature age-class is more profitable 

 We first consider harvest option ii) with 5 1f  and 4 0f  . The associated steady state population is 

then described by
4 4B N B   and

4 4( )N sR B N  . Substitution of 5 1f   and 4 0f  into (A1) 
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yields 4 5
1 4

4

(1 )

(1 ) '( )

ss p

r s R B









 
. The partial derivatives of the Lagrangian 4/L f  and 5/L f  , 

evaluated at 5 1f  and 4 0f  , are: 

(A2) 

4 5
4 4 4 4

4 4

5

4 4 4 4 4 5 4

5

4 4 4 4 4 5

(1 )
[ '( ) ]

(1 ) '( )

[ (1 ) (1 ) ] (1 )
[ '( )]

(1 ) '( )(1 ) (1 ) (1 )

ss pL
N p R B

f r s R B

N s r p ss p p r
R B

r s R B r s r p ss p


  



   

   


 

  

   
 

     
 

and 

(A3) 

4 5
4 4 5 5 4

5 4

5

4 4 5 4 4 5

5

4 4 4 5

(1 )
(1 ) [ '( ) ]

(1 ) '( )

(1 ) [ (1 ) (1 ) ] (1 )
[ '( )]

(1 ) '( )(1 ) (1 ) (1 )

ss pL
s N p R B

f r s R B

s N p s r ss r
R B

r s R B r s r ss


  



    

    


  

  

    
 

     

 

The conditions for harvest option 5 1f  and 4 0f  to be optimal are 4/ 0L f   and 5/ 0L f   . 

Under our assumption that ( )R B  is increasing and concave (Beverton – Holt recruitment function), 

we have
4 '( )N sR B B , which means that 

4'( ) 1sR B     and hence 

5

4(1 ) '( )(1 ) 0r s R B r    .  Therefore, the optimality conditions 4/ 0L f   and 5/ 0L f    

are equivalent to:  

(A4) 

5

4 4 4 5 4

(1 )
'( )

(1 ) (1 ) ( / )

r
R B

s r ss p p   




  
 

and 

(A5) 

5

4 4 5

(1 )
'( )

(1 ) (1 )

r
R B

s r ss   




  
. 

 

Let 1r be the interest rate where 4/ 0L f   (evaluated at 5 1f   and 4 0f  ); that is, 
 

 (A6) 

5

1

1 4 4 4 5 4

(1 )
'( )

(1 ) (1 ) ( / )

r
R B

s r ss p p   




  
. 
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Let 2r be the interest rate where 5/ 0L f   (evaluated at 5 1f  and 4 0f  ), i.e., 

 (A7) 

5

2

2 4 4 5

(1 )
'( )

(1 ) (1 )

r
R B

s r ss   




  
. 

From (A6) and (A7) we know that 1 2r r when 4 5 4 5( / )p p  , or 5 5 4 4/ /p p  . Furthermore, 2r

is determined solely by the biological parameters, whereas 1r depends on the relative price of the two 

mature age-classes. If we define 5 4/p p  and differentiate both sides of equation (A6), we find

1 1 4

4 1

(1 ) (1 )
0

5 (1 ) 4 (1 )

r r s

s r



   

  
 

   
. Thus, 1r increase as 5 4/p p increases from 5 4/  . Note that the 

RHS of inequalities (A4) and (A5) increase with r.  Therefore, conditions (A4) and (A5) are satisfied 

when 2 1r r r  .   

 

When 2r r , 

55

2

4 4 5 2 4 4 5

(1 )(1 )
'( )

(1 ) (1 ) (1 ) (1 )

rr
R B

s r ss s r ss       


 

     
. From (A3) we 

know that 5/ 0L f   at 5 1f  and 4 0f   when 2r r . Accordingly, the optimal harvest option is iii) 

with 50 1f  and 4 0f   when 2r r . The optimal value of 5f  should then satisfy 

5 5 1'( )p R B  (control condition 6) , which together with 4 0f  imply 

3

1 4 1 4 5 5 5 5 1

3

4 5 5 4 5

{ '( ) (1 ) [ '( ) (1 ) ]}

{ / (1 ) }

s R B s p f R B f

s p s p

       

     

    

  
.

