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Summary

This dissertation presents an extensive analysis of the integral line-of-sight (ILOS)
guidance method for path following tasks of underactuated marine vessels and vehicles,
operating on and below the sea surface. It is shown that thanks to the embedded
integral action, the guidance law makes the vessels follow straight lines in presence of
environmental disturbances such as currents, wind and waves. The analysis develops
linearly with a growth of complexity that spans from simple two and three dimensional
(2-3D) kinematic models to full kinematic-dynamic models for surface and underwater
vehicles including environmental disturbances of different nature. Furthermore, the
problem of steering a vehicle against the ocean current or with the ocean current is
addressed as well.

The ILOS guidance is first applied to a simple kinematic model of surface vessels
that neglects the vehicle dynamics. It is shown, using simple and intuitive mathematical
tools, that current compensation for underactuated surface vessels reduces to a pure
vectorial sum and has one possible solution that identifies the only heading the ship can
hold to compensate for the drift. The relative velocity of the vessel is kept constant
and compensation is achieved through side-slipping. It is proved that path following of
straight lines is obtained. A discussion involving intuitive as well as practical aspects of
the ILOS law is also given. A 3D version of the same ILOS is then applied to a kinematic
model of underactuated underwater vehicles, thus extending the same concepts and the
same analysis to 3D.

The following step in complexity consists of including the underactuated dynamics
into the Lyapunov analysis of the 2D ILOS guidance law. Disturbances in the form of
constant irrotational ocean currents and constant dynamic, attitude dependent, forces are
taken into account. The mathematical complexity of the analysis increases significantly
compared to the pure kinematic cases, yielding explicit bounds on the guidance law gains
to guarantee stability.

v



Next, the complete kinematic and dynamic closed loop system of the ILOS guidance
law for path following purposes of underactuated surface vessels is analyzed. The actuated
surge and yaw dynamics are included in the analysis and it is shown that the resulting
closed loop system forms a cascade. The properties of uniform global asymptotic stability
(UGAS) and uniform local exponential stability (ULES) are shown for the closed loop
cascaded system. In this case disturbances in the form of irrotational ocean currents are
considered only. Results from simulations and experiments are presented to support and
illustrate the theoretical results where the ILOS guidance is applied to the CART vehicle
for sea trials.

The possibility of extending the ILOS guidance law proposed for underactuated surface
marine vehicles to fully actuated marine vehicles with saturated transverse actuators
is analyzed as well. Low-speed path following of straight lines is considered and the
proposed solution is inspired by practical issues faced when operating remotely operated
vehicles (ROVs) at sea. As a result, a solution combining the ILOS guidance law with
a nonlinear bounded sway feedback controller is designed. UGAS and ULES for the
origin of the closed loop system are proved and the theoretical results are supported by
simulations.

It is furthermore shown that the ILOS guidance law successfully compensates for
combined kinematic and dynamic disturbances, thus further extending the previous
results. To this end, a 3 degrees-of-freedom (DOFs) maneuvering model for control design
purposes that includes both the kinematic and dynamic disturbing effects of currents,
wind and waves is presented. The ILOS guidance method is extended with adaptation
and it is analytically shown that the resulting control scheme successfully compensates
for both kinds of disturbances and hence guarantees path following of underactuated
surface vessels in different sea conditions with UGAS and ULES stability properties. The
theoretical results are supported by simulations.

The complete kinematic and dynamic closed loop system of the 3D ILOS guidance
law is analyzed as well, hence extending the developed analysis to underactuated AUVs
for 3D straight-line path following applications in the presence of constant irrotational
ocean currents. The closed loop stability analysis concludes UGAS and ULES and gives
explicit conditions on the guidance law parameters. The proposed 3D ILOS guidance
control scheme is applied to the LAUV autonomous underwater vehicle and results from
simulations and sea trials are shown to support the theoretical findings.

vi



This dissertation addresses the problem of steering a marine vessel against the ocean
current or with the ocean current as well and hence two guidance laws for counter-current
and co-current guidance of underactuated marine vehicles in 3-DOFs are presented. The
guidance laws are based on the relation between the relative and absolute velocities and
show different stability properties: local exponential stability (LES) for the first and
uniform semiglobal exponential stability (USES) for the second. In both the cases the
closed loop system reveals multiple stable/unstable equilibrium points, corresponding to
the counter-current/co-current directions depending on the setting. Simulation results
support the theoretical findings.
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Chapter 1.

Introduction

“Effort and hard work build a bridge between dreams and reality.”
— Roberto Baggio, Football Player

This thesis presents an extensive analysis of an Integral Line-of-Sight (ILOS) guidance
and control method for path following purposes of marine vehicles. The very first part of
the dissertation is meant to give a proper perspective for the presented work motivated
by the ongoing research in the field of marine control systems. In addition it recalls the
major improvements in this area witnessed by the last decades. The contribution of this
work is then framed within the described context.

1.1. Background and Motivation

1.1.1. Motivation

Sailors, seamen, and naval architects have faced challenges represented by wind, waves and
sea currents since the early days of coastal navigation, world exploration and merchant
shipping. The unavoidable occurrence of dealing with heavy seas and the need to guarantee
ship maneuverability as well as safety of the crew on board has lead to improved vessel
hulls, smarter navigation techniques and better meteorological/oceanographic forecasts.
Environmental forces and disturbances such as ocean currents, wind and waves that
affect ships, offshore structures and coastal installations are often referred to as sea loads
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[50] and their effect can significantly undermine maritime activities and pose serious
threats to the people involved.

Many of the areas that are of interest for ship traffic, fishing and oil and gas operations
are characterized by hostile environmental conditions. For instance, storms regularly
hit the North Sea and the North Atlantic, whereas hurricanes are more and more often
disrupting the activities in the Gulf of Mexico. Moreover, given the shrinking of the
arctic icecap and the consequent opening of the Northern Sea Route, new challenges are
arising and are setting higher safety and robustness standards for ships and maritime
activities. As a response to these challenges, the last decades have witnessed substantial
improvements in naval engineering, marine propulsion, navigation techniques and au-
tomation. It is an ongoing activity and the technological development is today focusing
on automation and integration of on-board systems and operations at sea. This trend
is well established worldwide since any improvements in these fields can significantly
improve safety, sustainability and effectiveness of activities such as offshore hydrocarbon
production and exploration, shipping, fishing, offshore wind power production and envi-
ronmental monitoring. Given the world’s increasing demand for energy and food, the
offshore oil and gas industry has positioned itself at the forefront of this trend [101] but
other activities are following close.

Today the shipping industry relies more and more on heavily automated container
carriers, crude carriers and other merchant vessels. Moreover, drilling rigs, supply vessels,
anchor handling vessels and floating production units involved in offshore operations are
often fitted with state of the art control systems to help the crew handle a wide set of
operations in different sea states. It is also seen that automation helps reduce cost and
risk since less people performing dangerous jobs are needed on board. This is becoming
a key factor for other industries as well. For example, reducing the need for manned
maintenance operations may determine the economical success of offshore wind farms
and floating wind turbines [102].

The origin of automation on board regular manned vessels dates back to the 19th
century with the introduction of the steam engine and and the propeller. A steam
engine was first mounted on a boat by Scottish engineer William Symington in 1802 in
Glasgow, Scotland, while the propeller was first invented and tested by Czech inventor
Josef Ressel in 1829 in Trieste, then Austrian Empire. But the real waves of marine
control had yet to come: in 1911 a gyro-compass was installed on-board of a US war ship
by entrepreneur Elmer Sperry. Sperry was then able to design a ship autopilot. Unaware
of this development, Russian-born engineer Nicolas Minorsky published his famous first
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theoretical analysis of a PID controller in 1922 after installing an automatic steering
device on-board the battleship USS New Mexico. Hence, the theoretical and practical
foundations for the successful application of ship autopilots in the following years were
laid [16]. Today every commercial ship is fitted with advanced autopilots, GPS based
navigation systems, speed controllers and radar systems, and the development continues.

Recently, unmanned marine vehicles have been introduced. Unmanned vehicles make
it possible to operate in otherwise hazardous and unaccessible areas for humans, for
instance in deep waters or under the ice. The remotely operated vehicles (ROVs) for
underwater operations were first introduced by the US Navy in the 1970s and by the
1980s ROVs were essential for the offshore oil and gas industry when the developed
fields exceeded the reach of human divers. Soon, other classes of vehicles, unattached
to the mothership and hence providing limited or even no human interaction, showed
up: the unmanned surface vessels (USVs) and the autonomous underwater vehicles
(AUVs). USVs and AUVs require a higher level of autonomy since they must be capable
of accomplishing tasks on their own, independently. At first, USVs and AUVs were used
for a few number of tasks, often limited to scientific or military purposes. Today, with
the development of more advanced processing capabilities and high yield power supplies,
USVs and AUVs are employed more and more often in civilian applications with roles
and missions constantly evolving.

Although ROVs today represent the core platform for deep-water activities, AUVs
are becoming more popular and are starting to replace ROVs in activities such as search
and rescue, surveying and pipeline inspection [119]. The trend is expected to last since
AUVs are unattached, work independently of the ship and can collect geo-referenced
data. Moreover, AUVs can perform repeatable pre-planned operations regardless of the
conditions on the surface and their inspection speed is often higher than 2 [knots], which
gives high coverage rates [67].

The unmanned USVs are also experiencing a significant development phase, since
their applications appear not to be limited to scientific or military purposes anymore. For
instance, [22] demonstrates that cooperating USVs can perform emergency ship towing
operations in the open sea or in a confined harbor, while [84] presents an innovative
approach for search and rescue operations where a USV is used to retrieve overboard
personnel. Furthermore, the joint use of Unmanned Surface and Aerial Vehicles (USVs
and UAVs) and AUVs shows very promising results and tools to successfully run different
integrated missions are available [115].
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1.1.2. Underactuated Marine Vessels

Most marine surface vessels are underactuated since cost, design simplicity, low energy
consumption, robustness and cargo capacity are often the driving factors considered by
naval architects. In particular, they are equipped with fixed stern propellers and steering
rudders, or alternatively with azimuth thrusters only. Even when tunnel thrusters are
installed, such actuators are effective exclusively at low maneuvering speeds [78]. As a
result, the absence of actuation in sway poses significant challenges on the control system
design side in path following and trajectory tracking scenarios, especially when the vessel
is subject to disturbances acting in the underactuated transverse direction.

Similar arguments apply to underwater vehicles: in general, design simplicity is
preferred to minimize energy consumption and guarantee robustness, hence most existing
AUVs are torpedo shaped and underactuated. In particular, they are equipped with stern
propellers, steering rudders and diving rudders only [68, 40, 69]. Although providing
design simplicity, the absence of actuation in sway and heave poses significant challenges
on the control system design side. Furthermore, unmanned underwater vehicles operate
in challenging environments where sea currents significantly affect their speed and
maneuverability. As a result, an efficient and reliable compensation strategy is required
to reduce the impact of currents on underwater activities.

1.1.3. Path Following Control of Marine Vessels

Whether on the surface or under the surface, many offshore activities involve path
following tasks of marine vessels. Path following is a motion control scenario where a
vessel or underwater vehicle has to follow a predefined path without any time constraints.
Therefore, path following problems differ from trajectory tracking, since there the goal is
to track a time varying reference trajectory. See [47, 1, 39, 52] for a discussion on the
fundamental differences between different motion control scenarios. Path following is
indeed a very wide concept that covers, among others, applications of wheeled mobile
robots, marine vehicles and aerial vehicles (see for instance [128, 13, 127, 135]).

A review of different approaches to path following and other control problems of
marine vehicles and vessels is given in [9, 108] where both linear and nonlinear control
strategies are used. Since the dynamics of marine vehicles are inherently nonlinear,
classic linear approaches lead to local results while the use of nonlinear techniques may
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yield global results. Also, linear approximations of the underactuated marine vessels are
typically not controllable in all degrees of freedom, while the physical systems indeed
are controllable. This makes control approaches based on nonlinear models attractive
and recent research focuses on taking into account the dominating nonlinear behavior.
For instance, fully actuated surface vessel are considered in [53] where a backstepping
controller that takes into account the actuator dynamics is introduced for trajectory
tracking purposes. In [70] a passivity based controller is developed to make fully actuated
ships follow parametrized paths while path following of fully actuated ships in presence
of parameter uncertainties is addressed in [81]. Finally, a Jacobian task priority-based
approach for path following purposes is introduced in [137].

A class of underactuated surface vessel described by a 3 Degrees-of-Freedom (DOFs)
nonlinear model is considered in [61] where a path following controller is designed with
the simplifying assumption of diagonal inertia and damping matrices. The output space
is reduced from 3-DOFs to 2-DOFs where the heading of the vessel is left uncontrolled.
A controller is then developed to make the vessel follow straight and circular paths with
global exponential stability properties of the origin of the closed loop system. Finally,
boundedness is shown for the zero dynamics represented by the sway velocity and the
yaw rate. This procedure reduces the output space so that its dimension corresponds to
the dimension of the control input space, thus obtaining a reduced-state stabilization
problem.

The work of [111] presents one of the first solutions to the full-state stabilization
problem of underactuated 3-DOFs surface vessels. In [111], the controllers are designed
to make the vessel follow a 2-Dimensional (2D) path as well as to stabilize the heading
dynamics. The proposed control strategy however can be applied only to paths having
non-zero curvature and global exponential stability is only achieved under the condition
that the commanded yaw rate is Persistently Exciting (PE). This restricts the type of
paths that can be followed. The stringent conditions of [111] are relaxed in [112] and
extended to trajectory tracking in [89] where the the tracking error dynamics are shown
to hold exponential stability properties. Motivated by [111], [74] and [72] present a path
following control solution for a 3-DOFs underactuated marine vehicle required to follow
a straight line. Assuming that the vessel holds a constant and positive surge speed and
that the system matrices are diagonal, the proposed controller sets the yaw rate and
guarantees global asymptotic stability of the origin of the closed loop system, including
the geometrical errors, the heading and the sway velocity. These results are extended to
underactuated underwater vehicles for path following of 3D curves in [75]. Furthermore, in
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[4] and [5] position control of underactuated underwater vehicles is considered and a vector
field is defined such that a virtual fully actuated vehicle would exponentially converge
to the desired configuration. Afterwards, a steering law for the underactuated vessel is
derived. Notice that the approach of [4] and [5] considers a pure kinematic unicycle-like
model of the vehicle. The Lyapunov direct method and backstepping techniques are
exploited for full-state stabilization problems of underactuated 3-DOFs surface vessels
for tracking and path following scenarios in [44], [41] and [92]. In [44] the stringent
conditions of [111] are again relaxed while [41] proposes a unified framework for tracking
problems and in [92] a feedback dominance backstepping technique is implemented
showing improved robustness with respect to model uncertainties. These three methods
have however the limitation of considering the matrices of the system dynamics diagonal.

Stabilizing all the DOFs of an underactuated vehicle using a single controller is an
ambitious and powerful approach since it gives complete control over the vehicle. It may
however restrict the type of paths that can be followed, as discussed above. Moreover,
the full state stabilization approach often leads to extensive mathematical analysis and
to complex control laws lacking of clear physical interpretations. For this reason, reduced-
state stabilization control approaches, where only the actuated subset of the degrees
of freedom is directly stabilized, are sometimes preferred. For instance, exploiting the
results of [121] and [98], [48] proposes a nonlinear controller for 2D path following tasks
of 3-DOFs underactuated marine vehicles. The controller is designed to stabilize only a
reduced subset of the DOFs but the zero dynamics are shown to remain well behaved.
The work of [48] is further developed in [46] and [87], where 3D and 2D path following
of underactuated underwater vehicles is considered. In the work of [87] a virtual target
that the vehicle has to follow is introduced and the initial position of the vehicle is not
restricted to lie inside a tube centered on the path, which was the major shortcoming
of [48]. Along the same line of research, a hybrid adaptation scheme is used in [86] to
increase robustness with respect to uncertainties of the vessel model. Path following
problems of underactuated marine vehicles are also addressed in [1] where switching
supervisory control is implemented with parametric model uncertainties. This control
strategy is inspired by [123] where maneuvering control for a class of nonlinear systems
is considered.

This dissertation focuses on the nonlinear Line-of-Sight (LOS) guidance principle.
The nonlinear LOS law is widely used to solve practical path following problems of marine
vehicles due to its simplicity and intuitiveness: it imitates a helmsman steering the vessel
toward a point lying at a constant distance ahead of the ship along the desired path. In
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particular, it is used in [107, 66, 110, 54, 17, 58] for path following control in 2D of fully
actuated as well as underactuated ships. In [54] the LOS guidance law is combined with
a heading controller for path following control purposes of 3-DOFs underactuated surface
vessels. Although the heading controller is shown to track the reference LOS heading
with asymptotic convergence properties, the zero dynamics and the cross-track error
dynamics are not analyzed. The proposed controllers are however tested on a model
ship. The work of [54] is further developed in [17] and extended to 3D path following
scenarios in [21] and [18]. The complete kinematic/dynamic closed loop behavior of
a LOS guidance system is analyzed in detail with a full state approach in [58] where
explicit stability conditions upon the guidance law parameters are given. The preliminary
results of [58] are validated with experiments in [59] and the work presented in [59] can
be seen as an extension of [110]. The LOS guidance is used in [27] and [25] for 3D path
following control of underactuated underwater vehicles where a full-state stabilization
approach is followed to show stability. In [24] formation control and path following of
underactuated marine surface vessels is considered where each ship is equipped with a
LOS reference generator. The idea of employing a time varying look-ahead distance is
mentioned in [23] and developed in [90], without however analyzing the underactuated
sway dynamics. Notice that most of the contributions listed so far do not consider
environmental disturbances.

Environmental disturbances such as currents, wind and waves have significant effects
on marine operations and constant irrotational ocean currents represent a widely accepted
model for slowly varying disturbances [52, 51]. Observers as well as adaptive techniques
are widely used to compensate for the drift. For instance, in [7] an adaptive law
is introduced to add robustness with respect to unknown ocean currents in tracking
scenarios of underwater vehicles, while in [99] a current estimator is integrated into a
sensor based navigation filter for AUVs. Currents are considered in [49] where disturbance
estimators are added to guarantee 2D path following of underactuated surface vessels.
Adaptive techniques are applied to compensate for ocean currents in [43] to obtain path
following of underactuated AUVs. Position feedback and integral action are used in [45]
to achieve path following in presence of constant disturbances. In [6] adaptive/integral
action is introduced to control the AUV in 6-DOFs and add robustness with respect to
ocean currents and model uncertainties. In [113] it is shown that a least-squares planar
path following technique guarantees some robustness with respect to ocean currents as
well. To render the LOS guidance robust with respect to ocean currents, [2] proposes a
modification based on measurements of the AUV velocity, while [10] suggests to directly
control the relative velocity of the vehicle and to estimate the necessary side-slip angle.
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Both the contributions refer to planar motion. Planar motion is also considered in
[26, 19] where integral action is added to the LOS reference generator to compensate for
ocean currents without the need for velocity measurements nor disturbance estimators.
In [19] the possibility of spatial and temporal integral effects is mentioned, while [26]
shows convergence with an extensive mathematical full-state stabilization approach since
absolute velocities as well as relative velocities are present in the system dynamics,
forcing the introduction of adaptive techniques, and thus increasing complexity and
weakening stability. Course control and integral action are added to the LOS of [90] in
[91] and a reduced-state stabilization approach is followed, without however analyzing
the underactuated sway dynamics of the ship.

1.1.4. Bounded Control Problems

The path following control problem addressed in Chapter 7 of this thesis is in part
a bounded control problem since some saturation constraints are taken into account.
Actuator saturation and other constraints on control inputs lead to bounded control
problems. The main purpose of bounded control is to stabilize closed loop systems with
bounded feedback controllers. Backstepping methods with bounded feedbacks have been
developed: the nested saturation control laws proposed in [133] are exploited by [134]
and [60] while Lyapunov-based design is used in [97]. The results from [97] are extended
to time-varying systems in [96]. The extension to time-varying systems is applied to
aircraft control in [63].

1.1.5. Counter Current and Co-Current Guidance

In this thesis the problem of steering a marine vessel against the ocean current or with
the ocean current is addressed as well. This is indeed an interesting problem since an
autonomous marine vehicle capable of sensing the current and follow the flow could
exploit the drift when exact positioning is not as critical as energy efficiency, as shown in
[124, 125, 79]. In fact, such a guidance law makes the vehicle determine the direction
that guarantees the minimum energy consumption for a given absolute speed. Moreover,
an underwater vehicle that can turn against the flow could, for instance, help locate
a hydrothermal vent [136, 77] or detect hydrocarbon leaks from subsea oil and gas
installations. Furthermore, a control law for counter-current guidance can be integrated
into more complex Weather Optimal Heading/Positioning Control systems (WOHC-
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WOPC) since it is meant to steer the vessel against the disturbance. The WOHC and
WOPC concepts are thoroughly defined by [57] where a pendulum analogy is introduced
and the ship is forced to move along a circular path until the optimal position and
orientation to face the unknown environmental forces are determined. In [57] nonlinear
adaptive backstepping is used to design the WOPC system. Alternatively, [114] obtain
WOPC for large tankers with PID feedback controllers where only derivative action is
used in the heading autopilot. Finally, a novel implementation of WOHC and WOPC is
proposed in [83] for fully actuated as well as underactuated vessels.

1.1.6. Mathematical Modeling of Marine Vessels

In this thesis a set of mathematical models of surface vessels and underwater vehicles are
defined for control design purposes. Mathematical descriptions of marine vessels in the
form of point-mass models are powerful tools to design, test and simulate complex marine
control systems. Accurate models, increasing computational power, better simulation tools
and the introduction of Hardware-in-the-Loop (HIL) simulators reduce the developing
time and the risk for incidents [131, 132].

Mathematical modeling of marine systems and vessels is a multidisciplinary field and
depending on the operational conditions models can be classified into low velocity/station
keeping or high velocity/maneuvering models [52]. Models are also classified according to
their purpose and complexity. In particular, [130, 117] define two classes of mathematical
models: the process plant models and the control plant models. A process plant model
is a comprehensive description of the actual vessel. Its main purpose is to simulate
the vessel dynamics with a high degree of accuracy and it often includes noise effects,
disturbances, sensor responses and actuator dynamics. The process plant model is mostly
used to assess the robustness and the performance of the control systems. A control
plant model represents a simplified mathematical description of the vessel. It is meant
for control design purposes and therefore it includes only the main physical properties
of the vehicle. Notice that the control plant model may also be part of the designed
controller. The control plant model is used in analytical stability analysis, such as the
Lyapuonv analysis, as well. Since accurate models of the vessel dynamics are not always
available or suffer from high parameter uncertainties, control plant models are often used
as process plant models. In these cases a critical approach towards the results obtained
from simulations becomes fundamental.
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1.2. Contributions and Scope of This Thesis

This dissertation focuses on the Integral Line-of-Sight solution for motion control of
marine vehicles in the presence of environmental disturbances and therefore its main
contributions are related to path following of straight lines. However, some of the obtained
results closely relate to bounded control and modeling of marine crafts. Furthermore,
the problem of steering a vehicle against the ocean current or with the ocean current is
addressed as well.

1.2.1. Mathematical Modeling of Marine Vessels

A class of maneuvering control plant models that include the main disturbing effects
of the environmental forces at sea are developed in Chapter 2 to design and analyze
robust guidance systems. The presented control plant models describe the effects of
the environmental disturbances as a constant irrotational ocean current [52] where
an additional dynamic bias term is sometimes added to include heading dependent
disturbances and model uncertainties. The fact that the unknown ocean current is
assumed constant and irrotational makes it possible to define the presented models in
terms of the relative velocity vector. Moreover, as done in [23], a translation of the
equations of motion is introduced to remove the effect of the yaw control on the sway
dynamics for the 3-DOFs maneuvering models. An analogous translation of the equations
of motion for the 5-DOFs maneuvering models is used to remove the effects of the pitch
and yaw control terms on the heave and sway dynamics. Such transformations, inspired
by [42] and further developed [59], are useful in underactuated control design for surface
vessels and underwater vehicles

1.2.2. The ILOS Guidance Law for Path Following Control of

Underactuated Marine Vessels

This thesis aims to improve, revisit, extend and validate the ILOS guidance law first
presented in [26]. In particular, [67, 52] show that the vessel model can be redefined in
terms of its relative velocity vector in presence of constant irrotational ocean currents.
This property is used in this thesis and it is shown that it leads to a simpler control
system with stronger stability properties compared to [26]. Planar motion of underac-
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tuated marine vessels is considered first and the ILOS guidance is then extended to
3D path following of underactuated underwater vehicles with similar theoretical results.
Furthermore, the ILOS guidance is shown to be robust with respect to disturbances in
the underactuated sway/heave directions. This property is exploited in two occasions:
first, it is proved that the ILOS control scheme can successfully handle combined kine-
matic and dynamic disturbances. Second, it is shown that the ILOS guidance can be
extended to fully actuated marine vehicles with saturated transverse actuators. Finally,
the theoretical results are validated with extensive simulations and full scale sea trials
using underactuated unmanned surface and underwater vehicles.

In this dissertation the ILOS guidance law is first studied in a kinematic perspective
in Chapters 3 and 4, and the level of complexity is gradually increased by adding the
underactuated dynamics in Chapter 5. Both the underactuated/actuated dynamics are
added in Chapters 6, 8 and 9 to analyze the complete problems of underactuated vehicles
subject to environmental disturbances in 3-DOFs and 5-DOFs. Notice that the problems
solved in Chapters 6, 8 and 9 follow along the line of research set by [110, 59, 25, 26] and
represent full-state stabilization problems where stability is shown for both the actuated
as well as the underactuated dynamics. Lyapunov theory [82], elements of robust control
[57] and control of nonlinear systems in cascaded form [105, 104] are used in the proofs.

A Kinematic Approach to Current Compensation and the ILOS Guidance Law

The ILOS guidance for planar motion from [26] is applied to a simple kinematic model
of a vessel in Chapter 3. It is shown, using simple and intuitive mathematical tools,
that current compensation for underactuated surface vessels reduces to a vectorial sum
and has one possible solution that identifies the only heading the ship can hold to
side-slip and compensate for the drift. The relative velocity of the vessel is kept constant
and compensation is achieved through side-slipping. Path following of straight lines is
obtained. It is furthermore shown that the ILOS guidance law executes the sum between
the relative velocity of the vehicle and the ocean current velocity to compensate for the
drift. This provides a useful practical explanation of the role that the integral term plays
in the guidance law. This kinematic approach is similar to [3, 71] where the well known
unicycle model is used, or to [100] where steering of miniature air vehicles is considered.

In Chapter 4 a 3D version of the same ILOS guidance system is presented and applied
to a kinematic model of underactuated underwater vehicles. Path following of straight
lines is considered and the explanation follows along the lines of Chapter 3. In particular,
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it is shown that current compensation for underactuated underwater vehicle reduces
to a 3D vectorial sum that has one possible solution. This solution identifies the only
attitude the vehicle can hold to compensate for the drift. Again, the relative velocity
of the vessel is kept constant and compensation is achieved using the control surfaces
only. The stability of the closed loop kinematic system is successfully analyzed. Similar
kinematic approaches to solve guidance, control and ranging problems of underactuated
underwater vehicles are found in [5, 73, 8], while autonomous aircraft are described with
3D kinematic models in [120] to develop collision avoidance strategies.

The Underactuated Dynamics in ILOS Guidance Schemes

In Chapters 3 and 4 the analysis of the ILOS kinematic closed loop systems gives
explicit bounds on the integral gains but does not give any guidelines on how to choose
the look-ahead distances. It is argued that the look-ahead distances should be ‘long
enough’ to avoid overshoots and hence make the underactuated sway and heave dynamics
neglectable. In Chapter 5 explicit bounds for the choice of the ILOS guidance look-ahead
distance are derived. This is done by including the underactuated dynamics into the
Lyapunov analysis. Disturbances in the form of constant irrotational ocean currents and
constant dynamic, attitude dependent, forces are taken into account. Furthermore, more
precise bounds upon the integral gains are obtained as well. A 3-DOFs planar motion
scenario is considered with sway being the underactuated dynamics and the actuated
dynamics are not taken into account.

Path Following Control of Underactuated Vehicles in the Presence of Ocean
Currents

In Chapter 6 the complete kinematic and dynamic closed loop system of the ILOS
guidance law for path following purposes of underactuated surface vessels is analyzed.
The actuated surge and yaw dynamics are included in the analysis and combined with
the results from Chapter 5. It is shown that the resulting closed loop system forms a
cascade where the actuated dynamics perturb the combined sway-guidance system. In
this case disturbances in the form of irrotational ocean currents are taken into account,
while dynamic heading dependent environmental disturbances are not taken into account.
Path following of straight lines is considered and the underactuated vessel is made to
side-slip in order to compensate for the drift since no actuation is available in sway to
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counteract for the components of the disturbances acting in the transverse direction. The
dynamics of the vessel are expressed in terms of its relative velocity, where the relative
velocity of the vessel is its velocity with respect to the water. This is possible since
the current is assumed constant and irrotational in the inertial frame. Compared to
[26] the stronger stability properties of Uniform Global Asymptotic Stability (UGAS)
and Uniform Local Exponential Stability (ULES) (alternatively global κ-exponential
stability [129]) are shown for the closed loop cascaded system and the stability margins
for the guidance law parameters are increased. The control approach in [26] includes
both absolute and relative velocities, while here it is based on relative velocities only
with direct control over the ship relative speed. It is hence not necessary to use adaptive
techniques to estimate the unknown kinematic drift in the ship surge and yaw controllers.
Furthermore, it is shown that in steady state it is possible to estimate the unknown
current by combining the integral term of the ILOS guidance with the measurements of
the absolute and relative speeds of the vessel.

