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Abstract: A novel precise method of signal analysis in the time-frequency domain is pre-
sented. A signal energy distribution is estimated by discard and displacement of energy parts
of the classical spectrogram. A channelized instantaneous frequency and a local group de-
lay are used in order to energy replacement. Additionally, newly introduced representations
such as: a channelized instantaneous bandwidth and a local group duration are used for
remove some part of irrelevant energy. An obtained energy distribution called attractogram
is highly concentrated. And it causes that mono-components of an analyzed signal are pre-
cisely localized in the time-frequency domain. The presented method is utilised in order to
acustical signals analysis.

Keywords: time-frequency representation, cross-spectral method, short-time Fourier trans-
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1. INTRODUCTION
In 1976 Kodera et al. proposed a new method of energy distribution estimation in the

joint time-frequency domain using the channelized instantaneous frequency (CIF) and the
local group delay (LGD). The approach is known under many names including: the modified
moving window method [1, 2], the cross-spectral method [3], the reassignment method [4, 5],
relocation, displacement method, etc. These variants of the method are distinguished mainly
by usage of different estimators of CIF and LGD. But the main concept is the same: signal
analysis that leads to high concentrated energy distribution in the time-frequency domain
due to relocation executed according to CIF and LGD values.

Both CIF and LGD are parts of the gradient of the STFT complex phase. Beyond them,
other parts are so-called signed channelized instantaneous bandwidth and signed local group
duration [6, 7]. In the presented approach, all mentioned parts of the gradient of the STFT
complex phase are used. Firstly, the short-time Fourier transform is derived in the following
manner:
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U(t, ω) = A(t, ω) exp
(
jφ(t, ω)

)
=

∞∫
−∞

u(τ + t)h∗(−τ) exp(−jωτ)dτ (1)

where complex conjugation is denoted by an asterisk,

A(t, ω) =
∣∣U(t, ω)

∣∣ and φ(t, ω) = arg{U(t, ω)} , A(t, ω), φ(t, ω) ∈ R (2)

The complex waveform denoted by u(t) should have non-zero values and has to be differen-
tiable in every instant, U(t, ω) means resultant STFT and h(t) represents an analyzing win-
dow function. A(t, ω) and φ(t, ω) denote accordingly amplitude and phase instantaneous
spectra.

In the presented method, subsequently for each locus (t, ω) of STFT corrected localiza-
tion is estimated in the time-frequency plain by CIF and LGD [1, 2]. They are expressed
respectively:

Ω(t, ω) =
∂

∂t
φ(t, ω) (3)

Θ(t, ω) = − ∂

∂ω
φ(t, ω) (4)

and are used for obtained new localizations as follows:

(t, ω)→
(
t+ Θ(t, ω)/(2π),Ω(t, ω)

)
(5)

where t and ω mean accordingly time and angular frequency. CIF is denoted by Ω(t, ω)
and LGD is referred to as Θ(t, ω). The new distribution of energy is called concentrated
spectrogram [8, 9]. In Fig. 1 classical and concentrated spectrograms of a synthetic FM
two-monocomponent signal are presented. The test signal is expressed by the following
formula:

u s1(t) = exp
(
j
(
2πtf1 + 0.25fd sin(4πt)/π

))
+

+ exp
(
j
(
2πtf2 − 0.25fd sin(4πt)/π

)) (6)

where f1 = 300 Hz, f2 = 700 Hz and fd = 150 Hz. In general, the multicomponent complex
waveform can be represented by the following model:

u(t) =
N∑
n=1

an(t) exp
(
jϕn(t)

)
(7)

whereN is a number of monocomponents, an(t) and ϕn(t) represent envelope and instanta-
neous phase of n-th monocomponent. In this paper understanding of a single monocompo-
nent is related to each n-th an(t) exp

(
jϕn(t)

)
waveform [10].

In classical and concentrated spectrograms two monocomponents interfere significantly,
if they are located close to each other on the time-frequency plain. The phenomenon is
described by the uncertainty principle. Thus the interferences of components occurs locally.
They are dependent on the time-frequency range of the analyzing window that is represented
by the unambiguity function [11, 12].

In the next sections of the paper, a number of degrees of freedom distribution estimate
as a product of the channelized instantaneous bandwidth (CIBW) and a local group duration
(LGDR) is introduced. This representation is used in order to select the areas where energy
is originated mainly from a single mono-component of a signal. The energy is extracted from
the spectrogram and located according to the Kodera’s et al. approach [1, 2].
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Fig.1: Energy distributions of test signal in the time-frequency domain: A) classical
spectrogram; B) concentrated spectrogram. Blackman-Harris window type with an

effective width equal to approx. 4.5 ms is used.

2. DEGREES OF FREEDOM IN SIGNAL THEORY
A number of degrees of freedom for any signal denoted here by ξe can be calculated as a

product of its effective bandwidth and its effective duration as follows [13]:

ξe = BeTe (8)

where Be and Te represent respectively the effective bandwidth:

B2
e =

∞∫
−∞

(ω − ωo)2E(ω)dω
/ ∞∫
−∞

E(ω)dω , ωo =

∞∫
−∞

ωE(ω)dω
/ ∞∫
−∞

E(ω)dω (9)

and the effective duration of the signal:

T 2
e =

∞∫
−∞

(t− to)2E(t)dt
/ ∞∫
−∞

E(t)dt , to =

∞∫
−∞

tE(t)dt
/ ∞∫
−∞

E(t)dt (10)

BothBe and Te are always positive and ξe limited: 0 < Be, 0 < Te and ξe <∞. E(t) denotes
a distribution of signal energy in the time domain and E(ω) represents a distribution of
spectrum energy in the frequency domain. The number of degrees of freedom (8) is wider
known as the time-bandwidth product and is used in order to evaluate of analyzing windows.