 
Substitution into 5/ 0L f   yields then: 

(A8)  4 4 5 4 4 5 4

4 4 5

1
'( (1 ) (1 ))

{ (1 ) }
R N s N f

s s
   

    
   

 
 

where 

(A9) 4 4 4 5 4 4 5( (1 ) (1 ))N sR N s N f       .  

From these two equations we know that changing prices have no effect on the optimal harvest 

decision. Moreover, we have 
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5 4

5 4 4 5 4 5 4 5

2

4 4 5 4 5 4

4 (1 ) 5(1 ) (1 ) '( )( (1 )(1 )) 1
0

[ (1 ) (1 ) ] ''( ) (1 )

f s r r ss sR B s f

r s r ss R B N s

       

     

        
 

    
. 

Therefore, when 5 5 4 4/ /p p  and 2r r , the optimal harvest rate for the old mature age-class 

increases when the interest rate increases. 

 

When 1r r , 

55

1

4 4 4 5 4 1 4 4 4 5 4

(1 )(1 )
'( )

(1 ) (1 ) ( / ) (1 ) (1 ) ( / )

rr
R B

s r ss p p s r ss p p       


 

     
. 

From (A2) we also know that with 1r r , 4/ 0L f   at 5 1f  and 4 0f  . Accordingly, the optimal 

fishing rates are option i) with 5 1f  and 40 1f  when 1r r . The optimal solution are determined 

by 4 4 1'( )p R B  (control condition 5), 4 4 4(1 )B f N   , 4 ( )N sR B  and

3

1 4 4 5[ (1 ) ]s p s p       . From these conditions we find that 

5

4 4 4 4

2

4 4 4 4

(1 ) (1 ) 1 '( )[ (1 )]
0

{ (1 ) (1 ) } ''( )

f r ss sR B f

s r ss R B N

  

     

    
 

   
 and 

4

4 4 4 4

2

4 4 4 4

(1 ) {4 (1 ) 5 (1 ) } '( )[ (1 )] 1
0

{ (1 ) (1 ) } ''( )

f r s r ss sR B f

r s r ss R B N

    

    

      
 

   
must hold.  

Accordingly, when 5 5 4 4/ /p p  and 1r r , the optimal harvest rate for the old mature age-class is 

fixed as 5 1f   while the optimal harvest rate for the young fish decreases with 5p and increases with

r . 

 

Situation 2: 5 5 4 4/ /p p   harvest in the old and young mature age-class is equally profitable 

In this situation, there are multiple optimal steady state harvest rates defined by

4 4 5 4 5(1 ) (1 )(1 )f s f h        (section 4.1), or:  

(A10)  4 4 5 4 5 4 5 4(1 ) (1 )f s f s h              

where h is the solution of the equations 
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(A11) 

5

4

4 4 5

(1 )
'( )

(1 ) (1 )

r
R hN

s r ss   




  
 

and  

(A12) 4 4( )N sR hN
 

(see section 4.1). From Eqs. (A11) and (A12) we find  

4

4 4 4 5

2

4 4 4 5

(1 '( ) )(1 ) [4 (1 ) 5 (1 ) ]
0

''( )[ (1 ) (1 ) ]

sR hN h r s r ssh

r R hN s r ss

   

   

    
 

   
. This inequality holds under our 

assumption that ( )R B  is increasing and concave which implies 
41 '( ) 0sR hN h  and 4''( ) 0R hN  . 

Therefore, from (A10) we see that the weighted sum of the optimal harvest rates

4 4 5 4 5(1 )f s f      increases as the interest rate increases. 