In Chapter 9 the underactuated and the actuated dynamics are included in the
analysis of the 3D ILOS guidance law from Chapter 4. The results from Chapter 6 are
hence extended to underactuated AUVs for 3D straight line path following applications
in the presence of constant irrotational ocean currents acting in any direction of the
inertial frame. The 3D ILOS guidance law from Chapter 4 with integral action in both
the vertical and horizontal directions is shown to solve the task together with three
feedback controllers in a cascaded configuration. The control approach is based on
relative velocities with direct control over the AUV relative speed. It is shown that
redefining the AUV dynamics in terms of relative velocities makes it possible to prove
the stability properties of UGAS and ULES for the 3D AUV case as well. Compared
to Chapter 4, both the kinematic and dynamic levels of the problem are addressed and
explicit bounds on all of the guidance law parameters are given to guarantee stability.

Results from Full Scale Sea Trials

Results from simulations and field experiments are presented that support and illustrate
the theoretical results of Chapters 6 and 9. In Chapter 6 the analyzed 2D ILOS guidance
scheme is applied to the CART Unmanned Semi-Submersible Vehicle (USSV) for sea
trials [22], while the model of an underactuated supply vessel is used for simulation
purposes since a model of the CART USSV is not yet available. First, the model of
the supply vessel is used to simulate the control system and to assess its robustness
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with respect to parameter uncertainties and process noise. Next, the model is scaled to
match the dimensions of the CART USSV in order to have simulation results that can be
directly compared with the experiments. Finally, experimental results from sea trials are
presented and a back to back comparison between simulations and experimental results
is given. Furthermore, different combinations of the guidance law parameters are tested
for different speeds/thrust levels.

In Chapter 9 the analyzed 3D ILOS guidance is applied to the LAUV autonomous
underwater vehicle [126]. First, simulations are run using a mathematical model of
the LAUV vehicle to analyze the guidance law response and tune the ILOS controllers.
The simulations include an example of a 3D underwater path following case and a 2D
underwater way-point following case, analogous to the sea trial runs, for a back-to-back
comparison. Next, experimental results from full scale underwater 2D way-point following
tests are shown. Finally, the ILOS guidance law is compared to the vector field guidance
law for path following purposes from [100]. The comparison is based on experiments.

Path Following Control of Underactuated Surface Vessels in the Presence of
Multiple Disturbances

The 2D ILOS guidance method developed in Chapter 6 is extended with adaptation
in Chapter 8 where it is analytically shown that the resulting control scheme success-
fully compensates for a combination of kinematic and dynamic disturbances and hence
guarantees path following of underactuated surface vessels in different sea conditions.
Path following of straight lines is considered. Compared to [26] the control approach is
again based on relative velocities with direct control over the ship relative speed. It is
hence not necessary to use adaptive techniques to estimate the unknown kinematic drift
in the ship surge and yaw controllers, whereas adaptation is still required to estimate
and compensate for the dynamic disturbances. The combined effect of kinematic and
dynamic disturbances is analyzed assuming that the dynamic disturbance is known in
direction but unknown in magnitude. It is shown that the ILOS guidance in a cascaded
configuration with an adaptive speed-heading controller guarantees UGAS and ULES for
the closed loop system. The results are supported by simulations.
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ILOS in Bounded Control Problems

The possibility of extending the ILOS guidance law proposed for underactuated surface
marine vehicles in Chapter 6 to fully actuated marine vehicles with saturated transverse
actuators is discussed in Chapter 7. Low-speed path following of straight lines is con-
sidered and the proposed solution combines the ILOS guidance law with a nonlinear
bounded sway feedback controller. A fully actuated surface vessel described by a 3-DOFs
maneuvering model is considered and the guidance law is derived from the underactuated
case described in Chapter 6. Compared to Chapter 6, it is shown that the additional use
of the transverse actuators for disturbance compensation reduces the side-slip angle the
vessel has to hold. The problem addressed is partially a bounded control problem since
saturation is considered for the transverse actuators while the surge and yaw control
inputs are considered unconstrained. The proposed control system is based on relative
velocities with direct control over the vehicle relative speed as done in Chapter 6. UGAS
and ULES of the origin of the closed loop system are proved giving full-state stabilization,
and explicit bounds on the guidance law parameters are given to guarantee stability.
Results from simulations are presented to verify and illustrate the theoretical results.

1.2.3. Counter Current and Co-Current Guidance

In Chapter 10 the problem of steering a marine vessel against the ocean current or with
the ocean current is addressed. Two guidance laws for counter-current and co-current
guidance of underactuated marine vehicles in 3-DOFs are presented in Chapter 10. The
proposed solutions can be applied to surface vessels or to underwater vehicles and are
designed to perform counter-current or co-current guidance in presence of constant and
irrotational ocean currents. The guidance laws are based on the relation between the
relative and absolute velocities. In particular, it is shown that the counter-current
direction and the co-current direction are two possible steady-state headings having
zero absolute sway velocity and zero sway current component. In the first guidance
law the absolute sway velocity is the error signal of the guidance system, while in the
second guidance law the sway current component is the error signal. The two laws
show different stability properties: local exponential stability (LES) for the first and
uniform semiglobal exponential stability (USES) for the second. In both cases the closed
loop system reveals multiple stable/unstable equilibrium points, corresponding to the
counter-current/co-current directions depending on the setting. Lyapunov theory [82, 65]
is used in the proofs. Simulation results support the theoretical findings.
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1.2.4. Delimitation

The theoretical results presented in this dissertation are based on the assumption that
the considered models are known, free of uncertainties and free of modeling errors. It
is moreover assumed that any measured signals are noise and drift free, and that the
necessary analog/digital signal processing has been performed by dedicated systems.
The design of systems without these assumptions is beyond the scope of this thesis.
Furthermore, no explicit saturation constraints are added into the theoretical analysis,
except for the bounded sway controller of Chapter 7. The effects of saturation are
however taken into account through numerical simulations and experiments. Furthermore,
robustness of the ILOS guidance scheme for surface vessels with respect to model
uncertainties and process noise is also analyzed through simulations in Chapter 6.

1.2.5. Publications

The main results of this thesis have been published in several international conferences
and journals:

Journal Papers

• W. Caharija, K. Y. Pettersen, P. Calado, J. Braga and M. Milovanović, “Path
following control of underactuated AUVs in the presence of ocean currents: theory,
simulations and experiments,” IEEE Transactions on Control System Technology,
2014, (to be submitted).

• W. Caharija, K. Y. Pettersen, M. Bibuli, E. Zereik, J. T. Gravdahl, A. J. Sørensen
and G. Bruzzone, “Integral LOS for path following control of underactuated surface
vessels: theory, simulations and experiments,” IEEE Transactions on Control System
Technology, 2014, (submitted).

• W. Caharija, K. Y. Pettersen, A. J. Sørensen, M. Candeloro and J. T. Gravdahl,
“Relative velocity control and integral LOS for path following of ASVs: Merging
intuition with theory,” Proc. of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment, 228(2):180-191, 2014.

Conference Papers

• W. Caharija, E. I. Grøtli and K. Y. Pettersen, “Improved countercurrent and
co-current guidance of underactuated marine vehicles with semiglobal stability
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properties”, In Proc. of IFAC World Congress, Cape Town, South Africa, Aug 2014
pp. 12166-12173.

• M. Bibuli, W. Caharija, K. Y. Pettersen, G. Bruzzone, M. Caccia and E. Zereik,
“ILOS guidance - experiments and tuning”, In Proc. of the 19th IFAC World
Congress, Cape Town, South Africa, Aug 2014, pp. 4209-4214.

• W. Caharija, K. Y. Pettersen and J. T. Gravdahl, “Path following of underactuated
surface vessels in presence of uknown constant environmental forces: Preliminary
results,” In Proc. of the 9th IFAC Conference on Control Applications in Marine
Systems, Osaka, Japan, Sept 2013, pp. 85-90.

• W. Caharija, K. Y. Pettersen and J. T. Gravdahl, “Counter-current and co-current
guidance of underactuated unmanned marine vehicles,” In Proc. of the 8th IFAC
Symposium on Intelligent Autonomous Vehicles, Gold Coast, QLD, Australia, June
2013, pp. 184-191.

• W. Caharija, K. Y. Pettersen and J. T. Gravdahl, “Path following of marine
surface vessels with saturated transverse actuators,” In Proc. of American Control
Conference, Washington DC, USA, June 2013, pp. 546-553.

• W. Caharija, K. Y. Pettersen, J. T. Gravdahl and E. Børhaug, “Path following of
underactuated autonomous underwater vehicles in the presence of ocean currents,”
In Proc. of the 51st IEEE Conference on Decision and Control, Maui, HI, USA,
Dec 2012, pp. 528-535.

• W. Caharija, M. Candeloro, K. Y. Pettersen and A. J. Sørensen, “Relative velocity
control and integral LOS for path following of underactuated surface vessels,” In
Proc. of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft,
Arenzano, Italy, Sept 2012 pp. 380-385, Best Student Paper Award.

• W. Caharija, K. Y. Pettersen, J. T. Gravdahl and E. Børhaug, “Integral LOS
guidance for horizontal path following of underactuated autonomous underwater
vehicles in the presence of vertical ocean currents,” In Proc. of American Control
Conference, Montreal, Canada, June 2012, pp. 5427-5434.

• W. Caharija, K. Y. Pettersen, J. T. Gravdahl and A. J. Sørensen, “Topics on
current compensation for path following applications of underactuated underwater
vehicles,” In Proc. of the 3rd IFAC Workshop on Navigation, Guidance and Control
of Underwater Vehicles, Porto, Portugal, April 2012, pp. 184-191.
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Other publications, related to but not part of this thesis

• S. Moe, W. Caharija, K. Y. Pettersen and I. Schjølberg,“Path Following of Underac-
tuated Underwater Vehicles in the Presence of Unknown Ocean Currents”, In Proc.
of the 33th International Conference on Ocean, Offshore and Arctic Engineering,
San Fransisco, CA, USA, June 2014.

• S. Moe, W. Caharija, K. Y. Pettersen and I. Schjølberg, “Path Following of Underac-
tuated Marine Surface Vessels in the Presence of Unknown Ocean Currents”, In Proc.
of American Control Conference, Portland, OR, USA, June 2014, pp. 3856-3861.

1.3. Outline of the Thesis

This dissertation is in organized in 11 chapters and 3 appendices. The arrangement is
such that a linear growth of complexity is held throughout the thesis, where the analysis
of the ILOS guidance scheme is first limited to kinematic models and then step by step
extended to more complex kinematic-dynamic models. Additional short appendices are
also given at the end of some chapters. This is done to give the thesis a modular structure
so that each chapter is not excessively dependent on the previous ones.

Chapter 2: presents the control plant models used in this dissertation.

Chapter 3: applies the ILOS guidance for surface vessels to a simple 2D kinematic
model. An intuitive and practical explanation of the current of compensation problem
follows.

Chapter 4: applies the ILOS guidance for 3D path following of underwater vehicles to
a simple 3D kinematic model. An intuitive and practical explanation of the current of
compensation problem follows.

Chapter 5: the underactuated sway dynamics is added to the 2D kinematic system
introduced in Chapter 3 and kinematic as well as dynamic disturbances are included. A
detailed and well commented proof of stability of the sway-guidance closed loop system
is given, where the actuated dynamics are not taken into account. The proof represents
the backbone of the thesis and is used in the following chapters.
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Chapter 6: analyzes the complete case of an underactuated vessel in 3-DOFs subject
to irrotational ocean current disturbances and equipped with an ILOS controller. The
actuated dynamics are added to the sway-guidance system discussed in Chapter 5 in
a cascaded configuration. The theoretical results are supported by simulations and
experiments.

Chapter 7: explores the possibility of extending the ILOS guidance to fully actuated
surface vessels with saturated sway actuators to shrink the side-slip angle. The full closed
loop system (kinematics/dynamics) is analyzed and simulation results are included.

Chapter 8: extends the case of Chapter 6 where the underactuated vessel is under the
influence of irrotational ocean currents and dynamic heading dependent forces generated
by wind. The theoretical results are supported by simulations.

Chapter 9: applies the 3D ILOS guidance from Chapter 4 to underactuated underwater
vehicles where the underactuated and actuated dynamics are included in the 5-DOFs
analysis. Disturbances in the form of irrotational ocean currents are considered and
a multiple cascaded structure is obtained. The theoretical results are supported by
simulations and experiments.

Chapter 10: presents two guidance laws for co-current and counter-current guidance
of underactuated marine vehicles in 3-DOFs

Chapter 11: conclusions and future work.

Bibliography

Appendix A: summarizes the stability concepts, definitions and theorems that are
significant for this dissertation.

Appendix B: presents the simulation models of the vehicles used in this dissertation.

Appendix C: gives the wind load coefficients for supply vessels from [15].
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Chapter 2.

Modeling of Marine Vehicles for
Control Design Purposes

“One learns more from listening than speaking. And both the wind and
the people who continue to live close to nature still have much to tell us
which we cannot hear within university walls.”

— Thor Heyerdahl, Explorer

The design and development of control systems for marine vehicles requires a certain
degree of knowledge of the underlying physics governing the motion of the vessel. The
breadth and depth of the required knowledge depends on the application, the type of
vessel, the desired level of robustness and cost issues. Trade offs often arise between
these requirements and experience suggests that on-the-field tuning and testing is widely
accepted for smaller systems such as unmanned marine vehicles, while controllers for
large scale systems such as ships, drilling rigs or floating productions units (FPUs) require
a significantly higher level of modeling, analysis and simulation for obvious cost and risk
issues. Therefore, detailed and consistent modeling of marine vessels represents a cutting
edge research line in the field of marine technology worldwide.

Detailed mathematical rigid body models based on classical mechanics are used to
design and simulate controllers for manned and unmanned marine vehicles. Although
the mathematical models differ in their parameters and level of complexity according to
the type of vessel (supply ship, crude carrier, FPU) and application (station keeping or
maneuvering), the models found in literature are also classified according to their purpose.
In particular, [130, 117] define two classes of mathematical models: the process plant
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models and the control plant models. A process plant model represents a comprehensive
description of the actual vessel. Its main purpose is to simulate the vessel dynamics
with a high degree of accuracy and it often includes noise effects, disturbances, sensor
responses and actuator dynamics. The process plant model is mostly used to assess the
robustness and the performance of the control systems. A control plant model represents
a simplified mathematical description of the vessel. It is meant for control design purposes
and therefore it includes only the main physical properties of the vehicle that are relevant
in control design. Notice that the control plant model may also be part of the designed
controller. The control plant model is used in analytical stability analysis, such as the
Lyapuonv analysis, as well. Since accurate models of the vessel dynamics are not always
available or suffer from high parameter uncertainties, control plant models are often used
as process plant models. In these cases a critical approach towards the results obtained
from simulations becomes fundamental.

In this chapter the class of control plant models used throughout this dissertation is
introduced. In particular, the main topic addressed by this thesis is disturbance compen-
sation in path following control problems of underactuated marine vessels. Therefore,
certain maneuvering control plant models that include the main disturbing effects of the
environmental forces at sea are developed to design and analyze robust guidance systems.
The presented control plant models describe the effects of the environmental disturbances
as a constant irrotational ocean current [52] where an additional dynamic bias term is
sometimes added to include heading dependent disturbances and model uncertainties.
The fact that the the unknown ocean current is assumed constant and irrotational makes
it possible to define the presented models in terms of the relative velocity vector only,
where the relative velocity is the velocity with respect to the water. Moreover, as done
in [23], a translation of the equations of motion is introduced to remove the effect of
the yaw control input on the sway dynamics for the 3 degrees of freedom (DOFs) two
dimensional (2D) maneuvering models. An analogous translation of the equations of
motion for the 5-DOFs 3D maneuvering models is used to remove the effects of the
pitch and yaw control inputs on the heave and sway dynamics. Such transformations,
inspired by [59], have proved useful in underactuated control design for surface vessels
and extended to underwater vehicles in [25], as they simplify the controller design as
well as the stability analysis. However, possible physical interpretations of the proposed
transformations and the possibility of preserving the ship model in the matrix form
introduced by [52] are only shortly discussed in [23] for the 3-DOFs case. The 3-DOFs as
well as the 5-DOFs transformations proposed in this thesis are yet based on [59] and it is
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shown in details that they correspond to a translation of the equations of motion. This
makes the presented models suitable for several control design purposes.

This chapter is organized as follows: in Section 2.1 the general rigid body model of
marine vehicles is presented and discussed. The definition of underactuated and fully
actuated systems is briefly recalled in Section 2.2 while in Section 2.3 the class of control
plant models for surface vessels and underwater vehicles moving in a plane is introduced.
In Section 2.4 the class of control plant models for underwater vehicles moving in the 3D
space is introduced. Some of the results from [33, 29, 30] are presented in this chapter.

2.1. The Rigid Body Model of Marine Vessels and

Vehicles

According to [52] the marine craft equations of motion can be written in a vectorial form:

η̇ = J(η)ν, (2.1)

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +D(νr)νr + g(η) = τ +w. (2.2)

Before defining the terms found in (2.1-2.2) it is important to emphasize the fact that
the model (2.1-2.2) describes the motion of the ship with a rigid body approximation.
It is a mass damper spring model where two reference frames are used to describe the
motion of the vessel: the inertial North-East-Down (NED) frame i and the body frame
b, as shown in Figure 2.1. Notice that the body frame b is fixed to the vehicle and is
generally in motion with respect to i.

The vector η , [x, y, z, φ, θ, ψ]T is defined in i and represents the position and the
orientation of the vessel with respect to the inertial frame i, where x, y and z are the
Cartesian coordinates of the vessel. The φ, θ and ψ angles are the roll, pitch and yaw
Euler angles, and describe the attitude of the craft with respect to the inertial frame i.
The term ν , [u, v, w, p, q, r]T is the generalized velocity vector defined in b where u is
the surge velocity, v is the sway velocity, w is the heave velocity, p is the roll rate, q is the
pitch rate and r is the yaw rate. The term νr , ν−νc is the relative velocity of the vessel
in b and is defined as the velocity of the craft with respect to the ocean current. The
vector νc is the ocean current velocity expressed in b. The matrix J(η) is the velocity
transformation matrix,MRB = MT

RB > 0 is the rigid body inertia matrix, CRB(ν) is the
rigid body Coriolis and centripetal matrix, MA = MT

A > 0 is the hydrodynamic added
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mass matrix, CA(νr) is the added mass Coriolis and centripetal matrix, D(νr) is the
hydrodynamic damping matrix and g(η) is the gravity vector. The term τ is the control
input vector in b. The vector w is defined in b and contains the dynamic forces and
moments that the environment produces on the vessel (winds, waves, currents).

Detailed and comprehensive discussions about the structure of the above mentioned
matrices and coefficients can be found in a large number of publications, such as [52, 130,
117]. Furthermore, they are defined case by case in the following sections and chapters
of this thesis. Therefore, a detailed definition of the terms in the model (2.1-2.2) is here
omitted. Instead, focus is put on the aspects of (2.1-2.2) that are significant for the
definition of the control plant models used in this dissertation.

The model (2.1-2.2) is a rigid body model and as such it is a lumped mechanical
model. However the environment interacts with the hull and the superstructure in a
distributed fashion: for instance, environmental disturbances such as wind, waves and
currents generate distributed loads. The interactions water-vessel and wind-vessel can be
described using the laws of hydrodynamics and aerodynamics, leading to very complex
distributed models [50, 15]. Hence, given the high level of complexity and the distributed
nature of these phenomena, numerical approaches are used [52]. To integrate the effects
of the interaction water-vessel into the lumped model (2.1-2.2) the added mass MA

matrix and the dampingD(νr) matrix are introduced. Notice that the coefficients ofMA

and D(νr) are often the result of extensive numerical simulations or model identification

u (surge)

w (heave)

v (sway)
r (yaw)

p (roll)

q (pitch)

xb

yb

zb

x

y
z

{i} NED

{b}

Figure 2.1.: The inertial NED frame and the body frame used to describe the motion of a
marine craft in 6-DOF.
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analysis, and may suffer from high parametric uncertainties. The effects of environmental
disturbances like wind, waves and currents are integrated into the lumped model (2.1-2.2)
through the relative velocity vector νr , ν − νc and the environmental load vector w.
It is hence the terms MA, D(νr), νr and w that represent the connection between the
distributed nature of the environment and the lumped rigid body representation given in
(2.1-2.2).

This dissertation focuses on the design of guidance control systems capable of com-
pensating for the disturbances in transit and maneuvering operations of marine vessels.
Therefore, adequate control plant models have to be derived from (2.1-2.2) where the
most significant effects of the environmental disturbances have to be extracted from
the terms νc and w in relation to the guidance and control objectives. In straight line
path following control scenarios of underactuated marine vehicles it is fundamental to
keep the vessel on the desired course. Hence, field experience from sailors and seamen
suggests that there are two major effects pushing the vessel away from the desired path:
a kinematic velocity bias that will affect the boat independently of its heading and a
heading dependent dynamic bias. Several environmental forces may contribute to the two
disturbing effects and it is generally believed that currents and slowly varying drifting
effects can be treated as a kinematic bias, while the average wind pressure represents
the main heading dependent dynamic disturbance. Notice that this discussion implicitly
neglects the zero mean oscillating effects caused by waves and wind gusts since they are
often filtered out through wave filtering or by the inertia of the vessel, and therefore are
not significant for path following control purposes.

In this thesis the constant irrotational ocean current model is used to define the
kinematic bias, where the term νc is defined as described in Section 2.1.1. The vector
w is defined in Section 2.1.2 and it represents the bias term that embodies unmodeled
dynamics and dynamic, heading dependent disturbances caused by currents, winds and
waves. In this context, the significant effect of constant wind disturbances is assumed to
dominate in w.

2.1.1. The Constant and Irrotational Ocean Current

The ocean current is defined in the inertial frame i and is assumed constant, irrotational
and bounded. Hence, for underwater vehicles Vc , [Vx, Vy, Vz]

T and there exists a constant
Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y + V 2
z . For surface vessels Vc , [Vx, Vy, 0]T and

Vmax ≥
√
V 2
x + V 2

y .
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The constant and irrotational ocean current model is widely accepted to describe
the effects of slowly varying disturbances and it represents a good approximation when
closed loop control is implemented on-board of marine vehicles [51, 52]. Hence, the
drifting effect of currents, tides, low frequency swells and second order wave-induced
forces can be included into the ocean current vector Vc. Notice that the vector Vc defines
an irrotational and incompressible flow field and thus it is clearly not meant for detailed
hydrodynamic modeling of the interaction water-hull. Nevertheless, it represents a good
approximation of the effects of the disturbances in rigid body models for control design
purposes. The generalized ocean current velocity of an irrotational fluid in the moving
frame b is:

νc = [uc, vc, wc, 0, 0, 0]T , (2.3)

where uc, vc and wc represent the linear velocity of the current in b: vc , [uc, vc, wc]
T .

Moreover, vc relates to Vc as:

vc = R(φ, θ, ψ)TVc, (2.4)

where R(φ, θ, ψ) is the rotation matrix from b to i, parametrized using Euler angles. It
is shown in [67] and [52] that if the current is constant and irrotational in the inertial
frame i, the rigid body kinetics satisfy:

MRBν̇ +CRB(ν)ν = MRBν̇r +CRB(νr)νr. (2.5)

The property (2.5) can be used to simplify the equations of motion (2.1-2.2) where the
state of the vessel is now represented by the relative velocity νr:

η̇ = J(η)νr + [V T
c , 0, 0, 0]T , (2.6)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ +w. (2.7)

Equation (2.4) is used to derive (2.6) and the matrices M and C(νr) are defined as
M ,MRB +MA and C(νr) , CRB(νr) +CA(νr).

This choice of model has direct implications for the choice of adequate control
objectives and control design. In particular, the model expressed in terms of the relative
velocity vector (2.6-2.7) makes it natural to choose the control input τ in order to control
the relative velocity νr. Therefore, the absolute speed with respect to the inertial frame i
is not directly controlled, but is instead determined by the sum between the relative speed
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and the current velocity. This result is less surprising as one could think: actuators such
as propellers, tunnel thrusters, azimuth thrusters and pump-jets create local pressure
differences in the fluid that push the water particles [116]. Hence, motion is obtain with
respect to the water and the speed through water of the vessel is roughly proportional
to the rotation rate of the propeller. Moreover, until space-based satellite navigation
systems were not operational water speed was often the only measurement available on
board, provided by sensors such as doppler speed logs, pitometer logs, paddle meters and,
in the very old days, ship logs. Finally, notice that relative velocity control is not the ideal
choice if speed profile planning/tracking scenarios were considered. However, controlling
the relative velocity of the ship gives direct control over the energy consumption as
hydrodynamic damping depends on νr, and also it removes the term νc from the velocity
feedback loop.

2.1.2. The Environmental Load Vector w

The vector w represents a bias term that embodies unmodeled dynamics and dynamic,
heading dependent disturbances caused by currents, winds and waves. For control system
design purposes it is common to assume the principle of superposition when considering
the effects of different disturbances [52]. In particular the effects of wind on surface
vessels is extensively analyzed with simulations and wind tunnel tests in [76, 103, 15]
while wave-induced forces are studied in [109].

In this context, the significant effect of constant wind disturbances is assumed to
dominate in w when motion on the sea surface is analyzed. Motivated by [15] and [52],
the overall effect of wind is modeled as a constant pressure Pe acting on the vessel in
a constant direction βe. The mean and slowly varying drifting effect caused by wind is
considered, while highly oscillating zero mean effects due to wind gusts are not taken
into account since they are often removed through filtering. Furthermore, the vessel
inertia has low pass filtering effects as well. The forces and moments generated by the
wind pressure Pe on the ship are proportional to the frontal and lateral projected areas
above the waterline of the ship, and to some well defined load coefficients. The areas
above the waterline are considered since the effect of wind is limited to the surface. The
loading coefficients depend on the geometry of the ship hull and superstructure, and
are functions of the disturbance angle of attack. They are usually obtained through
interpolation of data from simulations and wind tunnel tests for different types of ships
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[76, 103, 15]. The environmental load vector w is then defined as:

w ,

[
PeAFwCX(γe)
PeALwCY (γe)

PeALwLoaCN (γe)

]
, (2.8)

where AFw is the frontal projected area above the waterline, ALw is the lateral projected
area above the waterline and Loa is the length overall of the vessel (maximum length
of the vessel hull). The term γe , ψ − βe − π is the angle of attack of the wind. The
terms CX(γe), CY (γe) and CN (γe) are the load coefficients. The coefficients from [15] are
included in this dissertation due to their wide use to assess wind loads on ships, and can
be found in Appendix B.

2.2. The Underactuated Marine Vehicles

Since this dissertation focuses heavily on underactuated marine vessels, the following
definition of underactuated mechanical systems, adapted from [62], is quoted from [1].
Consider an affine mechanical system described by:

q̈ = F (q, q̇) +G(q)u, (2.9)

where q is a vector of independent generalized coordinates, F is a vector field that
describes the dynamics of the system, G is the input matrix and u is the vector of
generalized inputs. The system (2.9) is:

• Fully actuated : if the rank of G is equal to the dimension of q.

• Underacuated : if the rank of G is smaller than the dimension of q.

• Overactuated : if the rank of G is larger than the dimension of q.

Hence, an underactuated marine vehicle is a vehicle having more degrees of freedom than
independent control inputs and therefore it cannot independently control all its degrees
of freedom simultaneously. Moreover, [122] and [16] introduce two operational spaces to
help define different motion control scenarios:

• The work space: the physical space in which the vehicle moves (2D space for a car,
3D space for an airplane).
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• The configuration space: the set of variables sufficient to specify all the points of a
rigid body vehicle in the work spaces. Each degree of freedom is a configuration
variable.

Based on the definitions above, it is possible to conclude that an underactuated
vehicle is generally unable to achieve arbitrary tasks in its configuration space but it can
still achieve meaningful tasks in its work space.

Notice that in practice most marine vessels are underactuated when moving at high
speed since the thrusters facilitating full actuation become ineffective at speeds higher
than 1− 2 [m/s] (3− 4 [knots]) [95, 16].

2.3. A Class of Control Plant Models in 3-DOFs

In this section the class of control plant models in 3-DOFs used in this thesis is defined.
It describes the kinematics and dynamics of surface vessels as well as underwater vehicles
moving in the horizontal plane and the models are designed for maneuvering control
purposes.

2.3.1. Model Assumptions

Assumption 2.1. The motion of the vessel can be described by 3-DOFs, that is surge,
sway and yaw.

Assumption 2.2. The vessel is port-starboard symmetric.

Assumption 2.3. The body fixed coordinate frame b is located on the center line of
the vessel.