3. NUMBER OF DEGREES OF FREEDOM DENSITY
The local bandwidth can be assigned in every instant and in every output channel from

the short-time Fourier transformer, similarly as the channelized instantaneous frequency [14].
Then for both continues time and frequency it is called the channelized instantaneous band-
width and can be obtain as follows:

B(t, ω) =
1

2π

∣∣∣ ∂
∂t

Λ(t, ω)
∣∣∣ (11)

where Λ(t, ω) = ln
(
A(t, ω)

)
and ln() is the complex natural logarithm functor. Dually, a

local group duration can be defined in the time-frequency domain:

T (t, ω) =
1

2π

∣∣∣ ∂
∂ω

Λ(t, ω)
∣∣∣ (12)
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The channelized instantaneous bandwidth and the local group duration express a local stretch-
ing of the signal respectively in frequency and in time. Thus the scalar product BeTe can
be extendet into a multiplication (point-by-point) of these representations. Then a number
of degrees of freedom density (distribution; NDFD) can be estimated by the following for-
mula [7, 15]:

χ(t, ω) = B(t, ω)T (t, ω) (13)

whereχ(t, ω) is a number of degrees of freedom density distributed in the joint time-frequency
domain. In order to distinguish from the global number of degrees of freedom (8) NDFD
is denoted by χ(t, ω) without any subscript. NDFD for the test FM chirp signal is pre-
sented in Fig. 2.

Time (ms)

Fr
eq

ue
nc

y
(k

H
z)

N
D

FD

300 400 500 600 700

0.2

0.4

0.6

0.8

1.5

0

Fig.2: Number of degrees of freedom density obtain for the test signal.

4. ENERGY EXTRACTION FROM THE CLASSICAL SPECTROGRAM
Both classical and concentrated spectrograms are some estimates of an energy distribution

in the time-frequency domain. The main purpose of the proposed method is a classification
of the energy in order to extract unambiguous not blurred part. It is assumed that the not
smeared energy expresses localizations of signal components in the time-frequency plain.
The blurred energy can be detected using NDFD. If local number of degrees of freedom is
large, a time-frequency representation (TFR) of a signal is chaotic and it is rapidly changing.
The NDFD estimated in a point concerns area that can be indicated by the unambiguity
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Fig.3: Spectrograms after discard of an energy part: A) before replacement B) after
replacement. The threshold αχ is assumed as 0.05.
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function of an analyzing window near the point. In contrast, if NDFD achieves small value,
then TFR is locally orderly and slowly variable.

A threshold of NDFD can be arbitrarily assumed in order to an energy separation. Let
the threshold be denoted as αχ. Then, if NDFD is greater than αχ, an energy of a classical
spectrogram is removed from this point of time-frequency plain. Otherwise an energy is pre-
served. The remaining energy is subsequently redistributed according to the Kodera’s et al.
approach [1, 2]. The resultant energy distribution is called attractogram. Attractograms of
the test chirp signal are illustrated by Fig. 3. What causes a great impression is a high con-
centration (meassured by energy concentration index [16]) of the energy for two-component
signal, even where the two components are relatively close to each other.

5. ACOUSTICAL SIGNALS ANALYSIS
The proposed method of time-frequency analysis can be used in order to acoustical signals

investigation. In this section results of the analysis are presented. Firstly ..

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

En
er

gy
D

en
sit

y
(d

Bc
)

0.2 0.3 0.4 0.5 0.6 0.7

0.5

1

1.5

0

-60

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

En
er

gy
D

en
sit

y
(d

Bc
)

0.2 0.3 0.4 0.5 0.6 0.7
0.3

0.35

0.4

0.45

0

-40

A) B)

Fig.4: Essential spectrograms: A) before energy replacement B) after energy replacement.
The threshold αχ is assumed as 0.05.

6. CONCLUSION
In the paper, the novel method of an energy distribution estimate is presented. The re-

sultant energy distribution is called attractogram. A new aspect of the method is the usage
of the number of degrees of freedom density (NDFD). That is distributed in the joint time-
frequency domain and allows for separation of energy into two parts. NDFD distribution is
obtain as a product of the channelized instantaneous bandwidth and a local group duration.
The part of energy, where NDFD values are small, is referred to as the attractogram. The
localization of the energy is calculated according to the Kodera et al. approach. The sec-
ond part is treated as an irrelevant effect of the short-time Fourier transformation and it is
strongly dependent on the Heisenberg-Gabor principle. The spectrograms in Fig. 3. prove
that proposed energy distributions are high concentrated and accurate in the time-frequency
domain more than classical and concentrated spectrograms.
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Fig.5: Results of speech analysis: concentrated spectrograms AC) and attractograms BD).
The threshold αχ is assumed as 0.01.
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