 

 

Situation 3: 5 5 4 4/ /p p   and harvest of young mature age-class is more profitable 

This situation is analyzed in a parallel manner to the above situation 1, and this part of the Appendix is 

available from the authors upon request. 
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Table 1. Biological and economic baseline parameter values  

PARAMETER  DESCRIPTION VALUE SOURCE 

0s  Natural survival rate of 

recruits 

0.31 NOU (1999) 

1s  Natural survival rate of 

age class 1 

0.40 NOU (1999) 

2s  Natural survival rate of 

age class 2 

0.40 NOU (1999) 

3s  Natural survival rate of 

age class 3 

0.50 NOU (1999) 

4s  Natural survival rate 

young adult mature age 

class 

0.50 NOU (1999) 

a  Intrinsic growth rate 

recruitment function 

160 (# of recruits/ 

fertility adjusted 

spawner) 

Scaled 

K  Scaling parameter 

recruitment function 

250 (# of spawners) Scaled 

  Migration parameter  0.5 Assumption 

4  Fecundity parameter 

young adult 

1.0 McGinnity et al. (2003) 

5  Fecundity parameter old 

adult 

2.4 McGinnity et al. (2003) 

4p  Fish price young adult 300  (NOK/ fish) Olaussen and Liu (2011) 

5p  Fish price old adult  825 (NOK/fish) Olaussen and Liu (2011) 

r  Interest rate 3% Assumption 
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Table 2. Dynamics of the fish population (in # of fish) and optimal harvest (in # of fish) with baseline 

parameter values (Table 1). Numbers in bold indicate the initial state  

  Number of fish in each age class Spawning pop. Harvest 

Year 
1,tN  

2,tN  
3,tN  

4,tN  
5,tN  

4,

s

tN  5,

s

tN  tB  4,tH  
5,tH  

0 5000 3000 800 600 100 255 50 375 49 100 

1 7500 2000 1200 400 150 251 0 251 0 139 

2 6258 3000 800 600 100 200 11 227 47 100 

3 5945 2503 1200 400 150 253 0 253 0 139 

4 6282 2378 1001 600 100 200 11 227 47 100 

5 5946 2513 951 501 150 253 0 253 0 150 

           

6 6283 2378 1005 476 125 250 0 250 0 125 

7 6254 2513 951 503 119 238 0 238 0 119 

8 6094 2502 1005 476 126 251 0 251 0 126 

9 6266 2437 1001 503 119 238 0 238 0 119 

10 6094 2506 975 500 126 251 0 251 0 126 

           

11 6266 2438 1003 487 125 250 0 250 0 125 

12 6252 2507 975 501 122 244 0 244 0 122 

13 6171 2501 1003 488 125 251 0 251 0 125 

14 6258 2468 1000 501 122 244 0 244 0 122 

15 6171 2503 987 500 125 251 0 251 0 125 

           

16 6258 2468 1001 494 125 250 0 250 0 125 

17 6251 2503 987 501 123 247 0 247 0 123 

18 6210 2500 1001 494 125 250 0 250 0 125 

19 6254 2484 1000 501 123 247 0 247 0 123 

20 6210 2502 994 500 125 250 0 250 0 125 

           

21 6254 2484 1001 497 125 250 0 250 0 125 

22 6250 2502 994 500 124 248 0 248 0 124 

23 6230 2500 1001 497 125 250 0 250 0 125 

24 6252 2492 1000 500 124 248 0 248 0 124 

25 6230 2501 997 500 125 250 0 250 0 125 

           

26 6252 2492 1000 498 125 250 0 250 0 125 

27 6250 2501 997 500 125 249 0 249 0 125 

28 6240 2500 1000 498 125 250 0 250 0 125 

29 6251 2496 1000 500 125 249 0 249 0 125 

30 6240 2500 998 500 125 250 0 250 0 125 
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31 6251 2496 1000 499 125 250 0 250 0 125 

32 6250 2500 998 500 125 250 0 250 0 125 

33 6245 2500 1000 499 125 250 0 250 0 125 

34 6251 2498 1000 500 125 250 0 250 0 125 

35 6245 2500 999 500 125 250 0 250 0 125 

           