Assumption 2.4. The ocean current is defined in the inertial frame i and is assumed
constant, unknown, irrotational and bounded. Hence, Vc , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

2.3.2. The Control Plant Model

The state of the surface vessel is given by the vector [pT ,νTr ]T where p , [x, y, ψ]T

describes the position and the orientation of the vehicle with respect to the inertial frame
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i. The vector ν , [u, v, r]T contains the linear and angular velocities of the ship defined
in the body-fixed frame b, where u is the surge velocity, v is the sway velocity and r

is the yaw rate. The ocean current velocity in the body frame b, νc , [uc, vc, 0]T , is
obtained from νc = RT (ψ)Vc where R(ψ) is the rotation matrix from b to i. According
to Assumption 2.4 the ocean current is constant and irrotational in i and hence V̇c = 0,
and ν̇c = [rvc,−ruc, 0]T . In navigation problems involving ocean currents it is useful to
describe the state of the vessel with the relative velocity vector: νr , ν−νc = [ur, vr, r]

T .
The vector νr is defined in b, where ur is the relative surge velocity and vr is the relative
sway velocity. This thesis considers the class of marine vehicles described by the following
3-DOF maneuvering model:

ṗ = R(ψ)νr + Vc, (2.10)

Mν̇r +C(νr)νr +D(νr)νr = Bf +w. (2.11)

The model (2.10-2.11) can describe the kinematics and dynamics of surface vessels as
well as underwater vehicles moving in the horizontal plane. The vector f , [Tu, Tr]

T is
the control input vector, containing the surge thrust Tu and the rudder angle Tr. Notice
that the model (2.10-2.11) is underactuated in its configuration space since it has fewer
control inputs than DOFs. The matrixM = MT > 0 is the mass and inertia matrix and
includes hydrodynamic added mass. The matrix C is the Coriolis and centripetal matrix,
D > 0 is the hydrodynamic damping matrix and B ∈ R3×2 is the actuator configuration
matrix. For maneuvering control purposes, the matrices R(ψ),M , and B are considered
to have the following structures [52]:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, (2.12)

M ,
[
m11 0 0

0 m22 m23
0 m23 m33

]
, B ,

[
b11 0
0 b22
0 b32

]
. (2.13)

The particular structure of M is justified by Assumptions 2.1-2.3. The actuator configu-
ration matrix B has full column rank and maps the control inputs Tu and Tr into forces
and moments acting on the vessel. The Coriolis and centripetal matrix C is obtained
from M as [52]:

C(νr) ,
[

0 0 −m22vr−m23r
0 0 m11ur

m22vr+m23r −m11ur 0

]
. (2.14)
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The damping term D(νr) is here left unspecified and its definition is considered case by
case in the following chapters of this dissertation. The same applies to the body fixed
environmental load vector w , [wu, wv, wr]

T .

Remark 2.1. Given the model (2.10-2.11) one can choose to consider both the proposed
disturbances, Vc and w, or only one, depending on the application, type of vessel and
the environmental conditions.

2.3.3. Translation of the Equations of Motion

In the model (2.10-2.11) the yaw control Tr affects not only the yaw dynamics but
also the underactuated sway dynamics. This complicates the controller design and the
subsequent stability analysis. To overcome the problem, it is useful to modify the model
using coordinate transformations as done in [25] for an underwater vehicle and in [59] for
a surface vessel. The transformation is here redefined as a translation of the equations of
motion, similarly to [23]. In [59] it is shown that the following transformation removes
the effect of the yaw control on the sway motion:

ūr = ur, v̄r = vr + εr, r̄ = r. (2.15)

The transformed velocity vector is ν̄r , [ūr, v̄r, r̄]
T while ε is a constant given by:

ε , −m33b22 −m23b32

m22b32 −m23b22

. (2.16)

Notice that ε is well defined as long as the system is controllable in yaw. It is straightfor-
ward to define the corresponding transformation matrix H3DOF such that νr = H3DOFν̄r:

H3DOF ,
[

1 0 0
0 1 −ε
0 0 1

]
. (2.17)

The linear transformation is invertible since all the diagonal elements of H3DOF are
nonzero. The transformation corresponds to a physical translation of the equations
of motion (2.10-2.11) along the center line of the ship for a distance ε (see [52]). In
particular, the supply ship described by the model given in Appendix B has ε ∼= 1.67 [m].
Therefore, without any loss of generality, the vehicle model (2.10-2.11) is transformed to
describe the motion of a point P located rP , [ε, 0, 0]T from the original one. Notice
that rP is given in b and represents a translation along the center line of the vessel. The
translation of the origin of the body fixed frame b to P is done as described in [52] and
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(2.10-2.11) becomes:

ṗ = R(ψ)νr + Vc, (2.18)

MP ν̇r +CP (νr)νr +DP (νr)νr = BPf +w, (2.19)

where MP = HT
3DOFMH3DOF, DP (νr) = HT

3DOFD(νr)H3DOF and BP = HT
3DOFB.

The vectors p and νr in (2.18-2.19) now describe the motion of the point P . This
convention will be used in the following sections and chapters unless diversely specified.
Furthermore, the translation does not change the structure nor the properties of the
inertia, damping and actuator configuration matrices. It is straightforward to show that
the matrices MP and BP are such that:

(MP )−1BPf =


b11

m11
Tu

0

m22b32−m23b22

m22m33−m2
23
Tr

 . (2.20)

Therefore, the influence of the yaw control input Tr has been removed from the sway
dynamics. This makes the model (2.18-2.19) suitable for several control design purposes
and in the following chapters, whenever referring to single matrix elements, they are from
the model in P . Finally, since it is often necessary to expand the transformed model into
its components, the component form control inputs τu and τr are defined and related to
Tu and Tr through the following transformation:τu

τr

 ,

 b11

m11
0

0 m22b32−m23b22

m22m33−m2
23

Tu
Tr

 . (2.21)

Remark 2.2. Notice that (2.21) is well defined as long as M is non-singular.

2.4. A Class of Control Plant Models in 5-DOFs

In this section the class of control plant models in 5-DOFs used in this thesis is defined.
It describes the kinematics and dynamics of underwater vehicles moving in a 3D space,
below the wave affected zone.
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2.4.1. Model Assumptions

Assumption 2.5. The body-fixed coordinate frame b is located along the center-line
of the vessel.

Assumption 2.6. The roll motion is passively stabilized through fins or by gravity
and therefore can be neglected. Hence, the motion of the vehicle is described in 5-DOFs,
that is surge, sway, heave, pitch and yaw.

Assumption 2.7. The vehicle is neutrally buoyant and the center of gravity (CG) and
the center of buoyancy (CB) are located along the same vertical axis in b.

Assumption 2.8. The AUV is xz plane symmetric with a large length-to-width ratio.

Assumption 2.9. The surge mode is decoupled from the other degrees of freedom and
only dominating interconnections between sway and yaw, and between heave and pitch
are considered.

Remark 2.3. Assumptions 2.6, 2.7, 2.8 and 2.9 are common assumptions in maneu-
vering control of slender body AUVs [52]. They also hold for the LAUV and HUGIN
vehicles [25, 40].

Assumption 2.10. The ocean current in the inertial frame i, Vc , [Vx, Vy, Vz]
T , is

constant, irrotational and bounded. Hence, there exists Vmax > 0 such that Vmax ≥√
V 2
x + V 2

y + V 2
z .

2.4.2. The Vehicle Control Model

Following Assumption 2.6 the state of the underwater vehicle is given by the vector
η , [x, y, z, θ, ψ]T which describes the position and the orientation of the AUV with
respect to the inertial frame i. In particular, θ is the vehicle pitch angle and ψ is the
vehicle yaw angle. The vector ν , [u, v, w, q, r]T contains the linear and angular velocities
of the vehicle defined in the body-fixed frame b where u is the surge velocity, v is the sway
velocity, w is the heave velocity, q is the pitch rate and r is the yaw rate. According to
Assumption 2.10 the ocean current is irrotational in i and its velocity in the body frame
b, νc , [uc, vc, wc, 0, 0]T , is obtained from [uc, vc, wc]

T = RT (θ, ψ)Vc where R(θ, ψ) is the
rotation matrix from b to i, defined using the zyx convention [52]. Furthermore, the fact
that V̇c = 0 gives ν̇c = [rvc − qwc,−ruc, quc, 0, 0]T . In marine control problems involving
ocean current it is useful to introduce the relative velocity. The relative velocity is defined
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as the velocity of the vehicle with respect to the flow: νr , ν − νc = [ur, vr, wr, q, r]
T .

The vector νr is defined in b where ur is the relative surge velocity, vr is the relative sway
velocity and wr is the relative heave velocity. The underwater vehicles described by the
following 5-DOF maneuvering model are considered [52]:

η̇ = J(η)νr + [V T
c , 0, 0]T , (2.22)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = Bf . (2.23)

The vector f , [Tu, Tq, Tr]
T is the control input vector, containing the surge thrust (Tu),

the pitch rudder angle (Tq) and the yaw rudder angle (Tr). The dimension of the control
input vector f is two less than the DOFs of the vessel, therefore the model (2.22-2.23) is
underactuated in its configuration space. The term J(η) is the velocity transformation
matrix defined as:

J(η) ,
[
R(θ,ψ) 0

0 T (θ)

]
, (2.24)

where T (θ) , diag(1, 1/ cos(θ)), |θ| 6= π
2
. The matrix M = MT > 0 is the mass and

inertia matrix, and includes hydrodynamic added mass. The matrix C is the Coriolis
and centripetal matrix, D(νr) is the hydrodynamic damping matrix and B ∈ R5×3 is
the actuator configuration matrix. Following Assumption 2.7, the gravity vector in CG
can be written as g(η) , [0, 0, 0, BGzW sin(θ), 0]T , where BGz is the vertical distance
between CG and CB, and W is the weight of the vehicle. For maneuvering control
purposes, the matrices R(θ, ψ), M and B are:

R(θ, ψ) ,

[
cos(ψ) cos(θ) − sin(ψ) cos(ψ) sin(θ)
sin(ψ) cos(θ) cos(ψ) sin(ψ) sin(θ)
− sin(θ) 0 cos(θ)

]
,

M ,

[m11 0 0 0 0
0 m22 0 0 m25
0 0 m33 m34 0
0 0 m34 m44 0
0 m25 0 0 m55

]
, B ,

 b11 0 0
0 0 b23
0 b32 0
0 b42 0
0 0 b53

 . (2.25)

The particular structure of M is justified by Assumptions 2.5-2.8. The actuator configu-
ration matrix B has full column rank and maps the control inputs Tu, Tq and Tr into
forces and moments acting on the vessel. The Coriolis and centripetal matrix C can be
parametrized as described in [52]:

C(νr) ,

[ 0 0 0 m33wr+m34q −m22vr−m25r
0 0 0 0 m11ur
0 0 0 −m11ur 0

−m33wr−m34q 0 m11ur 0 0
m22vr+m25r −m11ur 0 0 0

]
. (2.26)
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The damping term D(νr) is here left undefined and its specification is considered case
by case in the following chapters of the dissertation.

Remark 2.4. In the model (2.22-2.23) the environmental load vector w is not present.
The dynamic disturbance w is neglected since the model describes the motion of underwa-
ter vehicles under the sea surface, below the wave affected zone where heading dependent
dynamic disturbances are not significant for the path following control purposes addressed
in this dissertation. Therefore, the effects of the disturbances are assumed to be modeled
by the constant and irrotational ocean current Vc [52, 51].

2.4.3. Translation of the Equations of Motion

In the model (2.22-2.23) the pitch and yaw controls, Tq and Tr, influence not only the
pitch and yaw dynamics but also the underactuated heave and sway dynamics. This
complicates the controller design and the subsequent stability analysis. To overcome
the problem, it is useful to transform the model into a cascaded form using coordinate
transformations as done in [25] for a similar 3D case and in [59] for a surface vessel. In
this paper the transformation is redefined as a translation of the equations of motion.

In [25] it is shown that the following transformation removes the effect of the yaw
and pitch controls on the heave and sway motion:

ūr = ur, v̄r = vr + ε1r, w̄r = wr + ε2q, q̄ = q, r̄ = r. (2.27)

The transformed velocity vector is ν̄ , [ūr, v̄r, w̄r, q̄, r̄]
T while ε1 and ε2 are constants

given by:

ε1 , −
m55b23 −m25b53

m22b53 −m25b23

, ε2 , −
m44b32 −m34b42

m33b42 −m34b32

. (2.28)

Notice that ε1 and ε2 are well defined as long as the system is controllable in pitch and
yaw. It is straightforward to define the corresponding transformation matrix H5DOF such
that νr = H5DOFν̄r:

H5DOF ,

[
1 0 0 0 0
0 1 0 0 −ε1
0 0 1 −ε2 0
0 0 0 1 0
0 0 0 0 1

]
. (2.29)
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The linear transformation is invertible since all the diagonal elements of H5DOF are
nonzero. It is interesting to notice that, if ε1 = −ε2 the transformation corresponds to a
physical translation of the equations of motion (2.22-2.23) along the center line of the
ship for a distance ε , ε1 (see [52]). From (2.28) it is straightforward to verify that if
m22 = m33, m44 = m55, m25 = −m34, b23 = −b32 and b42 = b53 then ε1 = −ε2. These
conditions are easily fulfilled by AUVs of cylindrical shape which employ similar types of
steering and diving control surfaces. In fact, it can be seen that both the maneuvering
models of the HUGIN, LAUV and ISiMI vehicles have ε1 = −ε2 (see [23] and [80]). In
particular, the LAUV described by the model given in Appendix B has ε ∼= 0.14 [m].
Therefore, without any loss of generality, the vehicle model (2.22-2.23) is transformed to
describe the motion of a point P located rP , [ε, 0, 0]T from the original one. Notice
that rP is given in b and represents a translation along the center line of the vessel. The
translation of the origin of the body fixed frame b to P is done as described in [52] and
(2.22-2.23) becomes:

η̇ = J(η)νr + [V T
c , 0, 0]T , (2.30)

MP ν̇r +CP (νr)νr +DP (νr)νr + gP (η) = BPf . (2.31)

where MP = HT
5DOFMH5DOF, DP (νr) = HT

5DOFD(νr)H5DOF, gP (η) = HT
5DOFg(η)

and BP = HT
5DOFB. The vectors η and νr in (2.30-2.31) now describe the motion

of the point P . This convention will be used in the following sections and chapters
unless diversely specified. Furthermore, the translation does not change the structure
nor the properties of the inertia, damping and actuator configuration matrices. It is
straightforward to show that MP and BP are such that:

(MP )−1BPf =



b11

m11
Tu

0

0

m33b42−m34b32

m33m44−m2
34
Tq

m22b53−m25b23

m22m55−m2
25
Tr


. (2.32)

Therefore, the influence of the pitch and yaw control inputs Tq and Tr has been removed
from the heave and sway dynamics. This makes the model (2.30-2.31) suitable for
several control design purposes and in the following chapters, whenever referring to single
matrix elements, they are from the model in P . Finally, since it is often necessary to
expand the transformed model into its components, the component form control inputs
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τu, τq and τr are defined and related to Tu, Tq and Tr through the following well-defined
transformation: 

τu

τq

τr

 ,


b11

m11
0 0

0 m33b42−m34b32

m33m44−m2
34

0

0 0 m22b53−m25b23

m22m55−m2
25



Tu

Tq

Tr

 . (2.33)
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Chapter 3.

A Kinematic Approach to the ILOS
Guidance for Surface Vessels

“Fear is the master only to those who do not dare.”
— Franc Knez, Alpinist

In this chapter the Integral Line-of-Sight (ILOS) guidance is presented and applied to
a simple kinematic model of a surface vessels. In particular, the ILOS guidance for
planar motion is introduced and it is shown, using simple and intuitive mathematical
tools, that current compensation for underactuated surface vessels reduces to a pure
vectorial sum and has one possible solution that identifies the only heading the ship
can hold to compensate for the drift. As done in [10], the relative velocity of the vessel
is kept constant and compensation is achieved through side-slipping. It is proved that
path following of straight lines is obtained. It is furthermore shown that the integral
LOS guidance law executes the sum needed to compensate for the drift, between the
relative velocity vector of the vehicle and the unknown ocean current velocity vector.
This provides a useful practical explanation of the role that the integral term plays in
the guidance law. Moreover, given the underactuated nature of the vehicles, the LOS
guidance law is interpreted as a decoupling tool between the actuated dynamics and the
underactuated dynamics. Therefore, as a first approximation, the control problem can
be considered at the kinematic level only. This approach is similar to [3, 71] where the
well known unicycle model is used, or to [100] where steering of miniature air vehicles is
considered. This procedure, despite its simplicity, represents a valuable first step design
tool for integral LOS guidance schemes applied to underactuated marine vehicles. Finally,
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stability of the closed loop kinematic system is analyzed and simulation results using a
mathematical model of an offshore supply vessel are presented.

The objective of this chapter is to give practical and intuitive insights of the LOS/ILOS
guidance law, and at the same time it introduces elements of mathematical analysis that
are used and extended throughout this dissertation. This chapter is organized as follows:
in Section 3.1 the current compensation problem for underactuated surface vessels is
formulated and discussed, in Section 3.2 the integral LOS guidance law is introduced and
in Section 3.3 the stability of the closed loop kinematic system is addressed. Finally, data
from simulations are presented in Section 3.4 and conclusions are given in Section 3.5.
The results presented in this chapter are based on [35, 36, 14].

3.1. Sea Current Compensation

In this section the current compensation problem for underactuated surface vessels is
formulated. Some basic assumptions are first introduced, followed by the description of
the notation used in this chapter. The path following control task is then defined and
finally the description of the current compensation problem as a vectorial sum is given.

3.1.1. Basic Assumptions and Notation

Assumption 3.1. The motion of the vessel is described of 3 degrees of freedom (DOF):
surge, sway and yaw.

Remark 3.1. Assumption 3.1 is a common assumption in manoeuvring control of
surface vessels [52].

Assumption 3.2. The vessel is underactuated in its configuration space: there is no
actuation in sway while control inputs are available in surge and yaw.

Remark 3.2. Assumption 3.2 is justified by the fact that most of surface vessels are
equipped with a propeller and aft rudders only, making them underactuated in sway.

Assumption 3.3. The ocean current is defined in the inertial frame i and assumed
constant, unknown, irrotational and bounded. Hence Vc , [Vx, Vy]

T and there exists
Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

40



3.1 Sea Current Compensation

Following Assumption 3.1, the system state is given by the vector η , [x, y, ψ]T and
describes the position and the orientation of the vessel with respect to the inertial frame
i. In particular ψ is the yaw angle of the vessel. The vector ν , [u, v, r]T contains the
linear and angular velocities defined in the body-fixed frame b, where u is the surge
velocity, v is the sway velocity and r is the yaw rate. The ocean current linear velocity
in the body frame b, νc , [uc, vc, 0]T , is obtained from νc = RT (ψ)[V T

c , 0]T where R(ψ)

is the rotation matrix from b to i:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (3.1)

According to Assumption 3.3 the ocean current is constant and irrotational in i, i.e.
V̇c = 0, therefore ν̇c = [rvc,−ruc, 0]T . In navigation problems involving ocean currents it
is useful to introduce the relative velocity and [52] defines the relative velocity as the
velocity of the vessel with respect to the flow. Given the vector:

U ,
[
ẋ
ẏ

]
=
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
[ uv ] , (3.2)

representing the linear velocity of the vessel in the inertial frame i, the linear relative
velocity Ur in i is:

Ur , U − Vc. (3.3)

Following (3.3), νr , ν − νc = [ur, vr, r]
T is the relative velocity of the vessel in b. There-

fore, Ur can be expressed as:

Ur =
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
[ urvr ] . (3.4)

After introducing the concept of relative velocity, it is possible to add the following
assumption:

Assumption 3.4. To prevent the vessel from drifting away, the desired constant relative
surge velocity Urd has to be strictly greater than the ocean current intensity: Urd > Vmax.

3.1.2. The Path Following Control Problem

The control system should make the vessel follow a given straight line P and maintain a
desired constant surge relative velocity Urd > 0. This should also hold in the presence
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of an unknown and constant ocean currents. To simplify the problem without any loss
of generality since coordinates can always be rotated given a desired direction in the
plane, the inertial reference frame i is placed such that the x-axis is aligned with the
desired path P , {(x, y) ∈ R2 : y = 0} as shown in Figures 3.1. The y coordinate then
corresponds to the cross-track error and the goals the control system should pursue are
formalized as follows:

lim
t→∞

y(t) = 0, (3.5)

lim
t→∞

ψ(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (3.6)

lim
t→∞

ur(t) = Urd, (3.7)

where ur(t) is the surge relative speed of the vessel and ψss is a constant. Note that
the ψ(t) is not required to converge to zero but rather to a steady-state constant value
bounded within −π

2
and π

2
. This allows the ship to hold a non-zero yaw angle at

equilibrium, and compensate for the ocean current as shown in Figure 3.1. This is
necessary because the vessel is underactuated and no control forces are available in sway
to counteract the drift. The value of ψss will be specified later.

3.1.3. Relative Velocity and Current Compensation

In the following paragraphs it is shown how simple mathematical considerations con-
clude that there is only one possible angle ψss the vehicle can hold to achieve current
compensation.

Since there is no actuation in sway, it is not possible to have at the same time zero
cross track errors as well as zero yaw angle. A non-zero ψss angles is needed to use
part of the vessel surge thrust for current compensation. Therefore, the control system
has to find the constant steady state angle ψss necessary to compensate and make ψ
converge to this. To find the value of ψss consider the desired equilibrium condition
shown in Figure 3.1 and Figure 3.2. Notice that at equilibrium the control objective
(3.7) is considered achieved and vr → 0. Hence, applying (3.4) concludes that

lim
t→∞

Ur(t) = Urd ,
[
Urd cos(ψss)
Urd sin(ψss)

]
, (3.8)

and |Urd| = Urd. In order to make the vessel compensate for the drift and follow the
desired course, the velocity U at equilibrium has to be oriented along the x axis (see
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Figure 3.1):

lim
t→∞

U (t) = Uss , [Uss, 0]T , (3.9)

where Uss > 0. According to (3.3), Uss is the result of the following vectorial sum:

Uss = Urd + Vc. (3.10)

The ocean current vector Vc, despite being unknown, has a well defined magnitude and
direction. The vector Urd is defined only in magnitude since ψss is to be determined while
the vector Uss is defined in direction only. In principle, if the current Vc is known, it is
possible to solve the vectorial equation and calculate the direction ψss of Urd and Uss > 0.
Geometrically, this corresponds at finding the intersections between the x axis and the
circle having radius Urd and center in Vc. The intersection having a positive Uss is chosen.
A real positive solution exists as long as Urd > |Vc| which is guaranteed by Assumption
3.4. This is shown in Figure 3.2. To conclude the analysis, it is possible to affirm that
there exists only one possible heading ψss that guarantees current compensation as long
as Assumption 3.3 is valid. Applying (3.10) leads to the following relation between Urd
and Uss:

Uss =
√
U2
rd − V 2

y + Vx. (3.11)

Furthermore, from (3.10) or, alternatively, from simple geometrical considerations shown
in Figure 3.1 it follows that:

ψss = − tan−1

 Vy√
U2
rd − V 2

y

 . (3.12)

The value (3.12) defines the heading the vehicle has to hold in order to follow the path
P in presence of currents.

Remark 3.3. Notice that in this discussion the current is considered known, therefore
as long as the vessel is underactuated, the heading defined by (3.12) represents the
only possible solution for the controller to solve the current compensation problem,
independently of the implemented technique (adaptive laws, current observers or integral
action). In this case integral action inserted in the LOS guidance law is used to register
the presence of ocean current and correctly set the heading of the vessel.
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x

y

Uss

Vc

Urd

Vy

Vx

ψSS

P

Figure 3.1.: Steady state: the vessel side-slips with a constant angle ψss and follows the path.

P

Vc
Urd

Uss

Figure 3.2.: Graphical solution of the current compensation problem for underactuated surface
vessels.

3.2. The ILOS Reference Generator

In this section the ILOS guidance law from [26, 28] is presented. It is used to set the
desired heading angle and make the vessel follow the x-axis. Furthermore, the ILOS
guidance is interpreted as a decoupling tool between the kinematics and the kinetics of
the system.
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3.2.1. The Path Following Strategy

In order to solve the objective (3.5) of the the path following control problem, the marine
vehicle has to converge to and follow the x-axis of the inertial frame i. To achieve the
goal, the traditional LOS guidance reference generator used by [24] (see Figure 3.3) would
set the vessel heading to:

ψLOS , − tan−1
( y

∆

)
. (3.13)

The design parameter ∆ > 0 is the look-ahead distance. Convergence is however not
guaranteed if there are ocean currents acting on the vessel since (3.13) does not allow
the vessel to side-slip once it has converged to P . To solve the problem, integral action
is introduced in the heading reference. Hence, the integral LOS guidance law is defined
as (see Figure 3.4):

ψILOS , − tan−1

(
y + σyint

∆

)
, (3.14a)

ẏint =
∆y

(y + σyint)2 + ∆2
. (3.14b)

The gains ∆ > 0 and σ > 0 are design parameters. The integral effects give nonzero LOS
angle (3.14a), allowing the vessel to side-slip while staying on the desired path, so part of
its relative forward velocity can counteract the effect of the ocean current. The integration
law (3.14b) was first introduced by [26] and is chosen to give less integral action when
the vessel is far from the desired path and thereby reduce the risk of integrator wind-up
effects.

x

y

P

ψ LOS

Δ

Figure 3.3.: Line of sight guidance for an underactuated surface vessel.
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ψ ILOS

x

y

P

 
σ y i n t

∆

ψ ss

Current

Figure 3.4.: Integral line of sight guidance for an underactuated surface vessel. At steady
state the nonzero angle ψss allows the underactuated vessel to counteract the
disturbances.

3.2.2. Line-of-Sight and Underactuation

In this subsection the LOS guidance is revisited and interpreted as a decoupling element
between the actuated surge and yaw dynamics and the underactuated sway dynamics,
yielding a pure kinematic problem.

The line of sight guidance is simple and intuitive: it imitates a helmsman steering
the vessel toward a point lying at a constant distance ahead of the ship along the desired
path. It is a method that has been used in practice for a long time and is part of everyone
daily life since it is implicitly used for instance when driving a car or riding a bicycle.
The important feature that ships, cars and bicycles have in common and which makes
this a good strategy, is that they are all underactuated systems. For most of the tasks
these systems are requested to perform (such as path following) it is important to have
as small as possible sway movements. The Line-of-Sight guidance is meant to avoid sway
motion: the further ahead the helmsman looks, the smoother the turn and the less the
not actuated sway dynamics are affected.

This intuitive argument can be explained mathematically by analyzing the work done
in [24] where the traditional LOS guidance is used for straight line path following of
surface vessels. The underactuated sway dynamics of the ship in [24, Equation (27)] are
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given by:

˙̄v =
X(uc)uc∆

(e2 + ∆2)3/2
e+

(
Y (uc)−

X(uc)∆
2

(e2 + ∆2)3/2

)
v̄ +

[
−X(uc + ũ)∆

e2 + ∆2
hTe + hTv̄

]
ξ, (3.15)

where the functions X(·) and Y (·) are bounded for bounded arguments and uc is the
desired surge velocity. The function Y (·) is assumed to be negative for all the values
of uc. The vector ξ converges to zero exponentially and represents the dynamics of the
speed and heading controllers. The state variables e and v̄ are the cross track error
and the sway velocity of the ship respectively. Finally, notice that ∆ is the look-ahead
distance of the two-dimensional LOS algorithm. Two facts can be noticed by carefully
analyzing (3.15): first, the faster the speed and heading controllers, the faster the term
proportional to ξ vanishes. Second, the longer the look-ahead distance ∆, the less the
coupling terms in (3.15) count. This is justified by the fact that the coupling coefficients
dependent on e tend to zero if ∆ approaches infinity. Thus, setting a large ∆ and having
fast speed and heading controllers, ideally decouples the sway dynamics from the rest
and the fact that Y (·) is negative guarantees v̄ → 0. In other words, as explained before,
the further ahead the LOS guidance law looks, the smoother the turn. Similar arguments
can be easily generalized to [26] and [25] where the LOS algorithm is applied to AUVs.
Therefore, the following key assumptions can be introduced:

Assumption 3.5. The underactuated vessel has internal controllers setting the desired
relative surge velocity and the desired yaw angle.

Assumption 3.6. The internal controllers are assumed to be fast compared to the
guidance law: the delay between the time the references are given by the guidance
law and the time they are actually set by the controllers is small enough not to affect
significantly the guidance dynamics.

Remark 3.4. Note that Assumptions 3.5 and 3.6 are often used implicitly when
designing guidance laws for unmanned vehicles [20].

Assumption 3.7. The look-ahead distance ∆ is assumed big enough so that the control
surfaces do not affect significantly the sway dynamics. Therefore vr ≈ 0.

Remark 3.5. Applying Assumptions 3.5-3.7 leads to a pure kinematic problem: As-
sumptions 3.5 and 3.6 guarantee that the reference ILOS angle (3.14a) is followed and
that the relative surge velocity ur is set to Urd while Assumption 3.7 states that the
unactuated sway dynamics can be neglected.
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Remark 3.6. In [3, 71, 100] several two dimensional underactuated control problems
are addressed as kinematic problems and the control laws are derived from the closed
loop Lyapunov analysis.

Remark 3.7. It is hard to tell quantitatively how fast the internal speed and attitude
controllers must be and how long the look-ahead distance ∆ must be so that Assumptions
3.5-3.7 are realistic. This depends on the vessel physical characteristics. Therefore, a
good model of the vessel and careful simulations play a key role in this approach.

Following Assumption 3.3, Assumptions 3.5-3.7 and (3.3-3.4) the kinematic system can
be written as:

ẋ = Urd cos(ψd) + Vx, (3.16)

ẏ = Urd sin(ψd) + Vy. (3.17)

where ψd , ψILOS is control input and hence the integral LOS (3.14) closes the loop.

Remark 3.8. Notice that this procedure is applicable in principle to any underactuated
vessel since no dynamic model is needed.

3.3. Stability of the Closed Loop Kinematic System

Theorem 3.1. Given a USV whose kinematics are defined by (3.16-3.17), if Assumptions
3.3-3.4 hold and if the gain σ satisfies:

0 < σ < Urd − Vmax, (3.18)

then the guidance law (3.14) achieves (3.5-3.6). The reference signal ψd is defined by
(3.14) and the control objective (3.6) is fulfilled with ψss given in (3.12).

Proof. The dynamics of the cross track error y are analyzed first. The y subsystem is
obtained from (3.17) and (3.14b):

ẏint =
∆y

(y + σint)
2 + ∆2

, (3.19)

ẏ = Urd sin(ψd) + Vy. (3.20)
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Substituting (3.14a) for ψd gives sin(ψd) = −(y + σyint)/
√

(y + σint)2 + ∆2 and leads
(3.19-3.20) to the following expression of the yint − y dynamics:

ẏint =
∆y

(y + σyint)
2 + ∆2

, (3.21)

ẏ = −Urd
y + σyint√

(y + σyint)2 + ∆2
+ Vy. (3.22)

The equilibrium point of the system (3.20-3.19) is given by:

yeq
int =

∆

σ

Vy√
U2
rd − V 2

y

, yeq = 0. (3.23)

A new set of variables is introduced to move the equilibrium point to the origin:

e1 , yint − yeq
int, e2 , y + σe1. (3.24)

The transformed y dynamics become:

ė1 = − ∆σe1

(e2 + σyeq
int)

2 + ∆2
+

∆e2

(e2 + σyeq
int)

2 + ∆2
, (3.25)

ė2 = −
[
Urd

√
(e2 + σyeq

int)
2 + ∆2 − σ∆

]
e2

(e2 + σyeq
int)

2 + ∆2

− ∆σ2e1

(e2 + σyeq
int)

2 + ∆2
+ Vyf(e2),

(3.26)

where:

f(e2) = 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

. (3.27)

The following bound holds for f(e2):

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

. (3.28)

One can prove that (3.28) holds by squaring both sides of the inequality two consecutive
times. Consider the quadratic Lyapunov function candidate:

V =
σ2

2
e2

1 +
1

2
e2

2. (3.29)
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The time-derivative of V is:

V̇ = −
[
− σ∆ + Urd

√
(e2 + σyeq

int)
2 + ∆2

]
e2

2

(e2 + σyeq
int)

2 + ∆2

− σ3∆

(e2 + σyeq
int)

2 + ∆2
e2

1 + Vyf(e2)e2.

(3.30)

The variables ē1 , e1/
√

(e2 + σyeq
int)

2 + ∆2 and ē2 , e2/
√

(e2 + σyeq
int)

2 + ∆2 are de-
fined to simplify the expression (3.30). This notation together with Assumption 3.3,
min{

√
(e2 + σyeq

int)
2 + ∆2} = ∆ and the inequality (3.28) yields the following bound:

V̇ ≤ −σ3∆|ē1|2 −∆(Urd − Vmax − σ)|ē2|2 , −W. (3.31)

It is straight forward to show that Assumption 3.4 and (3.18) guarantee positive definite-
ness of W . Hence, according to standard Lyapunov arguments, the system (3.20-3.19) is
uniformly globally asymptotically stable (UGAS). Yet, the inequalityW ≥ λ̄1|ē1|2+λ̄2|ē2|2

holds in a neighborhood of the origin for some constants λ̄1, λ̄2 > 0 and thus in any ball
Br , {|e2| ≤ r}, r > 0 the function W can be estimated as W ≥ λ1|e1|2 + λ2|e2|2 where
λi = λ̄i/((r + σyeq

int)
2 + ∆2), i = 1, 2. This, together with the fact that V is a quadratic

function of e1, and e2, concludes that (3.20-3.19) is also uniformly exponentially stable,
ULES [82].

To conclude, under the conditions of Theorem 3.1 the equilibrium point (y, yint) =

(0, yeq
int) of the system (3.20-3.19) is UGAS and ULES. Therefore, the control objectives

(3.5-3.6 with exponential converging properties in any ball of initial conditions.

Remark 3.9. Notice that the value yeq
int makes sure that at equilibrium the vessel

holds the heading ψss defined in (3.12)) which is, as explained in Section 3.1, the only
possible heading that guarantees successful current compensation for underactuated
surface vessels.

Remark 3.10. The analysis above gives well defined bounds upon the integral gain σ
but it does not provide any criteria for how to choose the look-ahead distance ∆.

3.4. Simulations

In this section results from numerical simulation are presented. In particular, the
developed control strategy is applied to an offshore supply vessel. The model of the vessel
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is given in Section B.1 of Appendix B. The objective is to make the vessel follow the
path P with a desired surge relative speed Urd = 4 [m/s]. The maximum intensity of the
unknown current is Vmax = 1 [m/s] (the true value is Vx = 0.28 [m/s], Vy = −0.86 [m/s]).
Thus, Assumptions 3.3 and 3.4 are fulfilled. The chosen values for the guidance law
integral gain is σ = 1 [m/s] and satisfies (3.18). The internal speed and yaw controllers
employed are of the feedback linearization type but other strategies can be used, such
as PID or sliding mode. They make the vessel follow the desired references. The ship
is given an initial cross track error of 1500 [m] and it has initially zero relative velocity,
with the surge axis parallel to the desired path.

The length of the supply vessel has been set as a reference to choose the look-ahead
distance ∆ (the ship is approximately 80 [m] long). As shown in Figures 3.5a-3.5c, if
look-ahead distances close to the the vessels length are chosen, the behavior of the ship
becomes unstable and path convergence is hardly achieved. Clearly, in this situation
Assumptions 3.5-3.7 are not valid anymore. However, higher values of ∆ make the vessel
converge smoothly. Figures 3.5d-3.5e show that the speed and heading controllers make
sure that the references Urd and ψd are followed fast enough so that Assumption 3.5 is
satisfied. Finally, notice how the angle ψ(t) converges smoothly to the expected value
ψss ≈ 12.3 [deg], confirming what argued in Section 3.1.

3.5. Conclusions

In this chapter the ILOS guidance approach has been presented and applied to a simple
kinematic model of surface vessels. An intuitive approach has been followed to make the
reader understand the problem of disturbance compensation for underactuated marine
vessels. In particular, constant irrotational ocean currents have been considered and
it has been shown that the problem has one possible solution only. The integral LOS
guidance is used to achieve side-slipping and compensate for the current where the
closed loop system has been analyzed as a pure nonlinear kinematic problem. The
analysis reveals UGAS as well as ULES stability properties and explicit conditions upon
the choice of the integral gain σ are derived. Furthermore, it should be clear at this
point that the choosing criteria upon the look-ahead distance ∆ that are derived in the
following chapters of this dissertation, will be inevitably affected by the properties of
the underactuated sway dynamics of the vessel. This is suggested by the discussion of
Section 3.2 and the simulation results of Section 3.4.
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(a) Simulation of path following for different values of ∆.
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(b) Cross track error y(t) for different values of ∆.
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(c) Relative sway velocity vr(t) for different values of ∆.
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Figure 3.5.: Simulation results.
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Chapter 4.

A Kinematic Approach to the ILOS
Guidance for Underwater Vehicles

“There is only one way to avoid criticism: do nothing, say nothing, and
be nothing.”

— Aristotle, Philosopher

In Chapter 3 a two dimensional Integral Line-of-Sight (ILOS) guidance law was applied
to a simple kinematic model of a surface vessel. A discussion involving intuitive as well
as practical aspects of the ILOS law was also given. In this chapter a three dimensional
version of the same ILOS guidance system is presented and applied to a kinematic model
of underactuated underwater vehicles. Path following of straight lines is considered
and the explanation follows along the lines of Chapter 3. In particular, it is shown
that current compensation for underactuated underwater vehicle reduces to a three
dimensional vectorial sum that has exactly one possible solution. This solution identifies
the only attitude the vehicle can hold to compensate for the drift, thus extending to 3D
the concepts developed the in previous chapter for the planar motion case. Again, the
relative velocity of the vessel is kept constant and compensation is achieved using the
control surfaces only. The decoupling properties between the actuated dynamics and
the underactuated dynamics of the LOS guidance scheme described in Chapter 3 are
repeated and extended to the underactuated heave dynamics as well. Therefore, as a
first approximation, the control problem is addressed at the kinematic level only. Similar
kinematic approaches to solve guidance, control and ranging problems of underactuated
underwater vehicles are found in [5, 73, 8], while autonomous aircraft are described with
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3D kinematic models in [120] to develop collision avoidance strategies. Hence, a kinematic
analysis represents a valuable design tool for integral LOS guidance schemes applied to
underactuated marine vehicles as well. Finally, stability of the closed loop kinematic
system is successfully analyzed and simulation results using a mathematical model of the
HUGIN underactuated autonomous underwater vehicle (AUV) are presented.

The closed loop system analyzed in this chapter is the first example of a cascaded
control problem solved in this thesis. It therefore represents a significant case despite its
simplicity since the same concepts will be applied in far more complex cases addressed
in this dissertation. This chapter is organized as follows: in Section 4.1 the current
compensation problem for underactuated underwater vehicles is formulated and discussed,
in Section 4.2 the 3D integral LOS guidance law is introduced and in Section 4.3 stability
of the closed loop kinematic system is addressed. Finally, data from simulations are
presented in Section 4.4 and conclusions are given in Section 4.5. The results presented
in this chapter are based on [35].

4.1. Sea Current Compensation for Underwater

Vehicles

In this section the path following control task is defined and the current compensation
problem is described as a vectorial sum.

4.1.1. Basic Assumptions and Notation

Assumption 4.1. The roll motion of the vessel is assumed passively stabilized through
fins or by gravity and therefore can be neglected limiting the analysis to a configuration
space of 5 degrees of freedom: surge, sway, heave, pitch and yaw.

Remark 4.1. Assumption 4.1 is a common assumption in manoeuvring control of
slender body underwater vehicles, see [52].

Assumption 4.2. The vehicle is underactuated in its configuration space: there is no
actuation in sway and heave while control inputs are available in surge, pitch and yaw.

Remark 4.2. Most of underwater vehicles are equipped with a propeller as well as
pitch and yaw rudders only, making them underactuated in sway and heave.
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Assumption 4.3. The ocean current in the inertial frame i, Vc , [Vx, Vy, Vz]
T is

constant, irrotational and bounded. Hence there exists Vmax > 0 such that Vmax ≥√
V 2
x + V 2

y + V 2
z .

Since roll motion is neglected (see Assumption 4.1), the system state is given by the
vector η , [x, y, z, θ, ψ]T and describes the position and the orientation of the vehicle
with respect to the inertial frame i. In particular, θ is the vehicle pitch angle and ψ is the
vehicle yaw angle. The vector ν , [u, v, w, q, r]T contains the linear and angular velocities
defined in the body-fixed frame b, where u is the surge velocity, v is the sway velocity, w
is the heave velocity, q is the pitch rate and r is the yaw rate. The ocean current linear
velocity in the body frame b, vc , [uc, vc, wc]

T , is obtained from vc = RT (θ, ψ)Vc where
R(θ, ψ) is the rotation matrix from b to i:

R(θ, ψ) ,

[
cos(ψ) cos(θ) − sin(ψ) cos(ψ) sin(θ)
sin(ψ) cos(θ) cos(ψ) sin(ψ) sin(θ)
− sin(θ) 0 cos(θ)

]
. (4.1)

According to Assumption 4.3 the ocean current is constant and irrotational in i, i.e.
V̇c = 0, therefore the current velocity in b becomes νc , [uc, vc, wc, 0, 0]T and thus
ν̇c = [rvc − qwc,−ruc, quc, 0, 0]T . In navigation problems involving ocean currents it
is useful to introduce the relative velocity and [52] defines the relative velocity as the
velocity of the vehicle with respect to the flow. Given the vector:

U ,
[
ẋ
ẏ
ż

]
= R(θ, ψ)

[
u
v
w

]
, (4.2)

representing the linear velocity of the vehicle in the inertial frame i, the linear relative
velocity Ur in i is:

Ur , U − Vc. (4.3)

Following (4.3), νr , ν − νc = [ur, vr, wr, q, r]
T is the relative velocity of the vessel in b.

Therefore, Ur can be expressed as:

Ur = R(θ, ψ)[ur, vr, wr]
T . (4.4)

To prevent the vehicle from drifting away, the relative surge velocity has to satisfy the
following assumption:

Assumption 4.4. Urd > 2Vmax.
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x

z
y

PCurrent

θ
ψ

Figure 4.1.: The underactuated vehicle has to converge and follow the x axis.

4.1.2. The Path Following Control Problem

The control system should make the vehicle follow a given straight line P in space and
maintain a desired constant surge relative velocity Urd > 0. This should also hold in the
presence of an unknown and constant ocean current Vc = [Vx, Vy, Vz]

T . To simplify the
problem without any loss of generality since coordinates can always be rotated given a
desired direction in space, the inertial reference frame i is placed such that the z-axis
points down and the x-axis is aligned with the desired path P (see Figure 4.1), giving
P , {(x, y, z) ∈ R3 : y = 0, z = 0}. The y and z coordinates then correspond to the
horizontal and vertical cross-track errors and the goals of the control system become:

lim
t→∞

y(t) = 0, (4.5)

lim
t→∞

z(t) = 0, (4.6)

lim
t→∞

ψ(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (4.7)

lim
t→∞

θ(t) = θss, θss ∈
(
−π

2
,
π

2

)
, (4.8)

lim
t→∞

ur(t) = Urd, (4.9)

where ur(t) is the surge relative speed of the vehicle and θss as well as ψss are constants.
Notice that the angles ψ(t) and θ(t) are not required to converge to zero but rather to
steady-state constant values bounded within −π

2
and π

2
. This allows the vehicle to hold

non-zero yaw and pitch angles at equilibrium, and compensate for the ocean current
as shown in Figure 4.2. This is necessary because the vehicle is underactuated and no
control forces are available in sway and heave to counteract the drift. The values of ψss
and θss will be specified later.
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x

z y

ψSSθSS P

Current

Figure 4.2.: Steady state condition: the vehicle side-slips and pitches with constant ψss and
θss angles to compensate for the current.
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-Vc
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-Vz

-Vy

ψSS

θSS P

Figure 4.3.: Graphical solution of the current compensation problem for underactuated marine
vehicles in 3D. The angles θss and ψss are given by (4.14) and (4.15).

4.1.3. Relative Velocity and Current Compensation

In the following paragraphs it is shown how simple mathematical considerations conclude
that there is only one possible attitude (θss, ψss) the vehicle can hold to achieve current
compensation. Since there is no actuation in sway and heave, it is not possible to have at
the same time zero cross track errors as well as zero pitch and yaw angles. Non-zero ψss
and θss angles are needed to use part of the vehicle’s surge thrust for current compensation.
Therefore, the control system has to find the constant steady state angles ψss and θss
necessary to compensate and make θ and ψ converge to these. To find the values of ψss
and θss consider the desired equilibrium condition shown in Figure 4.2 and Figure 4.3.
Notice that at equilibrium the control objective (4.9) is considered achieved and vr → 0

as well as wr → 0. Hence, applying (4.4) concludes that |Urd| = Urd and that:
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lim
t→∞

Ur(t) = Urd , R(θss, ψss)[Urd, 0, 0]T , (4.10)

In order to make the vessel compensate for the drift and follow the desired course, the
velocity U at equilibrium has to be oriented along the x axis (see Figure 4.3):

lim
t→∞

U(t) = Uss , [Uss, 0, 0]T , (4.11)

where Uss > 0. According to (4.3), Uss is the result of the following vectorial sum:

Uss = Urd + Vc. (4.12)

The ocean current vector Vc, despite being unknown, is fully defined in magnitude and
direction. The vector Urd is defined in magnitude only since (θss, ψss) is to be determined,
while the vector Uss is defined in direction only. In principle, if the current Vc is known, it
is possible to solve the vectorial equation and calculate the direction of Urd and Uss > 0.
Geometrically, this corresponds at finding the intersections between the x axis and the
sphere having radius Urd and center in Vc. The intersection having a positive Uss is
chosen. A real positive solution exists as long as Urd > |Vc| which is guaranteed by
Assumption 4.4. This is shown in two dimensions in Figure 4.4, where the space (see
Figure 4.3) is cut along the plane defined by the x axis and Vc. To conclude the analysis,
it is possible to affirm that there exists only one possible vehicle attitude (θss, ψss) that
satisfies (4.11) and guarantees current compensation as long as Assumption 4.4 is valid.
Applying (4.12) leads to the following relation between Urd and Uss:

Uss =
√
U2
rd − V 2

y − V 2
z + Vx. (4.13)

From simple geometrical considerations shown in Figure 4.3 it follows that:

θss = tan−1

(
Vz√

U2
rd − V 2

z

)
, (4.14)

ψss = − tan−1

 Vy√
U2
rd − V 2

z − V 2
y

 . (4.15)

The values (4.14) and (4.15) define the attitude the vehicle has to hold in order to follow
the path P in presence of currents. From (4.14) it follows that Assumption 4.4 guarantees
also robustness with respect to singularities at π

2
and −π

2
in pitch.
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P

Vc Urd

Uss

Figure 4.4.: Graphical solution of the current compensation problem for underactuated marine
vehicles on the x− Vc plane.

Remark 4.3. Notice that in this discussion the current is considered known, therefore
as long as the vehicle is underactuated, the attitude defined by (4.14) and (4.15) represents
the only possible solution for the controller to solve the current compensation problem,
independently of the implemented technique (adaptive laws, current observers or integral
action). In this paper integral action inserted in the LOS guidance law is used to
register the presence of ocean current and choose the attitude of the vehicle to precisely
compensate for this.

4.2. The Integral LOS Guidance Law

This section presents the guidance strategy applied to solve the path following problem
defined in Section 4.1. The ILOS guidance from Chapter 4 is extended to 3D and is
interpreted as a decoupling tool between the kinematics and the kinetics of the system
as a consequence of the arguments given in Section 3.2.

4.2.1. The Path Following Strategy

In order to solve the objectives (4.5-4.6) of the the path following control problem, the
underwater vehicle has to converge to and follow the x-axis of the inertial frame i. To
achieve the goal, the traditional LOS guidance reference generator used by [25] (see
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Figure 4.5) would set the vessel heading and pitch angles to:

θLOS , tan−1

(
z

∆z

)
, ∆z > 0, (4.16a)

ψLOS , − tan−1

(
y

∆y

)
, ∆y > 0. (4.16b)

The design parameters ∆z and ∆y are the look-ahead distances in the vertical plane
and horizontal plane, respectively. Convergence is however not guaranteed if there are
ocean currents acting on the vehicle since (4.16a) and (4.16b) do not allow the vessel to
side-slip and pitch once it has converged to P. To solve the problem, integral action is
introduced in both the heading and pitch references, defining the integral LOS guidance:

θILOS , tan−1

(
z + σzzint

∆z

)
, (4.17a)

żint =
∆zz

(z + σzzint)2 + ∆2
z

, (4.17b)

ψILOS , − tan−1

(
y + σyyint

∆y

)
, (4.17c)

ẏint =
∆yy

(y + σyyint)2 + ∆2
y

. (4.17d)

The look-ahead distances ∆y,∆z > 0 and the gains σy, σz > 0 are design parameters.
The integral effects give nonzero LOS angles (4.17a) and (4.17c), allowing the vessel
to side-slip and pitch while staying on the desired path, so part of its relative forward
velocity can counteract the effect of the ocean current. The integration laws (4.17b) and

x

z

y
ψLOS

θLOS

Δ
P

Figure 4.5.: Line of sight guidance for an underactuated underwater vehicle with ∆y = ∆z =
∆.
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(4.17d) were first introduced by [26] and are chosen to give less integral action when the
vehicle is far from the desired path and thereby reduce the risk of wind-up effects.

4.2.2. 3D Line-of-Sight and Underactuation

The decoupling properties of the LOS guidance law between the actuated and underactu-
ated dynamics of the vehicle are discussed in Section 3.2 for surface vessels. The same
arguments applies to the 3D LOS introduced in [25]. This can be shown by analyzing
the closed loop underactuated heave and sway dynamics of the AUV vehicle given in [25,
Equation (34)] and [25, Equation (47)], respectively. The heave dynamics are considered
first:

˙̄w =

(
−Xw̄(uc)uc∆z

(e2
z + ∆2

z)
3/2

+
Zw̄√
e2
z + ∆2

z

)
ez +

(
Yw̄(uc) +

Xw̄(uc)∆
2
z

(e2
z + ∆2

z)
3/2

)
w̄

+

[
Xw̄(uc + ũ)

∆z

e2
z + ∆2

z

hTez + hTw̄

]
ξ,

(4.18)

where the functions Xw̄(·) and Yw̄(·) are bounded for bounded arguments and uc is the
desired surge velocity. The function Yw̄(·) is assumed to be negative for all the values
of uc. The vector ξ converges to zero exponentially and represents the dynamics of the
speed and pitch controllers. The state variables ez and w̄ are the cross track error in the
vertical plane and the heave velocity of the vehicle respectively. Finally, notice that ∆z

is the look-ahead distance in the vertical plane.

Two facts can be noticed by carefully analyzing (4.18): first, the faster the speed and
pitch controllers, the faster the term proportional to ξ vanishes. Second, the longer the
look-ahead distance ∆z, the less the coupling terms in (4.18) count. Thus, setting a large
∆z and having fast speed and heading controllers, ideally decouples the heave dynamics
from the rest and the fact that Yw̄(·) is negative guarantees w̄ → 0. In other words the
further ahead the LOS guidance law looks, the smoother the turn. Similar arguments
apply to the sway dynamics:

˙̄v =
Xv̄(uc)uc∆

(e2
y + ∆2

y)
3/2
ey +

(
Yv̄(uc)−

Xv̄(uc)∆
2
y

(e2
y + ∆2

y)
3/2

)
v̄

+

[
−Xv̄(uc + ũ)

∆y cos(θ)

e2
y + ∆2

y

hTey + hTv̄

]
ζ.

(4.19)
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Again the functions Xv̄(·) and Yv̄(·) are bounded for bounded arguments. The function
Yv̄(·) is assumed to be negative for all the values of uc while the vector ζ converges to
zero exponentially and represents the dynamics of the speed, pitch and yaw controllers.
The coupling of the UGAS and ULES heave dynamics is also included in ζ and the longer
∆z the weaker the coupling. The state variables ey and v̄ are the cross track error in the
horizontal plane and the sway velocity of the vehicle respectively. ∆y is the look-ahead
distance in the horizontal plane.

Equation (4.18) shows that the faster the speed, pitch and yaw controllers and the
longer ∆z, the faster the term proportional to ζ vanishes. Furthermore, the longer the
horizontal look-ahead distance ∆y, the less the coupling terms in (4.19) are significant.
Thus, setting large ∆z and ∆y and having fast speed, pitch and heading controllers,
ideally decouples the heave dynamics from the rest and the fact that Yw̄(·) is negative
guarantees that v̄ → 0. Therefore, the following assumptions are introduced:

Assumption 4.5. The underactuated underwater vehicle has internal controllers setting
the desired relative surge velocity and the desired pitch and yaw angles.

Assumption 4.6. The internal controllers are assumed to be fast compared to the
guidance law: the delay between the time the references are given by the guidance
law and the time they are actually set by the controllers is small enough not to affect
significantly the guidance dynamics.

Assumption 4.7. The look-ahead distances ∆y and ∆z are assumed big enough so that
the control surfaces do not affect significantly the sway and heave dynamics. Therefore
it is possible to consider vr ≈ 0 and wr ≈ 0.

Remark 4.4. Applying Assumptions 4.5-4.7 to the issue addressed in this paper leads
to a pure kinematic problem: Assumptions 4.5 and 4.6 guarantee that the reference LOS
angles (4.17a) and (4.17c) are followed and that the relative surge velocity ur is set to
Urd while Assumption 4.7 states that the unactuated sway and heave dynamics can be
neglected.

Remark 4.5. [5, 120] solved underactuated control problems as kinematic problems
using control laws derived from the Lyapunov analysis. Here the problem is similar but
the kinematic control law has been chosen before testing any stability.

Remark 4.6. It is hard to tell quantitatively how fast the internal speed and attitude
controllers must be and how long the look-ahead distances ∆y and ∆z must be so that
Assumptions 4.5-4.7 are realistic. This depends on physical characteristics of the vehicle.
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Therefore, a good model of the vessel and simulations play a key role in this approach
(see Section 4.4).

Following Assumption 4.3, Assumptions 4.5-4.7 and (4.3-4.4) the kinematic system is:

ẋ = Urd cos(ψd) cos(θd) + Vx, (4.20)

ẏ = Urd sin(ψd) cos(θd) + Vy, (4.21)

ż = −Urd sin(θd) + Vz, (4.22)

where θd , θILOS and ψd , ψILOS are the control inputs, with (4.17) closing the loop.

4.3. Stability of the Closed Loop Kinematic System

In this section the conditions under which the proposed guidance law achieves the goals
(4.5-4.8) are given.
Theorem 4.1. Given an underactuated underwater vehicle whose kinematics are described
by (4.20-4.22), if Assumptions 4.1-4.7 hold and if the integral gains σy, σz satisfy the
conditions:

0 <σy < Urd − 2Vmax, (4.23)

0 <σz < Urd − Vmax, (4.24)

then the guidance law (4.17) guarantees achievement of the control objectives (4.5-4.8).
Notice that the reference signals θd and ψd are defined by (4.17a) and (4.17c). The control
objectives (4.7-4.8) are fulfilled with ψss and θss given in (4.15) and (4.14), respectively.

Proof. The dynamics of the cross track error z are analyzed first. The z subsystem is
obtained from (4.22) and (4.17b):

żint =
∆zz

(z + σzzint)
2 + ∆2

z

, (4.25)

ż = −Urd sin(θd) + Vz. (4.26)
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Substituting (4.17a) for θd gives sin(θd) = (z + σzzint)/
√

(z + σzzint)2 + ∆2
z) and leads

(4.26-4.25) to:

żint =
∆zz

(z + σzzint)
2 + ∆2

z

, (4.27)

ż = −Urd
z + σzzint√

(z + σzzint)2 + ∆2
z

+ Vz. (4.28)

The equilibrium point of the system (4.28-4.27) is given by:

zeq
int =

∆z

σz

Vz√
U2
rd − V 2

z

, zeq = 0. (4.29)

A new set of variables is introduced to move the equilibrium point to the origin:

ez1 , zint − zeq
int, ez2 , z + σzez1. (4.30)

The transformed z dynamics become:

ėz1 = − ∆zσzez1

(ez2 + σzz
eq
int)

2 + ∆2
z

+
∆zez2

(ez2 + σzz
eq
int)

2 + ∆2
z

, (4.31)

ėz2 = −
[
Urd

√
(ez2 + σzz

eq
int)

2 + ∆2
z − σz∆z

]
ez2

(ez2 + σzz
eq
int)

2 + ∆2
z

− ∆zσ
2
zez1

(ez2 + σzz
eq
int)

2 + ∆2
z

+ Vzf(ez2),

(4.32)

where:

f(ez2) = 1−
√

(σzz
eq
int)

2 + ∆2
z√

(ez2 + σzz
eq
int)

2 + ∆2
z

, (4.33)

and the following bound holds for f(ez2):

|f(ez2)| ≤ |ez2|√
(ez2 + σzz

eq
int)

2 + ∆2
z

. (4.34)

The system (4.31-4.32) is equivalent to the system (3.25-3.26) analyzed in Chapter 3.
Therefore, Theorem 3.1 can be applied and it is hence possible to conclude UGAS and
ULES for the system (4.31-4.32).
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The dynamics of the horizontal cross track error y are analyzed next. The y subsystem
is obtained from (4.21) and (4.17d):

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (4.35)

ẏ = Urd sin(ψd) cos(θd) + Vy. (4.36)

Substituting (4.17c) for θd and (4.17a) for ψd gives cos(θd) = ∆z/
√

(z + σzzint)2 + ∆2
z

and sin(ψd) = −(y + σyyint)/
√

(y + σyyint)2 + ∆2
y. Factorizing the result with respect to

ez2, leads (4.36) to the following expression for the y dynamics:

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (4.37)

ẏ = −
√
U2
rd − V 2

z

y + σyyint√
(y + σyyint)2 + ∆2

y

+ Vy + h(y, yint, ez2)ez2, (4.38)

where the perturbation term is:

h(y, yint, ez2) =
Urd sin(ψd)

ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

−
√
U2
rd − V 2

z

Urd

]
. (4.39)

Notice that the limit of h(y, yint, ez2) for ez2 → 0 exists and is finite and that the heave
dynamics (4.31-4.32) perturb the y dynamics (4.37-4.38). Consider the nominal system
defined on the manifold ez2 = 0:

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (4.40)

ẏ = −
√
U2
rd − V 2

z

y + σyyint√
(y + σyyint)2 + ∆2

y

+ Vy. (4.41)

Its equilibrium point is given by:

yeq
int =

∆y

σy

Vy√
U2
rd − V 2

z − V 2
y

, yeq = 0. (4.42)

The following variables are introduced to move the equilibrium point to the origin:

ey1 , yint − yeq
int, ey2 , y + σzey1, (4.43)
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The transformed nominal system becomes:

ėy1 = − ∆yσyey1

(ey2 + σyy
eq
int)

2 + ∆2
y

+
∆yey2

(ey2 + σyy
eq
int)

2 + ∆2
y

, (4.44)

ėy2 = −
[√

U2
rd − V 2

z

√
(ey2 + σyy

eq
int)

2 + ∆2
y − σy∆y

]
ey2

(ey2 + σyy
eq
int)

2 + ∆2
y

−
∆yσ

2
yey1

(ey2 + σyy
eq
int)

2 + ∆2
y

+ Vyg(ey2),

(4.45)

where:

g(ey2) = 1−

√
(σyy

eq
int)

2 + ∆2
y√

(ey2 + σyy
eq
int)

2 + ∆2
y

, (4.46)

and the following bound holds for g(ey2):

|g(ey2)| ≤ |ey2|√
(ey2 + σyy

eq
int)

2 + ∆2
y

. (4.47)

The nominal system (4.44-4.45) is equivalent to the system (3.25-3.26) analyzed in
Section 3.3. Therefore, Theorem 3.1 can be applied and it is thus possible to conclude
UGAS and ULES for the system (4.44-4.45). Finally, the interconnected y and z dynamics
obtained from (4.31-4.32), (4.39) and (4.44-4.45) are considered:

ėy = A2(ey2)ey +B2(ey2) +H(y, yint, ez2)ez, (4.48a)

ėz = A1(ez2)ez +B1(ez2), (4.48b)

where ey , [ey1, ey2]T , ez , [ez1, ez2]T and:

A1(ez2) ,


−∆zσz

(ez2+σzz
eq
int)

2
+∆2

z

∆z

(ez2+σz
eq
int)

2
+∆2

z

−Urd
√

(ez2+σzz
eq
int

)2+∆2
z+σz∆z

(ez2+σzz
eq
int)

2
+∆2

z

−∆zσ
2
z

(ez2+σzz
eq
int)

2
+∆2

z

 , (4.49)

A2(ey2) ,


−∆yσy

(ey2+σyy
eq
int)

2
+∆2

y

∆y

(ey2+σy
eq
int)

2
+∆2

y

−
√

U2
rd

−V 2
z

√
(ey2+σyy

eq
int

)2+∆2
y+σy∆y

(ey2+σyy
eq
int)

2
+∆2

y

−∆yσ
2
y

(ey2+σyy
eq
int)

2
+∆2

y

 , (4.50)

B1(ez2) ,
[

0
Vzf(ez2)

]
, B2(ey2) ,

[
0

Vyg(ey2)

]
, H(y, yint, ez2) ,

[
0 0
0 h(y,yint,ez2)

]
. (4.51)

66



4.4 Simulations

The system (4.48) is a nonlinear cascaded system where the z dynamics (4.48b) perturb
the y dynamics (4.48a) through the interconnection term H(y, yint, ez2). In particular
the perturbing system (4.48b) is UGAS and ULES while the system (4.48a) is UGAS and
ULES on the manifold ez = 0. Furthermore, the interconnection term H(y, yint, ez2) can
be shown to satisfy ‖H ‖≤ θ1(‖ ez ‖)(|y|+ |yint|)+θ2(‖ ez ‖), where θ1(·), θ2(·) are some
continuous non-negative functions. Therefore applying Theorem A.2 and Lemma A.2
shows UGAS and ULES for the cascaded system (4.48).