36 6251 2498 1000 500 125 250 0 250 0 125 

37 6250 2500 999 500 125 250 0 250 0 125 

38 6248 2500 1000 500 125 250 0 250 0 125 

39 6250 2499 1000 500 125 250 0 250 0 125 

40 6248 2500 1000 500 125 250 0 250 0 125 

           

41 6250 2499 1000 500 125 250 0 250 0 125 

42 6250 2500 1000 500 125 250 0 250 0 125 

43 6249 2500 1000 500 125 250 0 250 0 125 

44 6250 2500 1000 500 125 250 0 250 0 125 

45 6249 2500 1000 500 125 250 0 250 0 125 

           

46 6250 2500 1000 500 125 250 0 250 0 125 

47 6250 2500 1000 500 125 250 0 250 0 125 

48 6250 2500 1000 500 125 250 0 250 0 125 

49 6250 2500 1000 500 125 250 0 250 0 125 

50 6250 2500 1000 500 125 250 0 250 0 125 
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Table 3. Optimal steady state sensitivity results. Fishing mortalities, population sizes and 

spawning population (in # of fish) and harvest (in # of fish) 

 
4f  5f  4N  5N  B

 4H  
5H  

Baseline values 0 1 500 125 250 0 125 

2 %-point increase interest 

rate ( 0.05r  ) 

0,0253 1 487 122 237 6 122 

2%-point reduction 

interest rate ( 0.01r  ) 

0 0,9789 512 128 262 0 125 

20% increase price old 

age-class ( 5 990p  ) 

0 1 500 125 250 0 125 

10% reduction price old 

age-class ( 5 742.5p  ) 

0,0111 1 494 124 244 3 124 

5 720p   5 41.02 0.83f f   490 123 240   

20% reduction price old 

age-class ( 5 660p  ) 

1 0 583 146 350 291 0 
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Table 4. Non-selective and selective fishing. Optimal present value economic yield and optimal 

steady state spawning population 

 Present value economic yield (in 

1000 NOK) 

Size spawning population B (in # of 

fish) 

 Non-selective 

fishing 

Selective fishing
a
 Non-selective 

fishing 

Selective fishing 

Baseline values 3334 3527 (5.8 %) 232 250 

2 %-point increase of 

interest rate ( 0.05r  ) 

2069 2175 (5.1 %) 205 237 

2%-point reduction of 

interest rate ( 0.01r  ) 

9776 10738 (9.8 %) 260 262 

20% increase price old 

age-class ( 5 990p  ) 

3720 4224 (13.6 %) 232 250 

10% reduction price old 

age-class ( 5 742.5p  ) 

3141 3181 (1.3 %) 232 244 

5 720p   3088 3088 (0 %) 240 240 

20% reduction price old 

age-class ( 5 660p  ) 

2948 2991 (1.5 %) 232 350 

a. Percentage gain selective fishing in parentheses.   

 

 

 

 

 

 

 

 

Formatert: Skrift: Times New Roman,
12 pkt, Engelsk (USA)



34 

 

Figure 1. Schematic representation of the life cycle of a wild Atlantic salmon for a single cohort 

(the time index is omitted). See main text for definition of symbols. 
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Figure 2. Effects of the relative price ( 5 4/p p  ) and interest rate on the optimal steady-state 

solution. 
1r  is the interest rate at which 4/ 0L f   and 2r  is the interest rate at which 5/ 0L f    

when evaluated at 4 0f   and 5 1f  . 
3r is the interest rate at which 4/ 0L f     and 4r is the 

interest rates at which 5/ 0L f   ,when evaluated at 4 1f   and 5 0f   . On the horizontal line

5 4 5 4/ /p p   , there exist multiple optimal solutions at each interest rate, and the weighted 

sum of the optimal harvest rates
4 4 5 4 5(1 )f s f      increases as the interest rate increases.  
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Figure 3. The optimal steady state spawning population B (fecundity weighted  

sum in # of fish) associated with different interest rates r  (%) and prices of the old  

mature age-class 5p  (NOK/fish). Baseline value (Table 1) all other parameters 
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