To conclude, under the conditions of Theorem 4.1, the origin of the system (4.48) is
UGAS and ULES. Therefore, the control objectives (4.5-4.8) are achieved with exponential
converging properties in any ball of initial conditions.

Remark 4.7. Notice that the values of zeq
int and yeq

int make sure that at equilibrium
the vessel holds the attitude (θss, ψss) defined in (4.14-4.15) which is, as explained in
Section 4.1, the only possible orientation that guarantees successful current compensation
for underactuated underwater vehicles.

4.4. Simulations

In this section results from numerical simulation are presented. In particular, the
developed control strategy is applied to the HUGIN AUV. The model of the AUV is
given in Section B.4 of Appendix B. The objective is to make the vehicle follow the path
P with a desired surge relative speed Urd = 1 [m/s]. The maximum intensity of the
current is Vmax = 1/3 [m/s] and its true value is Vc = [0.07,−0.16, 0.10]T [m/s]. Thus,
Assumptions 4.3 and 4.4 are fulfilled. The chosen values for the guidance law integral
gains are σy = σz = 0.3 [m/s] and satisfy (4.23) and (4.24). The internal speed, pitch
and yaw controllers employed are of the feedback linearization type but other strategies
can be used, such as PID or sliding mode. They make the vehicle follow the desired
references. The vehicle is given an initial cross track error of 25 [m] in the horizontal as
well as vertical directions and initially has zero relative velocity. Its surge axis is parallel
to the desired path.

To choose the look-ahead distances ∆y and ∆z, the AUV length has been set as a
reference (the HUGIN AUV is approximately 5 [m] long). As shown in Figures 4.6a-4.6e,
if look-ahead distances close to the the vessel’s length are chosen, the behavior of the
vehicle becomes unstable and path convergence is not achieved. Clearly, in this situation
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Assumptions 4.5-4.7 are not valid anymore. However, higher values of ∆y and ∆z make
the vehicle converge smoothly. A closer look to Figure 4.6d reveals that the heave
relative velocity doesn’t converge to zero but rather to a steady state small value. This
is caused by gravity restoring forces. Figures 4.7a-4.7c show that the speed, pitch and
yaw controllers make sure that the reference Urd, ψd and θd are followed fast enough so
that Assumptions 4.5 is satisfied. Finally, notice in Figures 4.7b-4.7c how the angles θ(t)
and ψ(t) converge smoothly to the expected values θss ≈ 5.9 [deg] and ψss ≈ 9.1 [deg],
confirming the discussion given in Section 4.1. Again, the little discrepancy between θ(t)
and θss is due to gravity.

4.5. Conclusions

In this chapter a 3D version of the ILOS guidance introduced in Chapter 3 has been
presented and applied to a simple kinematic model of underactuated underwater vehi-
cles. The intuitive approach followed in Chapter 3 has been repeated and extended for
underactuated underwater vehicles moving in a 3D space. In particular, 3D constant
irrotational ocean currents have been considered and it has been shown that the problem
has one possible solution only. The integral LOS guidance is used to hold non-zero
pitch and yaw angles at equilibrium and thus compensate for the current. The closed
loop system has been analyzed revealing a cascaded structure with UGAS and ULES
stability properties. Explicit conditions upon the choice of the integral gains σy and σz
are derived. Given the discussion of Section 4.2 and the simulation results of Section 4.4,
one should expect that the stability conditions upon ∆z and ∆z that are derived in the
following chapters of this dissertation, will be inevitably affected by the properties of the
underactuated sway and heave dynamics of the vessel.
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Figure 4.6.: Simulation results for different values of ∆y and ∆z.
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Chapter 5.

The Underactuated Dynamics in
ILOS Guidance Schemes

“Whatever you can do or dream you can, begin it. Boldness has genius,
power and magic in it!”

— Johann Wolfgang von Goethe, Writer

In Chapters 3 and 4 the Integral Line-of-Sight (ILOS) guidance scheme was applied
to simple kinematic models of surface vessels and underwater vehicles to achieve path
following in the presence of unknown, constant and irrotational ocean currents. The
kinematic models were obtained by not taking into account both the underactuated and
the actuated dynamics, leading to an intuitive first step approach. The resulting analysis
of the closed loop systems gave explicit bounds on the integral gains but did not give
any guidelines on how to choose the look-ahead distances of the ILOS. It is argued in
Sections 3.2 and 4.2 that the look-ahead distances should be ‘long enough’ to make the
underactuated sway and heave dynamics insignificant and this argument is confirmed by
the simulation results shown in Sections 3.4 and 4.4. In Sections 3.4 and 4.4 the rule of
thumb to consider two times the physical length of the vehicle as the lower limit for the
choice of the look-ahead distances is used.

In this chapter explicit bounds for the choice of the ILOS guidance look-ahead distance
are derived. This is done by including the underactuated dynamics into the Lyapunov
analysis. Disturbances in the form of constant irrotational ocean currents and constant
dynamic, attitude dependent, forces are taken into account. Furthermore, more precise
bounds upon the integral gains are obtained as well. A 3-DOFs planar motion scenario is
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considered with sway being the underactuated dynamics. The actuated dynamics are not
taken into account under the assumption that there are a closed loop speed controller
and a closed loop autopilot system setting the speed and the heading of the vessel. The
mathematical complexity of the analysis increases significantly compared to Chapters 3
and 4 and it is shown that the properties of the underactuated dynamics determine the
criteria for the choice of the look-ahead distance of the ILOS guidance. This confirms
the intuitive arguments discussed in Sections 3.2 and 4.2.

This chapter is organized as follows: in Section 5.1 the model of the vessel that
includes the sway dynamics is presented, in Section 5.2 the integral LOS guidance law
is introduced and in Section 5.3 the stability properties of the closed loop system are
given. The stability analysis is given in Section 5.4. Finally, conclusions are given in
Section 5.5. The results presented in this chapter represent the generalization of some of
the analysis methods used in the papers [28, 34, 31, 36, 29].

5.1. The Model of the Vessel and the Control

Objective

In this section the model of the vessel that includes the sway dynamics is presented and
the control objective is defined. The actuated surge and yaw dynamics are not taken
into account. Some basic assumptions are first introduced, followed by the description of
the notation used in this chapter.

5.1.1. Basic Assumptions and Notation

To clarify the forthcoming analysis some assumptions are introduced together with the
symbols and physical quantities used in this chapter.

Assumption 5.1. The motion of the vessel is described of 3 degrees of freedom: surge,
sway and yaw.

Assumption 5.2. The ocean current is defined in the inertial frame i and assumed
constant, unknown, irrotational and bounded. Hence Vc , [Vx, Vy]

T and there exists
Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .
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5.1 The Model of the Vessel and the Control Objective

Following Assumption 3.1, the system state is given by the vector η , [x, y, ψ]T and
describes the position and the orientation of the vessel with respect to the inertial frame
i. In particular ψ is the yaw angle of the vessel. The vector ν , [u, v, r]T contains the
linear and angular velocities defined in the body-fixed frame b, where u is the surge
velocity, v is the sway velocity and r is the yaw rate. The ocean current linear velocity
in the body frame b, νc , [uc, vc, 0]T , is obtained from νc = RT (ψ)[V T

c , 0]T where R(ψ)

is the rotation matrix from b to i:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (5.1)

According to Assumption 3.3 the ocean current is constant and irrotational in i, i.e.
V̇c = 0, therefore ν̇c = [rvc,−ruc, 0]T . In navigation problems involving ocean currents
it is common to introduce the relative velocity. [52] defines the relative velocity as the
velocity of the vessel with respect to the flow. Given the vector:

U ,
[
ẋ
ẏ

]
=
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
[ uv ] , (5.2)

representing the linear velocity of the vessel in the inertial frame i, the linear relative
velocity Ur in i is:

Ur , U − Vc. (5.3)

Following (5.3), νr , ν − νc = [ur, vr, r]
T is the relative velocity of the vessel in b. There-

fore, Ur can be expressed as:

Ur =
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
[ urvr ] . (5.4)

5.1.2. The Dynamics of the Relative Sway Velocity

The dynamics of the underactuated relative sway velocity vr are modeled as:

v̇r = X(ur)r + Y (ur)vr + wv, (5.5)

where r = ψ̇ and the functions X(ur) and Y (ur) satisfy the following assumptions:

Assumption 5.3. The functions X(ur) and Y (ur) are continuous and bounded for
bounded arguments.
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Assumption 5.4. Y (ur) is such that |Y (ur)| is strictly increasing for ur > 0 and
satisfies Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Urd], where Y min is a positive constant.

Remark 5.1. Assumption 5.4 is justified by a contradiction: Y (ur) ≥ 0 would imply a
nominally unstable vehicle in sway which is not the case for commercial vessels by design.
No bounds are implied on ur and Urd > 0 will be defined later.

The term wv represents a bias term that embodies unmodeled dynamics and dynamic,
heading dependent, disturbances caused by currents, winds and waves. In this context,
the effects of constant wind disturbances acting in a constant direction βe ∈ [0, 2π] are
considered in wv. Hence the term wv is defined as:

wv , κv(γe) sin(βe − ψ), (5.6)

where γe = ψ− βe− π is the angle of attack of the wind, and the function κv(γe) satisfies
the following assumptions:

Assumption 5.5. The function κv is bounded, periodic of class C1 with bounded first
derivative. Therefore, there exists κmax

v , κ′max
v such that κv(·) ≤ κmax

v , dκv(·)
d· ≤ κ′max

v .

Assumption 5.6. The function κv is such that, given any constants k ∈ R and
βe ∈ [0, 2π], the following bound holds for all s ∈ R:∣∣∣∣∣κv(γke )− κv(γk+s

e )

√
k2 + 1√

(s+ k)2 + 1

∣∣∣∣∣ ≤ κmax
v

|s|√
(s+ k)2 + 1

, (5.7)

where γke , − tan−1(k)− βe − π and γk+s
e , − tan−1(k + s)− βe − π.

Remark 5.2. Notice that the wind load coefficients given in [76, 103, 15, 52] can be
shown to satisfy Assumptions 5.5-5.6, or can be easily approximated with functions
satisfying Assumptions 5.5-5.6.

Remark 5.3. Notice that there is no control input in (5.5) that can directly compensate
for the sway drift vc nor for the dynamic disturbance wv.

5.1.3. The Actuated Surge and Yaw Dynamics

The surge and yaw dynamics are the actuated dynamics of the vessel. Their dynamics
are neglected in this chapter in a similar way as done in Chapters 3 and 4:
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Assumption 5.7. The underactuated vessel is assumed to have internal controllers
setting the desired relative surge velocity and the desired yaw angle. The dynamics of
these controller are neglected in this context, therefore ur ≡ urd and ψ ≡ ψd, where urd
is the desired relative surge velocity and ψd is the desired yaw angle.

5.1.4. The Model of the Vessel

Following Assumptions 5.2 and 5.7, the model of the vessel becomes:

ẋ = cos(ψd)urd − sin(ψd)vr + Vx, (5.8a)

ẏ = sin(ψd)urd + cos(ψd)vr + Vy, (5.8b)

v̇r = X(urd)ψ̇d + Y (urd)vr + κv(γe) sin(βe − ψd), (5.8c)

where (5.3-5.4) were used to derive (5.8a-5.8b). Notice that urd, ψd are the control inputs.

5.1.5. The Control Objective

The control system should make the vessel follow a given straight line P and maintain
a desired constant surge relative velocity Urd > 0. Hence, since the dynamics of ur are
neglected (Assumption 5.7), ur = urd = Urd. This should also hold in the presence of
disturbances modeled as a combination of a constant and irrotational ocean current and
a dynamic sway heading dependent force. To simplify the problem without any loss of
generality since coordinates can always be rotated given a desired direction in the plane,
the inertial reference frame i is placed such that the x-axis is aligned with the desired
path P , {(x, y) ∈ R2 : y = 0}. The y coordinate then corresponds to the cross-track
error and the goals the control system should pursue are formalized as follows:

lim
t→∞

y(t) = 0, (5.9)

lim
t→∞

ψd(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (5.10)

where ur(t) is the surge relative speed of the vessel and ψss is constant. Notice that
the ψ(t) is not required to converge to zero but rather to a steady-state constant value
bounded within −π

2
and π

2
. This allows the ship to hold a non-zero yaw angle at

equilibrium, and compensate for the disturbances. This is necessary because the vessel is
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underactuated and no control forces are available in sway to counteract the drift. The
value of ψss will be specified later.

The relative velocity needs to be sufficiently large to guarantee ship maneuverability
in presence of disturbances. In particular, it is shown in this paper that the following
assumption guarantees path following in presence of kinematic and dynamic disturbances
acting in any direction:

Assumption 5.8. The desired constant relative surge velocity Urd satisfies the following
condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ κmax
v

Y (Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣κmax
v + κ′max

v

Y (Urd)

∣∣∣∣
}
,

Remark 5.4. It is always possible to find values of Urd satisfying Assumption 5.8, since
|Y (ur)| is strictly increasing for ur > 0.

5.2. The Integral Line of Sight Guidance

The ILOS guidance is presented in this section. The surface vessel has to converge and
follow the x-axis in presence of environmental disturbances. In this chapter explicit
bounds for the choice of the look-ahead distance of the ILOS guidance presented in
Chapter 3 are derived and this is done by including the underactuated sway dynamics
into the Lyapunov analysis. This confirms the stabilizing effect of the ILOS guidance on
the underactuated dynamics argued in Sections 3.2 and 4.2. Hence, the desired heading
angle is:

ψILOS , − tan−1

(
y + σyint

∆

)
, ∆, σ > 0, (5.11a)

ẏint =
∆y

(y + σyint)
2 + ∆2

, (5.11b)

where ∆ is the look-ahead distance and σ is the integral gain. Both are constant design
parameters. The integral effect becomes significant when disturbances push the craft
away from its path. This gives a nonzero angle (5.11a) and makes the vessel to side-slip
while staying on the desired path, so part of its relative forward velocity can counteract
the effect of the environmental disturbances. Notice that the law (5.11b) gives less
integral action when the vehicle is far from P , reducing the risk of wind-up effects.
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5.3. Stability Conditions

This section presents the stability conditions under which the proposed ILOS guidance
(5.11) achieves the objectives (5.9-5.10). The notation XUrd , X(Urd) and Y Urd , Y (Urd)

is used.
Theorem 5.1. Given an underactuated surface vessel described by the dynamical system
(5.8). If Assumptions 5.2-5.8 hold and, if the look-ahead distance ∆ and the integral gain
σ satisfy the conditions:

∆ >
|XUrd |
|Y Urd |

Ω(σ)

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (5.12)

0 < σ < Urd − Vmax −
5

2

∣∣∣∣κmax
v

Y Urd

∣∣∣∣ , (5.13)

where Ω(σ) is defined as,

Ω(σ) ,
Urd − Vmax − σ

Urd − Vmax − σ − 5
2

∣∣ κmax
v

Y Urd

∣∣ , (5.14)

then the controller (5.11), where urd , Urd, guarantee achievement of the control objectives
(5.9-5.10).

Remark 5.5. The lower bound (5.12) is expected and has a clear physical interpretation:
a too short look-ahead distance ∆ > 0 makes the vessel overshoot the target and thus
causes chattering as shown in Chapters 3-4.

Remark 5.6. Notice in (5.5) that the yaw rate r = ψ̇ acts as a perturbation of the sway
dynamics. In particular, if the sway motion is only lightly damped, i.e. if XUrd � Y Urd ,
then the yaw rate has a significant influence on the sway relative velocity vr. Hence, the
yaw rate must be limited to make sure that the sway dynamics behave properly. This is
done by increasing the look-ahead distance ∆ that makes the vessel turn slower, thus
smoothing and limiting its yaw rate. The overall effect is a virtual increase in damping
in sway. In the opposite case, when XUrd � Y Urd , damping is higher and hence the
vessel can tolerate a higher yaw rate. In this case a shorter ∆ can be used and the
vessel is capable of more aggressive maneuvers. This confirms the analysis from Sections
3.2 and 4.2 where it is argued that longer look-ahead distances tend to decouple the
underactuated dynamics from the actuated dynamics, thus avoiding sway motion (sway
and heave motion in 3D).

77



The Underactuated Dynamics in ILOS Guidance Schemes

Remark 5.7. The disturbances Vc and κv shrink the upper bound for σ > 0 and
increase the lower bound for ∆ > 0. These changes can be compensated by increasing
the relative velocity of the vessel Urd.

5.4. Proof of Theorem 5.1

In this section the proof of Theorem 5.1 is given. The dynamics of the cross track error
y and the relative sway velocity vr have to be analyzed. The y − vr system is obtained
combining (5.8b), (5.8c) and (5.11b):

ẏint =
∆y

(y + σyint)
2 + ∆2

, (5.15a)

ẏ =Urd sin(ψd) + vr cos(ψd) + Vy, (5.15b)

v̇r =X(Urd)ψ̇d + Y (Urd)vr + κv(γe) sin(βe − ψd). (5.15c)

Substituting (5.11a) for ψd gives sin(ψd) = −(y+σyint)/
√

(y + σyint) + ∆2 and cos(ψd) =

∆/
√

(y + σyint) + ∆2, and leads 5.15 to:

ẏint =
∆y

(y + σyint)
2 + ∆2

, (5.16a)

ẏ =− Urd
y + σyint√

(y + σyint)2 + ∆2
+

∆√
(y + σyint)2 + ∆2

vr + Vy, (5.16b)

v̇r =X(Urd)ψ̇d + Y (Urd)vr + κv(γe) sin(βe − ψd). (5.16c)

The calculation of the equilibrium point of the system (5.15) yields the following equation:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

, (5.17)

where s , σyeq
int/∆ and yeq

int is the value of yint at equilibrium. The term κeq
v (s) is defined

as the value of κv(γe) at equilibrium, i.e. when γe = γeq
e , − tan−1(s) − βe − π. The

equilibrium point equation (5.17) is a generalized case of similar equations found in
[34, 36, 31, 32]. It has to be shown that (5.17) has a unique real solution to have a single
equilibrium point. The following Lemma gives the sufficient conditions for (5.17) to have
a unique real solution:

Lemma 5.1. If Assumptions 5.5 and 5.8 hold, then (5.17) has exactly one real solution
s = σyeq

int/∆.
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5.4 Proof of Theorem 5.1

Proof. The proof of Lemma 5.1 is given in Appendix 5.A.

At equilibrium yeq = 0 while yeq
int and veq

r are constant values where yeq
int is the unique

solution of (5.17) and veq
r relates to yeq

int as:

veq
r = Urd

σyeq
int

∆
− Vy

√(
σyeq

int

∆

)2

+ 1 (5.18)

The heading angle held by the vessel at steady-state is then ψss , − tan−1 (σyeq
int/∆).

A new set of variables is introduced to move the equilibrium point to the origin:

e1 , yint − yeq
int, (5.19) e2 , y + σe1, (5.20) e3 , vr − veq

r . (5.21)

Taking the time derivatives of (5.19-5.21) and using (5.16), and (5.18) the transformed
dynamics become:

ė1 =
∆(e2 − σe1)

(e2 + σyeq
int)

2 + ∆2
, (5.22a)

ė2 =− σ2∆e1

(e2 + σyeq
int)

2 + ∆2
+

∆e3√
(e2 + σyeq

int)
2 + ∆2

+ Vyf(e2)

−

[
Urd −

σ∆√
(e2 + σyeq

int)
2 + ∆2

]
e2√

(e2 + σyeq
int)

2 + ∆2
,

(5.22b)

ė3 =X(Urd)ψ̇d + Y (Urd)e3 +
κv(γe) cos(βe)e2√
(e2 + σyeq

int)
2 + ∆2

+ sin(ψss − βe)g(e2), (5.22c)

where f(e2) is defined as:

f(e2) ,1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, (5.23)

and g(e2) is defined as:

g(e2) ,κeq
v − κv(γe)

√
(σyeq

int)
2 + ∆2√

(e2 + σyeq
int)

2 + ∆2
. (5.24)

Notice that the following bound holds for f(e2):

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

. (5.25)
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One can prove that (5.25) holds by squaring both sides of the inequality two consecutive
times. Furthermore, as a direct consequence of Assumption 5.6, the following bound
holds for g(e2):

|g(e2)| ≤ κmax
v

|e2|√
(e2 + σyeq

int)
2 + ∆2

. (5.26)

Now, substituting the expression:

ψ̇d =
d

dt

[
− tan−1

(
e2 + σyeq

int

∆

)]
= − ∆

(e2 + σyeq
int)

2 + ∆2
ė2 =

=
σ2∆2e1

((e2 + σyeq
int)

2 + ∆2)2
− ∆2e3

((e2 + σyeq
int)

2 + ∆2)3/2
− ∆Vyf(e2)

(e2 + σyeq
int)

2 + ∆2

+ ∆

[
Urd −

σ∆√
(e2 + σyeq

int)
2 + ∆2

]
e2

((e2 + σyeq
int)

2 + ∆2)3/2
,

(5.27)

in (5.22c) yields the following form for the system (5.22):[
ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (5.28)

A(e2) is given in (5.30) while B(e2) is:

B(e2) ,

[
0

Vyf(e2)

− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)+sin(ψss−βe)g(e2)

]
. (5.29)

Lemma 5.2 states the stability properties of (5.28):

Lemma 5.2. Under the conditions of Theorem 5.1, the system (5.28) is UGAS and
ULES.

Proof. The proof of Lemma 5.2 is given in Appendix 5.B.

Lemma 5.2 concludes UGAS and ULES stability properties for the origin of (5.28) or
alternatively global κ-exponential stability [129]. It is hence possible to conclude that
the control objectives (5.9-5.10) are achieved with exponential converging properties in
any ball of initial conditions.

Remark 5.8. Notice that the UGAS and ULES stability properties of (5.28) make this
system very robust with respect to perturbations [82, Lemma 9.1]. This makes the ILOS
guidance law (5.11) potentially very reliable under Assumptions 5.2-5.8. Such robustness
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with respect to perturbations is exploited in the following chapters where the actuated
dynamics are added into the analysis yielding cascaded configurations.

Remark 5.9. The value yeq
int makes sure that, at equilibrium, the vessel holds the

heading ψss = − tan−1(σyeq
int/∆) and is the only real solution of (5.17), i.e. ψss is the only

possible heading that guarantees path following and compensates for the disturbances.

5.5. Conclusions

In this chapter explicit bounds for the choice of the ILOS guidance look-ahead distance
have been derived by including the underactuated dynamics into the Lyapunov analysis.
These bounds confirm the analysis discussed in Sections 3.2 and 4.2. Furthermore, the
bounds upon the ILOS integral gain have been refined. Disturbances in the form of
constant irrotational ocean currents and constant dynamic, attitude dependent, forces
have been also taken into account and their maximum ratings show up in the bounds
derived for the guidance law parameters.

The actuated dynamics are not considered under the assumption that there are a
closed loop speed controller and a closed loop autopilot system setting the speed and the
heading of the vessel. The stability analysis reveals UGAS and ULES stability properties
for the guidance closed loop system. This makes the guidance closed loop system very
robust with respect to perturbations. Such robustness with respect to perturbations will
be exploited in the following chapters were the actuated dynamics are added into the
analysis in cascaded configurations.
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5.A. Appendix: Proof of Lemma 5.1

Equation (5.17) is written again:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

. (5.31)

Notice that κeq
v (s) is bounded and is defined as the value of κv(γe) at equilibrium, i.e.

when γe = γeq
e , − tan−1(s)− βe− π. This Lemma proves that there exists only one real

solution to (5.31) if Assumptions 5.5 and 5.8 hold. First, it is shown that there exist real
solutions to (5.31) and then uniqueness is argued. Squaring both sides of (5.31) gives:

p(s) ,(M2 − U2
rd)s

4 + 2MNss
3 + (2MPs +N2

s − U2
rd)s

2

+ 2NsPss+ P 2
s = 0,

(5.32)

where M , Vy, Ns , κeq
v (s) cos(βe)/|Y Urd | and Ps , Vy + κeq

v (s) sin(βe)/|Y Urd |. Hence,
M2 − U2

rd < 0 as long as Urd > Vmax which is guaranteed by Assumption 5.8. This
means that, if Assumption 5.8 holds and since Ns and Ps are bounded in s, the function
p(s)→ −∞ as s→ ±∞. Furthermore, since P 2

s ≥ 0,∀s, then p(0) ≥ 0. Therefore, p(s)
has at least one real zero, or at least two real zeros, one positive and one negative, if
Ps > 0, s = 0. This proves the existence of real solutions to (5.31).

The intersections between the curves defined by the two sides of (5.31) are considered
next to show uniqueness:

L1(s∗) ,s∗
√
s∗2 + 1, (5.33)

L2(s∗) ,
Vy
Urd

s∗2 +
cos(βe)s

∗ + sin(βe)

Urd|Y Urd |
κeq
v (s∗) +

Vy
Urd

. (5.34)

The curve L1(s
∗) is strictly increasing while L2(s

∗) resembles a parabola since κeq
v (s∗)

is bounded as shown in Figure 5.1. The first derivatives in s∗ of L1(s∗) and L2(s∗) are
analyzed:

dL1

ds∗
=

2s∗2 + 1√
s∗2 + 1

, (5.35)

dL2

ds∗
=

1

Urd

[
2Vy −

dκeq
v

dγeq
e

cos(βe)

|Y Urd |(1 + s∗2)

]
s∗ +

κeq
v (s∗) cos(βe)

Urd|Y Urd |
−

dκeq
v

dγeq
e

sin(βe)

Urd|Y Urd |(1 + s∗2)
, (5.36)
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where the property dκeq
v

ds∗
= dκeq

v

dγeq
e

dγeq
e

ds∗
= −dκeq

v

dγeq
e

1
1+s∗2 is used. The following bound holds:[

2Vmax

Urd
+

κ′max
v

Urd|Y Urd |

]
|s∗|+ κmax

v + κ′max
v

Urd|Y Urd |
≥ dL2

ds∗
. (5.37)

Notice that as long as Urd > 2Vmax + (κ′max
v /|Y Urd |) and Urd > (2/|Y Urd |)(κmax

v + κ′max
v ),

which are both guaranteed by Assumption 5.8, the following inequality holds:

dL1

ds∗
>

[
2Vmax

Urd
+

κ′max
v

Urd|Y Urd |

]
|s∗|+ κmax

v + κ′max
v

Urd|Y Urd |
≥ dL2

ds∗
, ∀s∗. (5.38)

This inequality has two important consequences: if there exist any intersections between L1

and L2, these intersections are transverse intersections. Yet, if there exists an intersection
between L1 and L2, then this intersection is unique: since dL1/ds

∗ > dL2/ds
∗, if the

curves intersect in one point, they will never intersect again. The proven existence of real
solutions to (5.31) guarantees that L1 and L2 intersect each other and hence it is possible
to conclude that the intersection point is unique. To conclude, as long as Assumptions
5.5 and 5.8 are satisfied, there exists only one real solution s for (5.31).

l 2(s
*)=

V y

U rd

s*2+
κ v
eq (s*)cos (β e)
U rd∣Y

U rd∣
s*+( V y

U rd

+
κ v
eq (s*)sin(β e)
U rd∣Y

U rd∣ )

l1(s
*) , l2(s

*)

0

l1(s
*)=s*√ s*2+1

s*

σ y int
eq

Δ

s*

Figure 5.1.: Graphical solution of (5.31): L1(s∗) and L2(s∗) should intersect exclusively once
to make sure that there exists a single equilibrium point. Notice that L1(s∗) is
strictly increasing while L2(s∗) resembles a parabola since κeq

v (s∗) is bounded.
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5.B. Appendix: Proof of Lemma 5.2

The system (5.28) is written again:[
ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (5.39)

Consider the quadratic Lyapunov function candidate (LFC):

V ,
1

2
σ2e2

1 +
1

2
e2

2 +
1

2
µe2

3, µ > 0. (5.40)

The time-derivative of V is:

V̇ = − σ3∆

(e2 + σyeq
int)

2 + ∆2
e2

1

+

[
σ∆− Urd

√
(e2 + σyeq

int)
2 + ∆2

]
e2

2

(e2 + σyeq
int)

2 + ∆2

+ µ sin(ψss − βe)g(e2)e3 +
∆√

(e2 + σyeq
int)

2 + ∆2
e2e3

+ Vyf(e2)e2 − µ
∆XUrdVy

(e2 + σyeq
int)

2 + ∆2
f(e2)e3

− µ
[
− Y Urd +

∆2XUrd

((e2 + σyeq
int)

2 + ∆2)3/2

]
e2

3

+ µ

[
Urd∆X

Urd

(e2 + σyeq
int)

2 + ∆2
− σ∆2XUrd

((e2 + σyeq
int)

2 + ∆2)3/2

]
· e2e3√

(e2 + σyeq
int)

2 + ∆2
+

µσ2∆2XUrd

((e2 + σyeq
int)

2 + ∆2)2
e1e3

+ κv(γe) cos(βe)
e2e3√

(e2 + σyeq
int)

2 + ∆2
.

(5.41)

Assumptions 5.2-5.8, inequalities (5.25-5.26) and the following properties:

max

{
∆

(e2 + σyeq
int)

2 + ∆2

}
=

1

∆
, (5.42)

max

{
∆2

((e2 + σyeq
int)

2 + ∆2)3/2

}
=

1

∆
, (5.43)

min

{√
(e2 + σyeq

int)
2 + ∆2

}
= ∆, (5.44)
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yield the following bound for V̇ :

V̇ ≤− σ3∆

(e2 + σyeq
int)

2 + ∆2
e2

1

−∆ (Urd − Vmax − σ)
e2

2

(e2 + σyeq
int)

2 + ∆2

+
∆|e2||e3|√

(e2 + σyeq
int)

2 + ∆2
+
µσ2|XUrd |

∆

|e1||e3|√
(e2 + σyeq

int)
2 + ∆2

+ µ

[
|XUrd |

∆
(Urd + Vmax + σ) + 2κmax

v

]
|e2||e3|√

(e2 + σyeq
int)

2 + ∆2

− µ
(
|Y Urd | − |X

Urd |
∆

)
e2

3.

(5.45)

The notation ē1 , e1/
√

(e2 + σyeq
int)

2 + ∆2 and ē2 , e2/
√

(e2 + σyeq
int)

2 + ∆2 is introduced
and the inequality (5.45) becomes:

V̇ ≤− σ3∆ē2
1 −∆ (Urd − Vmax − σ) ē2

2 − µ
(
|Y Urd | − |X

Urd |
∆

)
e2

3

+ ∆|ē2||e3|+ µ

[
|XUrd |

∆
(Urd + Vmax + σ) + 2κmax

v

]
|ē2||e3|

+
µσ2|XUrd |

∆
|ē1||e3|.

(5.46)

It can be then rearranged as:

V̇ ≤ −W1(|ē1|, |e3|)−W2(|ē2|, |e3|), (5.47)

W1 ,σ
3∆|ē1|2 − µ

σ2|XUrd |
∆

|ē1||e3|+ µη

(
|Y Urd | − |X

Urd |
∆

)
|e3|2, (5.48)

W2 , ∆
[
|ē2| |e3|

] β −α

−α α(2α−1)
β

|ē2|

|e3|

 , (5.49)

where 0 < η < 1, β , Urd − Vmax − σ and α is given by:

α , (1− η)
(Urd − Vmax − σ)(∆|Y Urd | − |XUrd |)
|XUrd | (Urd + Vmax + σ) + 2∆κmax

v

. (5.50)
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The parameter µ is chosen as:

µ ,
∆2(2α− 1)

|XUrd |(Urd + Vmax + σ) + 2∆κmax
v

. (5.51)

In (5.47) the term µ(|Y Urd | − |XUrd |/∆)|e3|2 has been split in ηµ(|Y Urd | − |XUrd |/∆)|e3|2

and (1 − η)µ(|Y Urd | − |XUrd |/∆)|e3|2. This makes it possible to avoid splitting cross
terms through Young’s inequality as done for instance in [26] and hence shift the analysis
on the two quadratic functions W1 and W2. In particular, if both W1 and W2 are definite
positive then V̇ is negative definite. Positive definiteness of W1 is ensured if (5.52) and
(5.53) are satisfied:

∆ >
|XUrd |
|Y Urd |

, (5.52) µ <
4η∆2

[
∆|Y Urd | − |XUrd |

]
σ|XUrd |2

. (5.53)

Notice that condition (5.52) is met as long as (5.12) holds. At this point, the choice of η
becomes subject to constraints. In particular, it is necessary to show that there exist η
such that 0 < η < 1 and that (5.53) is satisfied. In particular, (5.53) and (5.50) lead to
the following inequality:

(1− η)(Urd − Vmax − σ)

[|XUrd |(Urd + Vmax + σ) + 2∆κmax
v ]2

<
2η

σ|XUrd |2
. (5.54)

It is straightforward to show that η ≥ 1/5 is a sufficient condition for (5.54) to hold.
Hence, if η ≥ 1/5 then µ, defined in (5.51), satisfies (5.53). Therefore, without any
loss of generality, η is set to 1/5. Both β and α must fulfill β > 0 and α > 1 to
guarantee positive definiteness of W2. Assumption 5.8 and (5.13) make sure that β > 0

while it is easy to check that conditions (5.12) and (5.13) imply α > 1. Furthermore,
α > 1 guarantees µ > 0 and ensures positive definiteness of V . Therefore under the
conditions stated in Theorem 5.1, V , W1 andW2 are positive definite and hence, following
standard Lyapunov arguments, the system (5.39) is UGAS. Furthermore, the inequality
W , W1 +W2 ≥ λ̄1|ē1|2 + λ̄2|ē2|2 + λ3|e3|2 holds in a neighbourhood of the origin for
some constants λ̄1, λ̄2, λ3 > 0 and thus in any ball Br , {|e2| ≤ r}, r > 0 the function W
can be estimated as W ≥ λ1|e1|2 + λ2|e2|2 + λ3|e3|2 where λi = λ̄i/((r + σyeq

int)
2 + ∆2),

i = 1, 2. This, together with the fact that V is a quadratic function of e1, e2 and e3,
concludes that (5.39) is also uniformly locally exponentially stable, ULES.
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Chapter 6.

Relative Velocity Control for Path
Following of Underactuated Surface
Vessels in the Presence of Ocean
Currents

“If you are going to do something, do it now. Tomorrow is too late.”
— Pete Goss, Yachtsman

In Chapter 3 the Integral Line-of-Sight (ILOS) guidance for planar motion purposes
was applied to a simple kinematic model of surface vessels and a discussion involving
intuitive as well as practical aspects of the ILOS law was given. The resulting analysis of
the closed loop system gave explicit bounds on the integral gain but did not give any
guidelines on how to choose the look-ahead distance of the ILOS. Explicit bounds for the
choice of the look-ahead distance were derived in Chapter 5. This was done by including
the underactuated dynamics into the Lyapunov analysis where disturbances in the form
of constant irrotational ocean currents and constant dynamic, heading dependent forces
were also taken into account. More precise bounds upon the integral gain were obtained
as well. However the actuated surge and yaw dynamics were not considered under the
assumption that there are closed loop controllers setting the speed and the heading of
the vessel.

In this chapter the complete kinematic and dynamic closed loop system of the ILOS
guidance law for path following purposes of underactuated surface vessels is analyzed.
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The actuated surge and yaw dynamics are included in the analysis and combined with
the results from Chapter 5. It is shown that the resulting closed loop system forms
a cascade where the actuated dynamics perturb the combined sway-guidance system
analyzed in Chapter 5. The properties of Uniform Global Asymptotic Stability (UGAS)
and Uniform Local Exponential Stability (ULES) (alternatively global κ-exponential
stability [129]) are shown for the closed loop cascaded system. In this case disturbances
in the form of irrotational ocean currents are taken into account, while dynamic heading
dependent environmental disturbances are neglected. Path following of straight lines is
considered and the dynamics of the vessel are expressed in terms of its relative velocity,
where the relative velocity of the vessel is its velocity with respect to the water. This is
possible since the current is assumed constant and irrotational in the inertial frame, as
shown in [52]. Furthermore, it is shown that in steady state it is possible to estimate
the unknown current by using the integral term of the ILOS guidance law as well as
measurements of the absolute and relative speeds of the vessel. Results from simulations
and field experiments are presented to verify and illustrate the theoretical results. The
ILOS guidance is applied to the CART Unmanned Semi-Submersible Vehicle (USSV) for
sea trials [22], while the model of an underactuated supply vessel is used for simulation
purposes since a model of the CART USSV is not yet available. First, the model of
the supply vessel is used to simulate the control system and to assess its robustness
with respect to parameter uncertainties and process noise. Next, the model is scaled to
match the dimensions of the CART USSV in order to have simulation results that can be
directly compared with the experiments. Finally, experimental results from sea trials are
presented and a back to back comparison between simulations and experimental results
is given. Furthermore, different combinations of the guidance law parameters are tested
for different speeds/thrust levels. The results show that the vehicle converges and follows
the desired course despite the environmental disturbances. As expected, side-slipping is
performed by the guidance law in order to compensate for the drift and thus hold the
vehicle on the path.

The chapter is organized as follows: Section 6.1 presents the vessel model for control
design purposes. The control problem is defined in Section 6.2 while Section 6.3 presents
the ILOS guidance that solves the path following control problem in a cascaded con-
figuration with feedback linearizing surge and yaw controllers. The stability properties
of the closed loop system are given in Section 6.4 while the analysis is developed in
Section 6.5. The current estimator is described in Section 6.6. Simulation results are
given in Section 6.7 and results from field experiments with the CART USSV are shown
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in Section 6.8. Finally, conclusions are found in Section 6.9. The results presented in
this chapter are based on the papers [28, 36, 14, 29].

6.1. The Control Plant Model

The control plant model is a simplified mathematical description of the surface vessel. It
contains the physical properties that are significant for control design purposes [130].

6.1.1. Model Assumptions

Assumption 6.1. The motion of the vessel can be described by 3 degrees of freedom
(DOF), that is surge, sway and yaw.

Assumption 6.2. The vessel is port-starboard symmetric.

Assumption 6.3. The body-fixed coordinate frame b is located on the center-line of
the vessel at a distance x∗g from the center of gravity (CG), where x∗g is to be defined
later.

Assumption 6.4. The hydrodynamic damping is linear.

Remark 6.1. Nonlinear damping is not considered in order to reduce the complexity
of the controllers. However, the passive nature of the non-linear hydrodynamic damping
forces should enhance the directional stability of the vessel [36].

Assumption 6.5. The ocean current is defined in the inertial frame i and is assumed
constant, unknown, irrotational and bounded. Hence, Vc , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

Remark 6.2. The constant and irrotational ocean current model is widely accepted to
describe slowly varying disturbances and it represents a good approximation when closed
loop control is implemented on-board of marine vehicles [51].

6.1.2. The Control Plant Model

The state of the surface vessel is given by the vector [pT ,νTr ]T where p , [x, y, ψ]T

describes the position and the orientation of the vehicle with respect to the inertial frame
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i. The vector ν , [u, v, r]T contains the linear and angular velocities of the ship defined
in the body-fixed frame b, where u is the surge velocity, v is the sway velocity and r

is the yaw rate. The ocean current velocity in the body frame b, νc , [uc, vc, 0]T , is
obtained from νc = RT (ψ)Vc where R(ψ) is the rotation matrix from b to i. According
to Assumption 6.5 the ocean current is constant and irrotational in i and hence V̇c = 0,
and ν̇c = [rvc,−ruc, 0]T . In navigation problems involving ocean currents it is useful to
describe the state of the vessel with the relative velocity vector: νr , ν−νc = [ur, vr, r]

T .
The vector νr is defined in b, where ur is the relative surge velocity and vr is the relative
sway velocity. This paper considers the class of marine vehicles described by the following
3-DOF maneuvering model [52]:

ṗ = R(ψ)νr + Vc, (6.1)

Mν̇r +C(νr)νr +Dνr = Bf . (6.2)

The model (6.1-6.2) describes the kinematics and dynamics of surface vessels as well as
underwater vehicles moving in the horizontal plane.

Remark 6.3. It is shown in [52] that when the ocean current is constant and irrotational
in i, as given in Assumption 6.5, the ship can be described by the 3-DOF maneuvering
model (6.1-6.2).

The vector f , [Tu, Tr]
T is the control input vector, containing the surge thrust Tu and

the rudder angle Tr.

Remark 6.4. Notice that the model (6.1-6.2) is underactuated in its configuration
space since it has fewer control inputs than DOFs.

The matrix M = MT > 0 is the mass and inertia matrix and includes hydrodynamic
added mass. The matrix C is the Coriolis and centripetal matrix, D > 0 is the
hydrodynamic damping matrix and B ∈ R3×2 is the actuator configuration matrix. For
maneuvering control purposes, the matrices R(ψ), M , D, B are considered as [52]:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, M ,

[
m11 0 0

0 m22 m23
0 m23 m33

]
, (6.3)

D ,
[
d11 0 0
0 d22 d23
0 d32 d33

]
, B ,

[
b11 0
0 b22
0 b32

]
. (6.4)

The particular structure of M and D is justified by Assumptions 6.1-6.4. The actuator
configuration matrix B has full column rank and maps the control inputs Tu and Tr
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into forces and moments acting on the vessel. The Coriolis and centripetal matrix C is
obtained from M as [52]:

C(νr) ,
[

0 0 −m22vr−m23r
0 0 m11ur

m22vr+m23r −m11ur 0

]
. (6.5)

Finally, x∗g from Assumption 6.3 is chosen so that M−1Bf = [τu, 0, τr]
T . The point

(x∗g, 0) exists for all port-starboard symmetric vehicles [33]. Notice that in (6.1) the
disturbance Vc represents a pure kinematic drift.

Remark 6.5. The model used in [26] contains both the velocity vector ν as well as
the relative velocity vector νr. This complicates the controller design and weakens the
cascade configuration. The model (6.1-6.2) from [52] overcomes the problem and is
suitable for several control design purposes.

6.1.3. The Model in Component Form

To solve nonlinear underactuated control design problems it is useful to expand the model
(6.1-6.2) into a component form:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (6.6a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (6.6b)

ψ̇ = r, (6.6c)

u̇r = Fu(vr, r)−
d11

m11

ur + τu, (6.6d)

v̇r = X(ur)r + Y (ur)vr, (6.6e)

ṙ = Fr(ur, vr, r) + τr. (6.6f)

Notice the absence of any control inputs in sway (6.6e) to compensate for the envi-
ronmental disturbances. The ship should therefore side-slip to counteract for currents,
wind and waves. The expressions for Fr(vr, r), Fu(vr, r), X(ur) and Y (ur) are given in
Appendix 6.A. Furthermore, the functions Y (ur) and X(ur) are bounded for bounded
arguments and thus satisfy the following assumption:

Assumption 6.6. Y (ur) satisfies Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Urd], where
Y min is a positive constant.
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Remark 6.6. Assumption 6.6 is justified by a contradiction: Y (ur) ≥ 0 would imply a
nominally unstable vehicle in sway which is not the case for commercial vessels by design.
No bounds are implied on ur and Urd > 0 will be defined later.

6.2. The Control Objective

This section formalises the control problem considered in this chapter: the control system
should make the vessel follow a given straight line P and maintain a desired constant
surge relative velocity Urd > 0 in the presence of unknown and slowly varying (assumed
to be constant in this context) ocean currents. To simplify the problem without any
loss of generality, the inertial reference frame i is placed such that its x-axis is aligned
with the desired path, giving P , {(x, y) ∈ R2 : y = 0}. The vessel’s y coordinate then
corresponds to the cross-track error and the objectives the control system should pursue
can be formalized as follows:

lim
t→∞

y(t) = 0, (6.7) lim
t→∞

ψ(t) = ψss, (6.8) lim
t→∞

ur(t) = Urd, (6.9)

where ψss is constant. The yaw angle ψ(t) is not required to converge to zero but rather
to a steady-state constant value, allowing the vehicle to hold a non-zero yaw angle at
equilibrium and thus counteract the effect of the ocean current. This is necessary since
the vehicle is underactuated, and no control force is available in sway to compensate for
the drift. The value of the constant ψss will be specified later.

Remark 6.7. In [26] the vessel is required to follow P with a constant total speed
Ud > 0. In this paper the ship is required to hold a constant surge relative velocity Urd
as stated in (6.9). Therefore the path following speed is unconstrained and unknown.
This is not ideal for speed profile planning/tracking scenarios. However, controlling
the relative velocity of the vessel gives direct control over the energy consumption, as
hydrodynamic damping depends on νr, and any lift forces due to transom stern effects.
Furthermore, relative velocity control removes the unknown term νc from the velocity
feedback loop.

Remark 6.8. The relative velocity νr is measurable and often relative velocity sensors
are expected to give more reliable results than absolute velocity measurements.
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Finally, the following assumption allows the vessel to achieve path following for sea
currents acting in any directions of the plane:

Assumption 6.7. The propulsion system is rated with power and thrust capacity such
that Urd satisfies Urd > Vmax.

Remark 6.9. For most surface vessels Assumption 6.7 is easy to meet since their
propulsion systems are designed to give much more than 5 [m/s] of relative speed Urd.
In the North Atlantic ocean currents have usually an intensity of less than 1 [m/s].

6.3. The Control System

The control system that solves the path following task defined in Section 6.2 is presented.
First the LOS guidance is introduced, and then the surge and yaw controllers are added
in a cascaded configuration.

6.3.1. The Path Following Control Strategy

The surface vessel has to converge and follow the x-axis, therefore according to the
integral LOS guidance method introduced in Chapter 3 the desired heading angle is:

ψILOS , − tan−1

(
y + σyint

∆

)
, ∆, σ > 0, (6.10a)

ẏint =
∆y

(y + σyint)
2 + ∆2

, (6.10b)

where ∆ is the look-ahead distance and σ is the integral gain. Both are constant design
parameters. The integral effect becomes significant when disturbances push the craft away
from its path. This gives a nonzero angle (6.10a) and allows the vessel to side-slip while
staying on the desired path, so part of its relative forward velocity can thus counteract
the effect of the ocean current. The law (6.10b) gives less integral action when the vehicle
is far from P , reducing the risk of wind-up effects.
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6.3.2. The Surge and Yaw Controllers

According to (6.9), ur(t) should follow the desired value urd(t) , Urd > 0. Therefore, to
track urd(t) the following controller is used:

τu = −Fur(vr, r) +
d11

m11

urd + u̇rd − kur(ur − urd). (6.11)

The gain kur > 0 is constant. The controller (6.11) is a feedback linearising P-controller
and guarantees exponential tracking of urd(t). Part of the damping is not cancelled in
order to guarantee some robustness with respect to model uncertainties.

The following controller can be used to track the desired yaw angle ψd , ψILOS:

τr = −Fr(ur, vr, r) + ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d), (6.12)

where kψ, kr > 0 are constant gains. The controller (6.12) is a feedback linearising PD
controller and makes sure that ψ and r exponentially track ψd and ψ̇d respectively.

Remark 6.10. The controllers (6.11) and (6.12) are feedback linearizing controllers,
hence if the model suffers from high uncertainty other approaches should be considered.

6.4. Stability Conditions

This section presents the stability conditions under which the proposed ILOS guidance
(6.10) in a cascaded configuration with the feedback linearizing controllers (6.11-6.12)
achieves the objectives (6.7-6.9). The notation XUrd , X(Urd) and Y Urd , Y (Urd) is
used.
Theorem 6.1. Given an underactuated surface vessel described by the dynamical system
(6.6). If Assumptions 6.5-6.7 hold and, if the look-ahead distance ∆ and the integral gain
σ satisfy the conditions:

∆ >
|XUrd |
|Y Urd |

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (6.13)

0 < σ < Urd − Vmax, (6.14)

then the controllers (6.11-6.12), where ψd is given by (6.10) and urd , Urd, guarantee
achievement of the control objectives (6.7-6.9). The control objective (6.8) is fulfilled

96



6.5 Proof of Theorem 6.1

with:

ψss = − tan−1

 Vy√
U2
rd − V 2

y

 . (6.15)

6.5. Proof of Theorem 6.1

In this section the proof of Theorem 6.1 is presented. Given the vector ζ , [ũr, ψ̃,
˙̃ψ]T

where ũr , ur − Urd, ψ̃r , ψ − ψd and ˙̃ψr , ψ̇ − ψ̇d, the dynamics of ζ are obtained
by combining the system equations (6.6c), (6.6d) and (6.6f) with the control laws (6.11)
and (6.12):

ζ̇ =

[
−kur−

d11
m11

0 0

0 0 1
0 −kψ −kr

]
ζ , Σζ. (6.16)

The system (6.16) is linear and time-invariant. Furthermore, since the gains kur , kψ,
kr and the term d11/m11 are all strictly positive, the system matrix Σ is Hurwitz and
the origin ζ = 0 of (6.16) is UGES. Therefore the control goal (6.9) is achieved with
exponential converging properties in any ball of initial conditions.

The dynamics of the cross track error y and the relative sway velocity vr are analysed
next. The y − vr subsystem is obtained combining (6.6b), (6.6e) and (6.10b):

ẏint =
∆y

(y + σyint)
2 + ∆2

, (6.17)

ẏ = (ũr + Urd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy, (6.18)

v̇r = X(ũr + Urd)(
˙̃ψ + ψ̇d) + Y (ũr + Urd)vr. (6.19)

The equilibrium point of the system (6.17-6.19) is given by:

yeq
int =

∆

σ

Vy√
U2
rd − V 2

y

, yeq = 0, veq
r = 0. (6.20)

A new set of variables is introduced to move the equilibrium point to the origin: e1 ,

yint− yeq
int and e2 , y + σe1. Substituting (6.10a) for ψd and factorizing the result with

respect to ζ leads (6.17-6.19) to the following expression of the interconnected dynamics:
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[
ė1
ė2
v̇r

]
= A(e2)

[
e1
e2
vr

]
+B(e2) +H(y, yint, ψd, vr, ζ)ζ, (6.21a)

ζ̇ = Σζ. (6.21b)

The matrix H(y, yint, ψd, vr, ζ) contains all the terms vanishing at ζ = 0. A(e2) is given
in (6.38) of Appendix 6.A while B(e2) and H(y, yint, ψd, vr, ζ) are:

B(e2) ,

[
0

Vyf(e2)

− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)

]
, (6.22)

H(y, yint, ψd, vr, ζ) ,

[ 0 0
1 0

− ∆X(ũr+Urd)

(e2+σy
eq
int

)2+∆2 1

] [
hTy
hTvr

]
, (6.23)

where:

f(e2) = 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

. (6.24)

Note that the following bound holds for f(e2):

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

. (6.25)

The expressions of the vectors hy and hvr are given in Appendix 6.A. Notice that the
system (6.21) is a cascaded system, where the linear UGES system (6.21b) perturbs the
dynamics (6.21a) through the interconnection matrix H(y, yint, ψd, vr, ζ). To analyze the
stability properties of the cascade (6.21) consider the following nominal system defined
on the manifold ζ = 0: [

ė1
ė2
v̇r

]
= A(e2)

[
e1
e2
vr

]
+B(e2)f(e2). (6.26)

The following Lemma states the stability properties of the nominal system (6.26):

Lemma 6.1. Under the conditions of Theorem 6.1, the system (6.26) is UGAS and
ULES.

Proof. The proof of Lemma 6.1 is given in Appendix 6.B.
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Next, the stability of the cascade (6.21) is analyzed. In particular, the perturbing system
(6.21b) is UGES and the interconnection matrix H can be shown to satisfy:

‖H ‖≤ θ1(‖ ζ ‖)(|y|+ |yint|+ |vr|) + θ2(‖ ζ ‖), (6.27)

where θ1(·) and θ2(·) are some continuous non-negative functions. Therefore applying
Theorem A.2 and Lemma A.2 concludes that under the conditions of Theorem 6.1 the
origin (e1, e2, vr, ζ) = (0, 0, 0,0) of the system (6.21) is UGAS and ULES. Hence, the
control objectives (6.7) and (6.8) are achieved with exponential converging properties
with ψss given in 6.15.

Remark 6.11. The value yeq
int guarantees that at equilibrium the vessel holds the

heading ψss defined in 6.15 which is, as explained in Section 3.1 of Chapter 3, the only
possible yaw angle that guarantees successful current compensation for underactuated
surface vessels.

Remark 6.12. The lower bound (6.13) is expected and has a clear physical interpreta-
tion: a too short look-ahead distance ∆ > 0 makes the vessel overshoot the target and
thus causes chattering as shown in Chapters 3-4.

6.6. Measurement of the Ocean Current

In this section a short review of the instrumentation required to implement the control
system (6.11-6.10) is given and it is shown how the ocean current can be estimated in
steady state.

Relative velocity sensors as well as absolute position measurements are needed to
implement the control system (6.10-6.12). Ships are usually equipped with a large
variety of position, velocity and attitude sensors in order to reconstruct their state. The
estimation of a system state variable is often the result of a certain sensor fusion algorithm
[52]. For instance, to estimate the absolute position/velocity of the vessel, data from an
Inertial Measurement Unit (IMU) and a GPS receiver can be combined to compensate for
the drift affecting the IMU. When operating in shallow waters, the absolute velocity of
the ship can also be measured using a Doppler Velocity Logs (DVL). The DVL compares
the frequencies of a transmitted and received acoustic signal bounced to the sea bottom.
To measure the relative velocity the following sensors are available: Acoustic Doppler
Current Profilers (ADCP), Pitometer logs and Paddle meters. The ADCP is similar to

99



Relative Velocity Control for Path Following of Underactuated Surface Vessels in the
Presence of Ocean Currents

the DVL: it samples repeatedly the return echo and produces a sea current profile over a
range of depths. The Pitometer log compares the dynamic and static pressures of the
fluid while the paddle meter measures the spin velocity of a paddle driven by the flow
itself. Although relative velocity logs such as ADCPs or Pitometers can suffer from drift
effects, they are expected to give reliable measurements. Therefore, having the state of
the ship described by the relative velocity νr decouples the controllers (6.11-6.12) from
the guidance law (6.10) where absolute position measurements such as GPS data are
required.

In general the relative velocity of the ship in i is defined as Ur(t) , U (t)− Vc where
U(t) , [ẋ, ẏ]T is the absolute velocity of the ship in i and Vc is the ocean current. The
steady state condition is reached when the closed-loop system (6.21) has converged to its
equilibrium point. In steady state the ship follows P and the relation between Ur(t) and
U(t) becomes Urd = Uss − Vc. The vectors Uss and Urd are defined as:

Uss , lim
t→∞

U (t), (6.28) Urd , lim
t→∞

Ur(t), (6.29)

where Uss = [Uss, 0]T and the constant Uss > 0. From the definition of Ur(t) the relation
between the intensities Uss and Urd , |Urd| is: Urd =

√
(Uss − Vx)2 + V 2

y . This relation
together with the value stored in the integrator at equilibrium yeq

int given in (6.20) yields:

Vy =
yeq

intUrd√
(yeq

int)
2 + ∆2

σ2

, Vx = Uss −
√
U2
rd − V 2

y . (6.30)

If measurements of |U | and |Ur| are available and if yint is accessible, then the ocean
current Vc can be estimated using (6.30) when the system is in steady state.

6.7. Simulations

Results from numerical simulations are presented in this section. First, the ILOS guidance
(6.10) from Section 6.3 in a cascaded configuration with the feedback linearizing surge
and yaw controllers (6.11-6.12), is applied to an underactuated supply vessel. In order to
have simulation results that can be directly compared with the experiments on the CART
USSV, the model is then scaled to the dimensions of the CART USSV. A scaled version
of the supply ship model is used for simulation and tuning since an accurate model
of the CART vehicle is not yet available. Disturbances in the form of an irrotational
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ocean current are taken into account since the CART vehicle operates semi-submersed.
Therefore, disturbances from wind are also assumed to act as a current in the water
layers close to the surface.

6.7.1. ILOS applied to an offshore supply vessel

The proposed control system (6.10-6.12) is applied to an underactuated supply vessel.
The model of the ship is given in Section B.1 of Appendix B and the objective is to
make the vessel follow the path P (north direction, 0 [deg]) with a desired surge relative
speed Urd = 5 [m/s]. The intensity of the current is |Vc| =

√
2 [m/s] and its direction is

unknown since it is randomly generated. In this case its components are Vx = 0.60 [m/s]

and Vy = −1.28 [m/s]. Thus, Assumption 6.5 is fulfilled with Vmax = 1.5 [m/s] and it
can be verified that Assumption 6.6 is satisfied with Ymin = 0.037 [1/s]. The constants
|Y Urd | and |XUrd | become |Y Urd | = 0.07 [1/s] and |XUrd | = 4.34 [m/s]. The chosen values
for the integral gain and the look-ahead distance of the integral LOS guidance law are
σ = 1 [m/s] and ∆ = 300 [m], and satisfy (6.13-6.14). The heading and speed controllers
(6.11-6.12) are implemented with the following gains: kur = 0.1 [1/s], kψ = 0.04 [1/s2]

and kr = 0.9 [1/s]. Hence, the ũr first order closed loop system has a time constant of
8.8 [s] while the ψ̃ second order closed loop system is overdamped with ω0 = 0.2 [rad/s].
Saturation is considered for both the rudder and the propeller. The maximum rudder
angle is 35◦ and the maximum rudder turning rate is 10 [◦/s]. The maximum available
propeller force is 1600 [kN].

The ship is given an initial cross track error of 1500 meters and initially holds zero
relative velocity. Its surge axis is parallel to the desired path and it is heading south
(180 [deg]). Figures 6.1a, 6.1b and 6.1c show how the underactuated vessel successfully
follows the path P with a constant side-slip angle ψss ≈ 14.8 [deg] to compensate for
the current. It can be seen that choosing the guidance law parameters according to
the criteria (6.13-6.14) gives smooth convergence and does not overload the controllers
(6.11-6.12). The performance of the speed controller (6.11) is shown in Figure 6.1d, while
the rudder angle is given in 6.1c. Finally, notice in Figure 6.1e how the unknown current
can be estimated using (6.30). The signals yint, |Ur| and |U | are available on-line. The
quantity yint is given in (6.10b) while |Ur| and |U | are calculated from: |Ur| =

√
u2
r + v2

r

and |U | =
√
ẋ2 + ẏ2.

The guidance controller (6.10-6.12) is also simulated using the extended model of
the same supply vessel to assess robustness with respect to model uncertainties. The
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extended model is given in Section B.1 of Appendix B and combines linear as well as
nonlinear damping to give a more realistic picture of the vessel behavior at higher
speeds. Linear damping is a fair approximation of the hydrodynamic drag forces in
low-speed/station-keeping operating conditions (speed lower than 2 [m/s]) while nonlinear
damping dominates at higher speeds [52]. Furthermore, process noise is added to the
system. Figures 6.2a-6.2b show that the integral LOS guidance achieves convergence
in presence of nonlinear drag as well as zero-mean Gaussian process noise having the
following vector of standard deviations [σx, σy, σψ, σur , σvr , σr]

T = 10−3[1, 1, 1, 10, 100, 1]T .
Yet, the integral LOS guidance is very robust with respect to the noise affecting the surge
and sway velocities, while it is sensitive to noise affecting the position and yaw state
variables. The speed controller (6.11) suffers from a significant offset caused by different
hydrodynamic coefficients (see Figure 6.2c). However, this offset can be easily removed
with integral action. The heading controller (6.12) does not seem to suffer significantly
from model uncertainties but it does suffer from process noise (see Figure 6.2b). Finally,
a Monte Carlo analysis is run on the model having linear damping only, where random
uniformly distributed uncertainty is added to all the hydrodynamic coefficient of the
dynamics (6.2). The model is generated and then held constant for each simulation
run. Acceptable path following is achieved in 91% of 50000 simulation runs where the
maximum uncertainties on the matricesM ,D and B are 40%, 70% and 50% respectively.
These results further confirm the robustness of the ILOS guidance law with respect to
model uncertainties.

6.7.2. Scaling the model to the CART vehicle dimensions

The CART USSV, presented in Section 6.8, is a 0.9 [m] long vehicle and its mass is
approximately 50 [kg]. Since there is no accurate model of the CART vehicle available
yet, the supply vessel model is scaled to the dimensions of the CART USSV through
the bis normalization system [52]. The purpose is to analyze the behavior of a vehicle
having the same dimensions of the CART in order to tune the gains ∆ and σ for the
experiments, and also to compare simulation results with experimental results. Since the
vehicle operates semi-submersed, only constant irrotational ocean current disturbances
are considered. The upper bound for the current intensity is selected as Vmax = 0.3 [m]

and the vehicle is required to hold a relative surge velocity Urd = 0.7 [m/s]. The desired
Urd satisfies Assumption 6.7. The chosen values for the guidance law integral gain
and look-ahead distance are σ = 0.1 [m/s] and ∆ = 5 [m], and satisfy (6.13-6.14) with
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(a) Simulation of convergence and path following of the un-
deractuated supply vessel in presence of currents. The
time interval 0− 1500 [s] is considered in the figure.
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(b) Cross track error y(t) of the vessel.
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Figure 6.1.: Simulation results for ∆ = 300 [m] and σ = 1 [m/s].
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(a) Cross track error y(t) of the vessel in presence of model
uncertainties and process noise.
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(b) Heading angle ψ(t) of the ship in presence of model un-
certainties as well as process noise.

0 500 1000 1500 2000
0

1

2

3

4

5

6

Time [s]

V
el

oc
ity

 [m
/s]

 

 

0 500 1000 1500 2000
0

400

800

1200

1600

2000

Th
ru

st 
[k

N
]

Relative surge velocity, ur(t)

Desired relative surge velocity, urd(t)

Surge thrust, Tu(t)

(c) Relative surge velocity ur(t) of the vessel in presence of
model uncertainty and process noise.

Figure 6.2.: Simulation results for ∆ = 300 [m] and σ = 1 [m/s] in presence of model
uncertainties and process noise.
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κmax
v = 0. The gains of the controllers (6.11-6.12) are set to: kur = 0.5, kψ = 1, kr = 3.

Higher gains are used compared to the supply ship case since the CART USSV is a highly
maneuverable vehicle [12]. In particular, the values for kur , kψ and kr are chosen to give
a time constant of approximately 1.4 [s] for the ũr first order closed loop system and
to make the ψ̃ second order closed loop system overdamped with ω0 = 1 [rad/s]. The
ocean current is set to Vx = 0.02 [m/s] and Vy = −0.05 [m/s], and equals the drift of the
vehicle measured before the test runs shown in Section 6.8.

The simulation procedure resembles the test runs shown in Section 6.8 and requires
the vehicle to move along two parallel straight lines in order to exhibit the transient
response and the steady-state behavior of the ILOS guidance system. The reference paths
are two parallel straight lines l1 and l2 defined by a point and an angular orientation in
the x− y plane:

• l1: point (60 [m];−50 [m]), orientation −130 [deg]

• l2: point (70 [m];−50 [m]), orientation 50 [deg]

At the beginning, the first reference line l1 is fed to the ILOS. After a while, the vehicles
is commanded to turn back and follow the second line l2. Figures 6.4a, 6.4c and 6.4e show
how the vehicle successfully follows the lines l1 and l2, with an average side-slip angle
ψss ≈ 4.6 [deg] for l1 and ψss ≈ −4.6 [deg] for l2, to compensate for the disturbances.
It can be seen that choosing the guidance law parameters according to the criteria
(6.13-6.14) gives smooth convergence.

6.8. Experiments

In this section results from field experiments are presented. The CART USSV was used
as a test platform and the sea trials were carried out off the coast of the Murter island
in Croatia. First, a description of the CART USSV is given and then the results from
the experiments are presented and commented. Weather conditions on the test day
(28.09.2013) were good with a light breeze blowing from the South-East, sweeping along
the coast of Dalmatia. This is in accordance with the estimated current of 0.02 [m/s]

North and −0.05 [m/s] East. Notice that South-Eastern winds are common for the
Adriatic sea.

105



Relative Velocity Control for Path Following of Underactuated Surface Vessels in the
Presence of Ocean Currents

6.8.1. Vehicle description

The CART USSV, shown in Figure 6.3, has been developed for emergency towing
operations in Italy by CNR-ISSIA in cooperation with other international partners [22].
It is a 0.9 [m] long and 0.75 [m] wide robotic platform. Thrust is provided by four
DC brushless motors coupled to 4-bladed propellers, capable of delivering a maximum
bollard pull of about 150 [N]. A central cylindrical canister contains all the electronics
and sensors. In particular, the USSV is equipped with a single board computer running
a GNU/Linux based real-time control application, a GPS system providing absolute
position measurements and an Attitude and Heading Reference System (AHRS). Another
cylinder contains a set of lithium ions batteries. At full charge the vehicle can operate
continuously for 5− 6 hours. The communication between the vehicle and the remote
control station is provided by a 2.4 [Ghz] WiFi link.

For the purpose of exploiting the CART vehicle as a platform for the development
of advanced navigation, guidance and control techniques, as well as payload carrier in
different experimental campaigns, the software control architecture has been upgraded and
an extensively tested and well known software system has been ported. In particular the
control architecture of the CNR-ISSIA Charlie surface vehicle [12] has been customized
and transferred on the CART USSV as well. The porting operation involved the
development of a new driver layer, thus creating the connection between the hardware
and the software architecture. No rearrangement of the higher levels of the architecture
was required, due to the complete decoupling from hardware-related issues.

Figure 6.3.: The CART USSV during operations.
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The CART USSV has a very high level of maneuverability. This, together with its
high power-to-weight ratio and the smart placement of the motors, allows for choosing the
thrust/torque mapping in such a way that all the engines deliver thrust, but only the two
rear ones contribute to torque generation. This makes the motion of the vehicle smoother
and less subjected to yaw jerks. Since a validated dynamic model of the employed vehicle
is not yet available, a simple Proportional-Derivative (PD) control scheme has been
implemented to provide the basic auto-heading feature. The controller parameters have
been set through on the field tests, obtaining an overshoot-free response in normal sea
conditions. More information about the CART vehicle is found in [12, 22, 14].

6.8.2. Sea Trials

An extensive set of sea trials has been carried out with the purpose of evaluating the
performance of the ILOS guidance law. As explained in Section 6.7, the USSV is required
to move along the two geo-referenced parallel straight lines l1 and l2 to exhibit both the
transient response as well as the steady state behavior of the guidance law. This procedure
has been repeated several times to test different combinations of the parameters ∆ and σ
for different thrust levels. However, focus is first put on comparing the ILOS on-the-field
performances with the simulations from Section 6.7. In particular, the guidance law
parameters ∆ and σ are set to 5 [m] and 0.1 [m/s], respectively, as suggested by the
simulations. The thrust level is set to 20%, which corresponds approximately to 0.7 [m/s]

of relative velocity. Next, results from tests runs with different combinations of the
guidance law parameters ∆ and σ for different speeds/thrust levels are shown.

Remark 6.13. The control system on the CART USSV does not provide the option to
directly control its relative velocity. However, the thrust level (RPMs) can be set. This
is the closest available option to relative velocity control.

Figures 6.4b, 6.4d and 6.4f show that the experimental results are in good agreement
with the simulations results in Figures 6.4a, 6.4c and 6.4e. The CART USSV successfully
follows the lines l1 and l2, with an average side-slip angle ψss ≈ 1 [deg] for l1 and
ψss ≈ −5 [deg] for l2, to compensate for the disturbances. The asymmetry in the two
side-slip angles is probably caused by gyro-offsets (a magnetic declination of about 2 [deg]

East is reported in the area) and dynamic, heading dependent disturbances caused by
wind and waves.
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(a) Simulation of convergence and path following of the
CART USSV in presence of constant irrotational ocean
currents. The vehicle side-slips to compensate for the
drift. In this case ∆ = 5[m] and σ = 0.1 [m/s].
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(b) Experimental ILOS test run of the CART USSV off the

coast of Murter, Croatia. Convergence and path following
of the USSV is achieved. In this case ∆ = 5[m], σ =
0.1 [m/s] and the thrust is set to 20%.
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(c) Cross-track error of the CART USSV from simulations.
Notice the overshoot caused by integral action. After-
wards, path following is achieved and the vehicles follows
the line l1 first and the line l2 afterwords.
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(d) Cross-track error of the CART USSV from sea trials. No-
tice the overshoot caused by integral action. Afterwards,
path following is achieved for both the l1 and l2 lines.
Disturbance from waves is present.
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(e) Yaw angle ψ(t) of the CART USSV from simulations. No-
tice the steady state side-slip angle ψss ≈ 4.6 [deg] for
the l1 line and ψss ≈ −4.6 [deg] for the l2 line.
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(f) Yaw angle ψ(t) of the CART USSV from sea trials. Notice
that while on path the vehicle holds an average side-slip
angle of ψss ≈ 1 [deg] for the l1 line and ψss ≈ −5 [deg]
for the l2 line.

Figure 6.4.: Back to back comparison between simulations and experimental results.
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The next set of experiments focuses on the evaluation of the ILOS for different speeds
held by the vehicle in motion. Figure 6.5 shows the comparison between different tests
where the guidance system, characterized by the same parameter setting (∆ = 5.0 [m]

and σ = 0.1 [m/s]), is commanded to track the two reference lines at different surge
thrust regimes. The commanded surge thrust values are 20%, 30%, 40% and 50% of the
total available thrust provided by the motors. These values correspond to average steady
state speeds of 0.7, 0.8, 0.9 and 1.0 [m/s], respectively. Notice that the values ∆ = 5.0 [m]

and σ = 0.1 [m/s] were suggested by the simulations and are selected since they provide
satisfactory path following performance. As shown in the plots of Figure 6.5, the vehicle
converges and tracks the reference lines. Notice how every change of the reference line
is followed by a peak in the cross track error. The ILOS guidance quickly reacts and
takes the vehicle onto the new line. In particular, in the error plots of Figure 6.5 it can
be noticed that during steady-state the cross-track error is always less than 1 m, with
no significant difference with respect to the actual surge thrust setting. The statistical
analysis reported in Table 6.1 supports this argument, indicating comparable standard
deviation values during steady-state response. The steady-state mean values are in the
order of 0.2÷ 0.3 [m] thus indicating a practical rejection of external disturbances.

Table 6.1.: Speed dependency evaluation statistics.

thrust [%] mean value [m] standard deviation [m]
20 -0.1709 0.2762
30 -0.2193 0.3242
40 -0.2131 0.2546
50 -0.1847 0.3148

The second and third sets of test runs analyze the sensitivity of the guidance system
with respect to the ∆ and σ parameters. Figure 6.6 shows the motion of the vehicle where
the parameter ∆ is set to 2.0[m], 5.0[m] and 10.0 [m]. Interpreting the parameter ∆ as
the look-ahead distance, the effect of increasing its value induces a slower convergence
onto the reference line, while ∆ values approaching the size of the vehicle indeed reduce
the convergence time, but introduce small oscillations during the on-path motion, caused
by overshooting. This oscillating behavior at short ∆ is simulated in Chapter 3 and is
foreseen by the more detailed Lyapunov analysis of the complete kinematic-dynamic
system in Section 6.5 where the lower bound (6.13) for ∆ is analytically derived.
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The results of the third experiment are shown in Figure 6.7. In Figure 6.7 the
vehicle behavior is assessed with respect to different values of the integral gain σ. The
guidance law is tested for the following values of σ: 0.05, 0.1 and 0.5 [m/s]. As it can
be observed, with lower integral gains the guidance system loses its efficiency to reject
constant disturbances, i.e. the side-slipping of the vehicle is not enough to completely
compensate for the drift, while increasing the value of σ leads to overshoots in the
transient response during the convergence phase. Notice that the condition (6.14),
derived from the Lyapunov analysis of Section 6.5, gives an upper bound upon the choice
of σ. The experimental results confirm what the theoretical analysis predicted: a high σ
gain causes unstable behaviors.

6.9. Conclusions

In this chapter a solution for path following control of underactuated surface vessels has
been presented and analyzed in details. It is based on the ILOS guidance law and path
following of straight lines is considered. The complete kinematic and dynamic closed loop
system of the ILOS guidance is analyzed where the actuated surge and yaw dynamics are
considered as well. The resulting closed loop system forms a cascade where the actuated
dynamics perturb the combined sway-guidance system analyzed in Chapter 5 and the
UGAS and ULES stability properties are shown for the closed loop cascaded system.
Disturbances in the form of irrotational ocean currents are taken into account and the
dynamics of the vessel are expressed in terms of its relative velocity. This is possible
since the current is assumed constant and irrotational in the inertial frame. Furthermore,
it has been shown that in steady state it is possible to estimate the unknown current by
using the integral term of the ILOS guidance law as well as measurements of the absolute
and relative speeds of the vessel. The theoretical analysis is strongly supported by the
results from simulations and field experiments where the ILOS guidance has been applied
to the CART Unmanned Semi-Submersible Vehicle (USSV) for sea trials. Furthermore,
different models of a supply ship are used to simulate the control system and to assess
its robustness with respect to parameter uncertainties and process noise. This chapter
relies significantly on the concepts developed in Chapter 3 and Chapter 5. Hence, the
results from simulations and sea trials confirm the arguments and the theory presented
in Chapter 3 and Chapter 5 as well.
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6.A. Appendix: Functional Expressions

Fu(vr, r) ,
1

m11

(m22vr +m23r)r, (6.31)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (6.32)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (6.33)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(6.34)

The functions hy , [hy1, hy2, hy3]T and hvr , [hvr1, hvr2, hvr3]T are:

hy3 = 0, hy2 = Urd

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]
+

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
, hy1 = sin(ψ̃ + ψd),

(6.35)

hvr1 =
X(ũr + Urd)−XUrd

ũr
γ(yint, y, vr)+

+ vr
Y (ũr + Urd)− Y Urd

ũr
, hvr2 = 0, hvr3 = X(ũr + Urd),

(6.36)

where the limits of hy2 for ψ̃ → 0 and hvr1 for ũr → 0 exist and are finite. The expression
γ(yint, y, vr) is defined as:

γ(yint, y, vr) ,
∆Urd(y + σyint)

((y + σyint)2 + ∆2)3/2
− ∆2

((y + σyint)2 + ∆2)3/2
vr

− σ∆2

((y + σyint)2 + ∆2)2
y − ∆Vy

(y + σyint)2 + ∆2
.

(6.37)
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6.B. Appendix: Proof of Lemma 6.1

The system (6.26) is written again:[
ė1
ė2
v̇r

]
= A(e2)

[
e1
e2
vr

]
+B(e2). (6.39)

The nominal system (6.26) is equivalent to the system (5.28) analyzed in Chapter 5, with
g(e2) = 0, κv(γe) = 0 and e3 = vr. Hence, the proof follows along the lines of the proof
of Lemma 5.2 given in Appendix 5.B of Chapter 5. Consider the quadratic Lyapunov
function candidate (LFC):

V ,
1

2
σ2e2

1 +
1

2
e2

2 +
1

2
µv2

r , µ > 0. (6.40)

Assumptions 6.5-6.7, inequality (6.25) and the notation ē1 , e1/
√

(e2 + σyeq
int)

2 + ∆2 and
ē2 , e2/

√
(e2 + σyeq

int)
2 + ∆2 yield the following bound for the time derivative V̇ :

V̇ ≤ −W1(|ē1|, |vr|)−W2(|ē2|, |vr|). (6.41)

The quadratic functions W1(|ē1|, |vr|) and W2(|ē2|, |vr|) are defined as:

W1 ,σ
3∆|ē1|2 − µ

σ2|XUrd |
∆

|ē1||vr|+ µη

(
|Y Urd | − |X

Urd |
∆

)
|vr|2, (6.42)

and:

W2 , ∆
[
|ē2| |vr|

] β −α

−α α(2α−1)
β

|ē2|

|vr|

 , (6.43)

where 0 < η < 1, β , Urd − Vmax − σ and α is given by:

α , (1− η)
(Urd − Vmax − σ)(∆|Y Urd | − |XUrd |)

|XUrd | (Urd + Vmax + σ)
. (6.44)

The parameter µ is chosen as:

µ ,
∆2(2α− 1)

|XUrd |(Urd + Vmax + σ)
. (6.45)
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If both W1 and W2 are definite positive then V̇ is negative definite. Positive definiteness
of W1 is ensured if (6.46) and (6.47) are satisfied:

∆ >
|XUrd |
|Y Urd |

, (6.46) µ <
4η∆2

[
∆|Y Urd | − |XUrd |

]
σ|XUrd |2

. (6.47)

Notice that condition (6.46) is met as long as (6.13) holds. It is straightforward to show
that η ≥ 1/5 is a sufficient condition for µ, defined in (6.45), to satisfy (6.47). Therefore,
without any loss of generality, η is set to 1/5. Both β and α must fulfill β > 0 and α > 1

to guarantee positive definiteness ofW2. Assumption 6.7 and (6.14) make sure that β > 0

while it is easy to check that conditions (6.13) and (6.14) imply α > 1. Furthermore,
α > 1 guarantees µ > 0 and ensures positive definiteness of V . Therefore under the
conditions stated in Theorem 6.1, V , W1 andW2 are positive definite and hence, following
standard Lyapunov arguments, the system (6.39) is UGAS. Furthermore, the inequality
W , W1 +W2 ≥ λ̄1|ē1|2 + λ̄2|ē2|2 + λ3|vr|2 holds in a neighbourhood of the origin for
some constants λ̄1, λ̄2, λ3 > 0 and thus in any ball Br , {|e2| ≤ r}, r > 0 the function W
can be estimated as W ≥ λ1|e1|2 + λ2|e2|2 + λ3|vr|2 where λi = λ̄i/((r + σyeq

int)
2 + ∆2),

i = 1, 2. This, together with the fact that V is a quadratic function of e1, e2 and vr,
concludes that (6.39) is also uniformly locally exponentially stable, ULES [82].
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Chapter 7.

Path Following Control of
Underactuated Surface Vessels with
Saturated Transverse Actuators

“The wonderful things in life are the things you do, not the things you
have.”

— Reinhold Messner, Alpinist

The marine vehicles considered in Chapters 3, 5 and 6 are assumed underactuated since
most of marine surface vessels are equipped with fixed stern propellers and steering rudders.
However, modern ships are often equipped with several actuators. Devices providing
thrust in the transverse direction such as tunnel thrusters or azimuth thrusters are installed
in addition to the main propellers and the aft rudders to increase maneuverability and
implement dynamic positioning (DP) capabilities. These vessels can be considered fully
actuated in 3 degrees of freedom (DOF) when performing low speed maneuvering or
station keeping. Nevertheless, the transverse thrusters are in general smaller propulsive
devices compared to the main propellers. This is justified by the fact that ships and
marine vehicles are usually built for transit operations to minimize water resistance in
the forward direction of motion. Therefore, the transverse actuators are more susceptible
to saturation phenomena and thus their effectiveness to guarantee path following in
presence of heavy disturbances such as strong sea currents is questionable.

This chapter investigates the possibility of extending the Integral Line-of-Sight (ILOS)
guidance law proposed for underactuated surface marine vehicles in Chapter 6 to fully
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actuated marine vehicles with saturated transverse actuators. Low-speed path following of
straight lines is considered and the proposed control system is designed to compensate for
constant and irrotational ocean currents acting in any direction of the inertial frame. The
proposed solution is inspired by practical issues faced when operating remotely operated
vehicles (ROVs) at sea. Field experience of ROV pilots suggests that a combined control
strategy involving both sway thursters and side-slipping may successfully guarantee path
following of a straight line. Intuitively one can think of saturating the sway thruster
first, and then, if this is not sufficient to counteract the disturbances, making the ship
side-slip thus exploiting the stronger main propellers to compensate for the current and
follow the desired direction. As a result, a solution combining the ILOS guidance law
with a nonlinear bounded sway feedback controller is designed. A fully actuated surface
vessel described by a 3-DOFs maneuvering model is considered and the guidance law is
derived from the underactuated case described in Chapter 6. Compared to Chapter 6, it
is shown that the additional use of the transverse actuators for disturbance compensation
reduces the side-slip angle the vessel has to hold. This increases mission flexibility when
trade-offs between path following speed, power usage and energy consumption become
critical. Furthermore, there is no need to change guidance law when shifting operation
mode between fully-actuated and underactuated. The problem addressed in this paper
is partially a bounded control problem since saturation is considered for the transverse
actuators while the surge and yaw control inputs are considered unconstrained. The
proposed bounded sway controller is derived from elements of underactuated control
design for marine vehicles and relies on the Lyapunov-based design developed in Chapters
5 and 6. The proposed control system is based on relative velocities with direct control
over the vehicle relative speed as done in Chapter 6. Uniform global asymptotic stability
(UGAS) and uniform local exponential stability (ULES) of the closed loop system are
proved. Both the kinematic and dynamic levels of the problem are addressed and explicit
bounds on the guidance law parameters are given to guarantee stability. Results from
simulations are presented to verify and illustrate the theoretical results.

The chapter is organized as follows: Section 7.1 presents the control plant model of the
vessel, Section 7.2 identifies the control objective and Section 7.3 presents the strategy
that solves the path following task. The stability conditions are given in Section 7.4 and
proven in Section 7.5. Simulation results and conclusions are given in Section 7.6 and
Section 7.7 respectively. The results presented in this chapter a based on [31].
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7.1. The Control Plant Model of the Vessel

The control plant model is a simplified mathematical description of the vessel. It contains
the physical properties that are significant for control design purposes [130].

7.1.1. Model Assumptions

Assumption 7.1. The motion of the ship is described in 3 degrees of freedom (DOF),
that is surge, sway and yaw.

Assumption 7.2. The ship is port-starboard symmetric.

Assumption 7.3. The body-fixed coordinate frame b is considered located in a point
(x∗g, 0) from the vehicle’s center of gravity (CG) along the center-line of the ship, where
x∗g is to be defined later.

Assumption 7.4. Damping is considered linear.

Remark 7.1. Nonlinear damping is not considered in order to reduce the complexity
of the controllers. However, the passive nature of the non-linear hydrodynamic damping
forces should enhance the directional stability of the ship [36].

Assumption 7.5. The ocean current is defined in the inertial frame i and is assumed
constant, unknown, irrotational and bounded. Hence, Vc , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

7.1.2. The Vessel Model

The state of the surface vessel is given by the vector [pT ,νT ]T where p , [x, y, ψ]T

describes the position and the orientation of the vehicle with respect to the inertial frame
i. The vector ν , [u, v, r]T contains the linear and angular velocities of the ship defined
in the body-fixed frame b, where u is the surge velocity, v is the sway velocity and r is the
yaw rate. The ocean current velocity in the body frame b, νc , [uc, vc, 0]T , is obtained
from νc = RT (ψ)Vc where R(ψ) is the rotation matrix from b to i.

The ocean current is constant and irrotational in i, i.e. V̇c = 0 and therefore
ν̇c = [rvc,−ruc, 0]T . In navigation problems involving ocean currents it is useful to
introduce the relative velocity: νr , ν − νc = [ur, vr, r]

T . The vector νr is defined in b,
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where ur is the relative surge velocity and vr is the relative sway velocity. The surface
vessels described by the following 3-DOF manoeuvring model are considered [52]:

ṗ = R(ψ)νr + Vc, (7.1)

Mν̇r +C(νr)νr +Dνr = Bf . (7.2)

The vector f , [Tu, Tv, Tr]
T is the control input vector, containing the surge thrust Tu,

the sway thrust Tv and the rudder angle Tr. The matrix M = MT > 0 is the mass and
inertia matrix, and includes hydrodynamic added mass. The matrix C is the Coriolis
and centripetal matrix, D > 0 is the hydrodynamic damping matrix and B ∈ R3×3 is
the actuator configuration matrix. For manoeuvring control purposes, the matrices R(ψ),
M , D and B can be considered as having the following structure:

R(ψ) ,

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, M ,

[
m11 0 0

0 m22 m23
0 m23 m33

]
, (7.3)

D ,
[
d11 0 0
0 d22 d23
0 d32 d33

]
, B ,

[
b11 0 0
0 b22 b23
0 b32 b33

]
. (7.4)

The actuator configuration matrix B is invertible and maps the control inputs Tu, Tv
and Tr into forces and moments acting on the vessel. The Coriolis and centripetal matrix
C is obtained from M as [52]:

C(νr) ,
[

0 0 −m22vr−m23r
0 0 m11ur

m22vr+m23r −m11ur 0

]
. (7.5)

The body-fixed coordinate frame b is considered located in a point (x∗g, 0) from the vehicle
center of gravity (CG) along the center-line of the ship, where x∗g is chosen so that
M−1Bf = [τu, τv, δτv + τr]

T . The point (x∗g, 0) exists for all port-starboard symmetric
ships [33, 28].

Remark 7.2. The point (x∗g, 0) should not be confused with the pivotal point of the
vessel [52]. The two points are not necessarily coincident.

Notice that moving the origin of the frame b to the point (x∗g, 0) along the center line
of ship removes the direct effect of the rudder on the sway dynamics. This, however,
does not remove the effect of the sway thruster on the yaw dynamics and therefore the
following assumption is introduced:

Assumption 7.6. The configuration of the transverse actuators is such that their
combined thrust does not produce any yaw momentum, i.e. δ = 0.
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Remark 7.3. Most of the modern ships and vehicles are equipped with several advanced
transverse thrusters. This overactuation allows the control allocation system to satisfy
different constraints [78]. Therefore, the sway actuators can be configured not to give
any yaw momentum.

To solve nonlinear control design problems it is convenient to expand (7.1-7.2) into:

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (7.6a)

ψ̇ = r, (7.6b)

u̇r = Fu(vr, r)−
d11

m11

ur + τu, (7.6c)

v̇r = X(ur)r + Y (ur)vr + τv, (7.6d)

ṙ = Fr(ur, vr, r) + τr. (7.6e)

The expressions for Fu(vr, r), X(ur), Y (ur) and Fr(ur, vr, r) are given in Appendix 7.A.
Notice that the functions X(ur) and Y (ur) are bounded for bounded arguments. The
path following task addressed in this chapter is a cross-track error problem where y
represents the error (see Section 7.2). Hence, the x dynamics are not included in (7.6).
Finally, the following assumptions are introduced:

Assumption 7.7. The function Y (ur) satisfies:

Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Urd].

Remark 7.4. Assumption 7.7 is justified by a contradiction: Y (ur) ≥ 0 would imply a
nominally unstable ship in sway which is not the case for commercial ships by design.
Furthermore, notice that no bounds are implied on ur. The constant design parameter
Urd > 0 is defined in Section 7.2.

Assumption 7.8. The sway actuators are saturated:

|τv| ≤ Ksat, Ksat > 0.

Remark 7.5. Following Assumption 7.8, a bounded control solution for the sway
control input τv has to be designed if the option of using thrusters for disturbance
compensation is considered.
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x
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P

ψ ssψ ss

ψ ss ,max=−tan−1( V y

√U rd
2 −V y

2 )

Current

Figure 7.1.: At steady state the vessel combines side-slipping with the transverse actuators
to compensate for the drift and reduce the ψss angle. The largest side-slip angle
ψss,max is achieved in the underactuated case.

7.2. The Control Objective

This section formalizes the control problem solved in this chapter: the control system
should make the vessel follow a given straight line P and maintain a desired constant
surge relative velocity Urd > 0 in the presence of unknown, constant and irrotational
ocean currents. To simplify the control problem without any loss of generality, the inertial
reference frame i is placed such that its x-axis is aligned with the desired path, giving
P , {(x, y) ∈ R2 : y = 0} as shown in Figure 7.1. The y-coordinate of the vessel then
corresponds to the cross-track error and the objectives the control system should pursue
can be formalized as follows:

lim
t→∞

y(t) = 0, (7.7)

lim
t→∞

ψ(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (7.8)

lim
t→∞

ur(t) = Urd, (7.9)

where ψss is constant. The yaw angle ψ(t) is not required to converge to zero but rather
to a steady-state constant value, allowing the vehicle to hold a non-zero yaw angle at
equilibrium and help the sway actuators to compensate for the drift (see Figure 7.1).
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7.3. The Control system

The proposed control systems is based on two feedback linearizing controllers, a nonlinear
bounded Proportional-Integral (PI) controller and the ILOS guidance law in a cascaded
configuration.

7.3.1. The Integral LOS Guidance

The surface vessel has to converge and follow the x-axis, therefore according to the ILOS
guidance method presented in Chapters 3, 5 and 6 the desired heading angle is:

ψILOS , − tan−1

(
y + σyint

∆

)
, ∆, σ > 0, (7.10a)

ẏint =
∆y

(y + σyint)
2 + ∆2

, (7.10b)

where ∆ is the look-ahead distance and σ is the integral gain. Both are constant design
parameters.

7.3.2. The Surge and Yaw Controllers

According to (7.9), ur(t) should follow the desired value urd(t) , Urd > 0. Therefore, to
track urd(t) the following controller is used:

τu = −Fur(vr, r) +
d11

m11

urd + u̇rd − kur(ur − urd). (7.11)

The gain kur > 0 is constant. The controller (7.11) is a feedback linearizing P-controller
and guarantees exponential tracking of urd(t). The following controller can be used to
track the desired yaw angle ψd , ψILOS:

τr = −Fr(ur, vr, r) + ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d), (7.12)

where kψ, kr > 0 are constant gains. The controller (7.12) is a feedback linearizing PD
controller and makes sure that ψ and r exponentially track ψd and ψ̇d respectively.
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7.3.3. The Bounded Sway Controller

The following non linear PI controller is proposed to combine side-slipping with the sway
thrusters and successfully compensate for the ocean current disturbance:

τv = −ksat
kp(y + σyint)√

k2
p(y + σyint)2 + ∆2

, ksat ≥ 0, kp > 0. (7.13)

Notice that the control input (7.13) is bounded: |τv| ≤ ksat, ∀ (y + σyint). The gain
ksat ≥ 0 is constant and is chosen so that ksat ≤ Ksat, where Ksat is the maximum thrust
available in sway. Hence, the controller (7.13) does not require higher control efforts
than the sway thruster can provide. Notice that the controller (7.13) does not cancel any
terms from the sway dynamics (7.6d). Furthermore, setting ksat = 0 turns off the sway
actuators and makes the vehicle underactuated. In this case the drift is compensated
with side-slipping only. Finally, setting ksat = Ksat allows to exploit the sway thrusters
to the limit and reduce the necessary side-slip angle. In addition to ksat, the constant kp
is introduced to set the first derivative of the function (7.13) in the origin y + σyint = 0.
The gain kp is chosen according to the following assumption:

Assumption 7.9. The constant kp has to satisfy kp ≥ 1.

Remark 7.6. In this chapter the vessel is required to hold a constant surge relative
velocity Urd as done in [28] and [34]. This simplifies the control problem and strengthens
the stability properties of the closed loop system compared to [26] and [33] where the
marine vehicle is required to follow P with a constant speed Ud > 0. Furthermore,
controlling the relative velocity of the ship gives direct control over energy consumption
since hydrodynamic damping depends on νr, but does not represent the ideal solution
for speed profile planning/tracking scenarios. This chapter investigates the possibility
of exploiting saturated sway actuators to increase flexibility of the relative velocity
approach with respect to speed profile planning/tracking requirements. It is shown how
the proposed bounded controller (7.13) shrinks the side-slip angle and therefore increases
the path following speed compared to [28] if the same Urd is used, at the expense of a
higher power consumption. This represents an advantage when precise timing is critical.
Moreover, the possibility of changing the side-slip angle is important in some operations
such as installation of submarine pipelines and cables.
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7.3.4. Constraints on Urd

The following assumption allows the vessel to achieve path following for sea currents
acting in any directions of the plane:

Assumption 7.10. The desired constant relative velocity Urd satisfies the following
condition:

Urd > Vmax +
5

2

∣∣∣∣ kpKsat

Y (Urd)

∣∣∣∣ .
Remark 7.7. It is always possible to find values of Urd satisfying Assumption 7.10
since |Y (ur)| is strictly increasing for ur > 0.

7.4. Stability Conditions

This section presents the stability conditions under which the proposed control law
achieves (7.7-7.9). The notation XUrd , X(Urd) and Y Urd , Y (Urd) is used.
Theorem 7.1. Given a fully actuated surface vessel described by the dynamical system
(7.6). If Assumptions 7.7-7.10 hold and if the look-ahead distance ∆ and the integral
gain σ satisfy the conditions

∆ >
|XUrd |
|Y Urd |

Ω(σ)

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (7.14)

0 < σ < Urd − Vmax −
5

2

∣∣∣∣kpKsat

Y Urd

∣∣∣∣ , (7.15)

where Ω(σ) is defined as

Ω(σ) ,
Urd − Vmax − σ

Urd − Vmax − σ − 5
2

∣∣∣kpKsat

Y Urd

∣∣∣ , (7.16)

then the controllers (7.11), (7.12) and (7.13) where ψd is given by (7.10) and urd , Urd,
guarantee achievement of the control objectives (7.7-7.9). The control objective (7.8) is
fulfilled with 0 < |ψss| ≤

∣∣∣tan−1
(
Vy/
√
U2
rd − V 2

y

)∣∣∣.
Remark 7.8. it is shown in Chapter 5 that the ILOS guidance can effectively compen-
sate for disturbances in sway and this property is here exploited to combine the ILOS
with a bounded sway controller.
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7.5. Proof of Theorem 7.1

In this section the proof of Theorem 7.1 is given. Focus is put on the determination of
the equilibrium point of the system to show how the controllers and the guidance law
exploit the integral action (7.10b) and use both side-slipping and the sway actuators to
compensate for the current.

The actuated dynamics (7.6c) and (7.6e) of the ship in closed loop configuration with
the controllers (7.11) and (7.12) are considered first. Given the vector ζ , [ũr, ψ̃,

˙̃ψ]T

where ũr , ur − Urd, ψ̃ , ψ − ψd and ˙̃ψ , ψ̇ − ψ̇d, the dynamics of ζ are obtained by
combining the system equations (7.6b), (7.6c) and (7.6e) with the control laws (7.11)
and (7.12):

ζ̇ =

[
−kur−

d11
m11

0 0

0 0 1
0 −kψ −kr

]
ζ , Σζ. (7.17)

The system (7.17) is linear and time-invariant. Furthermore, since the gains kur , kψ,
kr and the term d11/m11 are all strictly positive, the system matrix Σ is Hurwitz and
the origin ζ = 0 of (7.17) is UGES. Therefore the control goal (7.9) is achieved with
exponential converging properties in any ball of initial conditions.

The dynamics of the cross track error y and the relative sway velocity vr are analyzed
next. The y − vr subsystem is obtained by combining (7.6a), (7.6d) and (7.10b):

ẏint =
∆y

(y + σyint)
2 + ∆2

, (7.18)

ẏ = (ũr + Urd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy, (7.19)

v̇r = X(ũr + Urd)(
˙̃ψ + ψ̇d) + Y (ũr + Urd)vr − ksat

kp(y + σyint)√
k2
p(y + σyint)2 + ∆2

. (7.20)

The calculation of the equilibrium point of the system (7.18-7.20) on the manifold ζ = 0

yields the following equation:

ρ
kps√
k2
ps

2 + 1
= Vy

√
s2 + 1− Urds, (7.21)

where s , σyeq
int/∆ and yeq

int is the value of yint at equilibrium. The constant ρ is defined
as ρ , −ksat/Y

Urd and ρ ≥ 0 since ksat ≥ 0 and Y (Urd) < 0 from Assumption 7.7. The
parameter s represents the only solution of (7.21). The Equation (7.21) has a unique
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Figure 7.2.: Graphical solution of (7.21). Both cases Vy > 0 and Vy < 0 for l2(s) are considered
since the sign of the constant Vy is unknown.

solution as long as Assumption 7.10 is satisfied since it guarantees Urd > Vmax. This is
shown in Figure 7.2 where the intersections between the curves defined by the two sides
of Equation (7.21) are considered:

l1(s∗) , ρ
kps
∗√

k2
ps
∗2 + 1

, l2(s∗) , Vy
√
s∗2 + 1− Urds∗. (7.22)

The condition Urd > Vmax makes l2(s∗) strictly decreasing while l1(s∗) is strictly increasing.
Therefore, there exists only one intersection point as long as Assumption 7.10 is satisfied.
Furthermore, it is possible to conclude the following property:

|s| ≤ |Vy|/
√
U2
rd − V 2

y . (7.23)

Remark 7.9. The equality |s| = |Vy|/
√
U2
rd − V 2

y holds when the sway thrusters are
turned off (ksat = 0) and the ship is underactuated. Figure 7.2 shows that as the sway
thrusters are turned on and ksat is gradually increased, s shrinks and the sideslip angle the
ship has to hold at equilibrium to compensate for the current, becomes smaller. Notice
that no matter which value is chosen for ksat, the control system (7.10-7.13) will always
set a non-zero side-slip angle as long as there is current acting in the sway direction of
the ship, i.e. Vy 6= 0. Moreover, since Assumption 7.8 states that ksat ≤ Ksat, choosing
ksat = Ksat allows the controller (7.13) to fully exploit the available sway thrust.

129



Path Following Control of Underactuated Surface Vessels with Saturated Transverse
Actuators

Remark 7.10. The gain kp ≥ 1 can be increased to further reduce the side-slip angle.
This, however, tightens the stability margins (7.14-7.15) and forces the selection of a
higher Urd. The stricter margins are justified by the fact that a conservative classical
Lyapunov approach is used to determine (7.14-7.15).

Remark 7.11. It is clear from Figure 7.2 that the control system (7.10-7.12) is not
meant to perform current compensation with sway actuators only, unless a very large
kp is used. Nevertheless, this can be done by simply disconnecting the integrator yint

from the ILOS reference generator (7.10a). However, the saturated sway actuators alone
might prove ineffective against stronger currents, while the proposed combined control
solution achieves path following anyway.

The equilibrium point of the system (7.18-7.20) is (yeq
int, y

eq, veq
r ) where yeq

int is the only
possible solution of (7.21), yeq = 0 and veq

r is obtained from:

veq
r = Urd

σyeq
int

∆
−

√(
σyeq

int

∆

)2

+ 1. (7.24)

Furthermore, the following relation follows from (7.21):

ksat

Y Urd

kpσy
eq
int√

(kpσy
eq
int)

2 + ∆2
= Urd

σyeq
int

∆
− Vy

√
(σyeq

int)
2 + ∆2

∆
(7.25)

A new set of variables is introduced to move the equilibrium point to the origin:

e1 , yint − yeq
int, e2 , y + σe1, e3 , vr − veq

r . (7.26)

Substituting (7.10a) for ψd, factorizing the result with respect to ζ and applying (7.24-
7.26) leads to the following transformed interconnected dynamics:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2) +H(y, yint, ψd, vr, ζ)ζ, (7.27a)

ζ̇ = Σζ. (7.27b)

The matrix H(y, yint, ψd, vr, ζ) contains all the terms vanishing at ζ = 0. A(e2) is given
in (7.43) of Appendix 7.A while B(e2) and H(y, yint, ψd, vr, ζ) are:

B(e2) ,

[ 0
Vyf(e2)

ksatkpσy
eq
int√

(kpσy
eq
int

)2+∆2
g(e2)− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)

]
, (7.28)
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H(y, yint, ψd, vr, ζ) ,

[ 0 0
1 0

−∆X(ũr+Urd)

(e2+σy
eq
int

)2+∆2 1

] [
hTy
hTvr

]
, (7.29)

where:

f(e2) = 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, (7.30)

g(e2) = 1−
√

(kpσy
eq
int)

2 + ∆2√
k2
p(e2 + σyeq

int)
2 + ∆2

. (7.31)

The vectors hy(ψd, vr, ζ) and hyr(y, yint, ψd, vr, ζ) are given in Appendix 7.A and the
following bounds hold:

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

, (7.32)

|g(e2)| ≤ kp|e2|√
k2
p(e2 + σyeq

int)
2 + ∆2

, (7.33)

kp|e2|√
k2
p(e2 + σyeq

int)
2 + ∆2

≤ kp|e2|√
(e2 + σyeq

int)
2 + ∆2

, (7.34)

as long as kp ≥ 1. The system (7.27) is a cascaded system, where the linear UGES
system (7.27b) perturbs the dynamics (7.27a) through the interconnection matrix
H(y, yint, ψd, vr, ζ). To analyze the stability properties of the cascade (7.27) consider the
following nominal system defined on the manifold ζ = 0:[

ė1
ė2
ė2

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (7.35)

The following Lemma states the stability properties of the nominal system (7.35):

Lemma 7.1. Under the conditions of Theorem 6.1, the system (7.35) is UGAS and
ULES.

Proof. The proof of Lemma 7.1 is given in Appendix 7.B.

Next, the stability of the cascade (7.27) is analyzed. In particular, since the perturbing
system (7.27b) is UGES and the interconnection matrixH(y, yint, ψd, vr, ζ) can be shown
to satisfy ‖H ‖≤ θ1(‖ ζ ‖)(|y|+ |yint|+ |vr|) + θ2(‖ ζ ‖), where θ1(·) and θ2(·) are some
continuous non-negative functions, applying Theorem A.2 and Lemma A.2 shows UGAS
and ULES for the cascaded system (7.27). To conclude, under the conditions of Theorem

131



Path Following Control of Underactuated Surface Vessels with Saturated Transverse
Actuators

7.1, the origin (e1, e2, e3, ζ) = (0, 0, 0,0) of the system (7.27) is UGAS and ULES. Hence,
the control objectives (7.7) and (7.8) are achieved with exponential converging properties
in and ball of initial conditions.

7.6. Simulations

Results from numerical simulations are presented in this section. The proposed control
system (7.10-7.13) is applied to the scaled vessel model Cybership II. The Cybership II
is a 1 : 70 model of a supply vessel. It is fully actuated since it is equipped with stern
rudders, aft propellers and sway thrusters. The model of the ship is given in Section B.2 of
Appendix B and the objective is to make the vessel follow the path P with a desired surge
relative velocity Urd = 0.6 [m/s]. The intensity of the current is |Vc| = 0.15 [m/s] and its
direction is randomly generated. In this case its components are Vx = −0.05 [m/s] and
Vy = −0.14 [m/s]. Thus, Assumption 7.5 is fulfilled with Vmax = 0.15 [m/s] and it can be
verified that Assumption 7.7 is satisfied with Ymin = 0.04 [s−1] and Y (Urd) = −0.80 [m/s].
The Cybership is assumed to have 2 [N] and 1 [N] of maximum available thrust in surge
and sway, respectively, while the maximum available yaw moment is 1.5 [Nm]. Therefore,
expanding (7.1-7.2) into (7.6) gives |τu| ≤ 0.078 [m/s2] and |τv| ≤ Ksat = 0.030 [m/s2].
This difference suggests that the sway actuators are more susceptible to saturation
phenomena than the surge ones. A ksat = Ksat is chosen, allowing the control system to
fully exploit the sway thrusters. The gain kp is set to kp = 2 and hence Assumptions
7.9 and 7.10 are satisfied. The chosen values for the guidance law integral gain and
look-ahead distance are σ = 0.15 [m/s] and ∆ = 4 [m], and satisfy (7.14-7.15). The
internal controllers (7.11-7.12) are implemented with the following gains: kur = 1,
kψ = 1 and kr = 2.5. Hence, the ũr first order closed loop system has a time constant
of 0.93 [s] while the ψ̃ second order closed loop system is slightly overdamped with
ω0 = 1 [rad/s]. The ship is given an initial cross track error of 50 meters and initially
holds zero relative velocity. Its surge axis is parallel to the desired path P. Figures
7.3a and 7.3c show how path following is successfully achieved with a constant side-slip
angle ψss ≈ 11.8 [deg]. This is smaller than the steady state side-slip angle in the
underactuated case ψss,max ≈ 13.2 [deg]. The performance of the speed controller (6.11)
is shown in Figure 7.3d. The yaw moment is given in Figure 7.3c where the offset in
steady state is due to veqr 6= 0. This gives a nonzero Fr(ur, vr, r) in the yaw controller
(7.12) at equilibrium.
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Holding ksat = Ksat, the parameter kp can be increased to further exploit the sway
thrusters and reduce the side-slip angle at steady state (see Remark 7.10). This is
shown in Figure 7.3e where Urd = 0.6 [m/s], ∆ = 4 [m] and σ = 0.15 [m/s] are kept
constant while kp is gradually increased. The system is then eventually forced to operate
out of the stability criteria (7.14-7.15). Nevertheless, convergence is achieved. This
should not come as a surprise, since the Lyapunov approach yielding (7.14-7.15) is very
conservative. Furthermore, Figure 7.3e shows that the side-slip angle at steady state
cannot be reduced to less then 9.6 [deg]. At that point the sway thrusters are exploited
to the limit, suggesting that a compensation solution based on transverse actuators
only would not succeed to compensate for the current considered in this example. This
confirms the importance of side-slipping solutions for path following applications in the
presence of environmental disturbances. Finally, notice that the nonlinear bounded sway
controller does not push the thrusters deep into saturation and at the same time uses
the maximum available transverse thrust to converge to the path P (Figure 7.3e). The
thrust then decreases unless a very high kp is used. This reduces the wear and tear of
the actuators.

7.7. Conclusions

In this chapter a combined control strategy for path following of fully actuated surface
marine vehicles in presence of constant irrotational ocean currents has been developed.
Saturation of the sway actuators is analytically taken into account yielding a partially
bounded control problem. The guidance system is based on the ILOS guidance law
developed in Chapter 6 and a sway nonlinear bounded PI controller. In particular, it is
shown in Chapter 5 that the ILOS guidance can effectively compensate for disturbances
in sway and this property is here exploited to combine the ILOS with a bounded sway
controller. The control system compensates for the current and guarantees path following
even when the sway thrusters are saturated, by making the ship side-slip. The analysis
of the closed loop system through Lyapunov techniques and nonlinear cascaded systems
theory gives explicit conditions to guarantee exponential stability. Numerical simulations
support the theoretical results.
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134



7.A Appendix: Functional Expressions

7.A. Appendix: Functional Expressions

Fu(vr, r) ,
1

m11

(m22vr +m23r)r, (7.36)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (7.37)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (7.38)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(7.39)

The functions hy , [hy1, hy2, hy3]T and hvr , [hvr1, hvr2, hvr3]T are:

hy3 = 0, hy2 = Urd

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]
+

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
, hy1 = sin(ψ̃ + ψd),

(7.40)

hvr1 =
X(ũr + Urd)−XUrd

ũr
γ(yint, y, vr)+

+ vr
Y (ũr + Urd)− Y Urd

ũr
, hvr2 = 0, hvr3 = X(ũr + Urd),

(7.41)

where the limits of hy2 for ψ̃ → 0 and hvr1 for ũr → 0 exist and are finite. The expression
γ(yint, y, vr) is defined as:

γ(yint, y, vr) ,
∆Urd(y + σyint)

((y + σyint)2 + ∆2)3/2
− ∆2

((y + σyint)2 + ∆2)3/2
vr

− σ∆2

((y + σyint)2 + ∆2)2
y − ∆Vy

(y + σyint)2 + ∆2
.

(7.42)
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7.B. Appendix: Proof of Lemma 7.1

The system (7.35) is written again:[
ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (7.44)

The nominal system (7.35) is equivalent to the system (5.28) analyzed in Chapter 5,
with:

B(e2){31} =
ksatkpσy

eq
int√

(kpσy
eq
int)

2 + ∆2
g(e2)− ∆XUrdVy

(e2 + σyeq
int)

2 + ∆2
f(e2), (7.45)

A(e2){32} =
Urd∆X

Urd

((e2 + σyeq
int)

2 + ∆2)3/2
− σ∆2XUrd

((e2 + σyeq
int)

2 + ∆2)2

− ksatkp√
k2
p(e2 + σyeq

int)
2 + ∆2

,
(7.46)

where:

f(e2) = 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, g(e2) = 1−
√

(kpσy
eq
int)

2 + ∆2√
k2
p(e2 + σyeq

int)
2 + ∆2

. (7.47)

Hence, the proof follows along the lines of the proof of Lemma 5.2 given in Appendix
5.B of Chapter 5. Consider the quadratic Lyapunov function candidate:

V ,
1

2
σ2e2

1 +
1

2
e2

2 +
1

2
µe2

3, µ > 0. (7.48)

The notation ē1 , e1/
√

(e2 + σyeq
int)

2 + ∆2, ē2 , e2/
√

(e2 + σyeq
int)

2 + ∆2, Assumptions
7.5-7.10, and inequalities (7.32-7.34) yield the following bound for the time derivative V̇ :

V̇ ≤ −W1(|ē1|, |e3|)−W2(|ē2|, |e3|). (7.49)

The quadratic functions W1(|ē1|, |e3|) and W2(|ē2|, |e3|) are defined as:

W1 , σ3∆|ē1|2 − µ
σ2|XUrd |

∆
|ē1||e3|+ µη

(
|Y Urd | − |X

Urd |
∆

)
|e3|2, (7.50)

W2 , ∆
[
|ē2| |e3|

] β −α

−α α(2α−1)
β

|ē2|

|e3|

 , (7.51)

137



Path Following Control of Underactuated Surface Vessels with Saturated Transverse
Actuators

where 0 < η < 1, β , Urd − Vmax − σ and α is given by:

α , (1− η)
(Urd − Vmax − σ)(∆|Y Urd | − |XUrd |)

|XUrd |
(
Urd + Vmax + σ + 2∆kpKsat

|XUrd |

) . (7.52)

The parameter µ is chosen as:

µ ,
2α− 1

|XUrd |
∆2 (Urd + Vmax + σ) + 2kpKsat

∆

. (7.53)

If both W1 and W2 are definite positive then V̇ is negative definite. Positive definiteness
of W1 is ensured if (7.54) and (7.55) are satisfied:

∆ >
|XUrd |
|Y Urd |

, (7.54) µ <
4η∆2

[
∆|Y Urd | − |XUrd |

]
σ|XUrd |2

. (7.55)

Notice that condition (7.54) is met as long as (7.14) holds. It is straightforward to
show that η ≥ 1/5 is a sufficient condition for µ, defined in (7.53), to satisfy (7.55).
Therefore, without any loss of generality, η is set to 1/5. To guarantee positive defi-
niteness of W2, β and α must fulfill the inequalities β > 0 and α > 1. Assumption 7.10
and (7.15) make sure that β > 0 while through some simple manipulation it is easy
to check that conditions (7.14) and (7.15) imply α > 1. Furthermore, α > 1 guar-
antees µ > 0 as required for V to be positive definite. Therefore, under the condi-
tions stated in Theorem 7.1, V , W1 and W2 are positive definite and hence, accord-
ing to standard Lyapunov arguments, the nominal system (7.44) is UGAS. Moreover,
the inequality W , W1 +W2 ≥ λ̄1|ē1|2 + λ̄2|ē2|2 + λ3|e3|2 holds in a neighbourhood of
the origin for some constants λ̄1, λ̄2, λ3 > 0 and thus in any ball Br , {|e2| ≤ r}, r > 0

the function W can be bounded from below by W ≥ λ1|e1|2 + λ2|e2|2 + λ3|e3|2 where
λi = λ̄i/((r + σyeq

int)
2 + ∆2), i = 1, 2. This, together with the fact that V is a quadratic

function of e1, e2 and e3, concludes that (7.44) is also uniformly exponentially stable,
ULES [82].
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Chapter 8.

Path Following Control of
Underactuated Surface Vessels in
the Presence of Multiple
Disturbances

“If in normal conditions it is skill, which counts, in extreme situations,
it is the spirit, which saves.”

— Walter Bonatti, Alpinist

An integral version of the Line-of-Sight (LOS) guidance for planar motion purposes in
presence of ocean currents was applied to a simple kinematic model of surface vessels in
Chapter 3. Explicit bounds for the choice of the integral gain of the guidance law were
derived but the look-ahead distance of the integral LOS was left unconstrained. The
underactuated sway dynamics were included into the Lyapunov analysis in Chapter 5
to calculate the mathematical conditions for the selection of the look-ahead distance
in presence of disturbances. More precise bounds upon the integral gain were obtained
as well. However the actuated surge and yaw dynamics were not considered under the
assumption that there are closed loop controllers setting the speed and the heading of
the vessel. This assumption was removed in Chapter 6 where the complete kinematic
and dynamic closed loop system of the Integral Line-of-Sight (ILOS) guidance law for
planar path following purposes was analyzed. However, in the case analyzed in Chapter 6,
only disturbances in the form of constant irrotational ocean currents were taken into
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account, while dynamic heading dependent environmental disturbances were not taken
into account.

In this chapter it is shown that the ILOS guidance law successfully compensates
for combined kinematic and dynamic disturbances, thus further extending the results
of Chapter 6. To this end and motivated by [52] and [15], the 3 Degrees-of-Freedom
(DOFs) maneuvering model presented in Chapter 2 is used for control design. This
includes both the kinematic and dynamic disturbance effects of currents, wind and
waves. As discussed in Chapter 2 the model separates the disturbances into an unknown
irrotational current (kinematic drift/bias) and an environmental load vector (dynamic
bias). Such a distinction is proposed to capture the different effects of the otherwise
combined disturbances [50]. The kinematic bias takes into account currents, tidal drifts,
low frequency swells and second order wave-induced forces while the environmental
load vector embodies the heading dependent dynamic effects of the disturbances. In
this context wind forces are assumed to dominate in the load vector and are modeled
as an unknown pressure acting in a certain direction. The two disturbances generally
act in different directions and are assumed constant in this chapter. The first order
wave-induced forces and the effects of wind gusts are neglected since they cause zero
mean oscillatory motions that are usually removed through wave filtering.

The ILOS guidance method developed in Chapters 3, 5 and 6 is extended with
adaptation and it is analytically shown that the resulting control scheme successfully
compensates for both kinds of disturbances and hence guarantees path following of
underactuated surface vessels in different sea conditions. Path following of straight lines
is considered and the underactuated vessel is made to side-slip in order to compensate for
the drift since no actuation is available in sway to counteract for the components of the
disturbances acting in the transverse direction. The integral effect serves as a memory
element that assesses the disturbing effects and sets the correct side-slip angle to follow
the desired course. The integration law, first presented in [26], is chosen to reduce the
risk of wind-up effects. The control approach in [26] includes both absolute and relative
velocities, while here it is based on relative velocities only with direct control over the
ship relative speed. It is hence not necessary to use adaptive techniques to estimate the
unknown kinematic drift in the ship surge and yaw controllers, whereas adaptation is
still required to estimate and compensate for the dynamic disturbances. The combined
effect of kinematic and dynamic disturbances is analyzed assuming that the dynamic
disturbance is known in direction but unknown in magnitude. It is shown that the
ILOS guidance in a cascaded configuration with an adaptive speed-heading controller
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guarantees uniform global asymptotic stability (UGAS) and uniform local exponential
stability (ULES) (alternatively, global κ-exponential stability) for the closed loop system.
Notice that stability is here analyzed for the complete kinematic-dynamic closed loop
system, including the underactuated sway dynamics. Finally, results from simulations
are presented to verify and illustrate the theoretical results.

The chapter is organized as follows: Section 8.1 presents the vessel model for con-
trol design purposes that includes kinematic as well as dynamic disturbances. The
control problem is defined in Section 8.2 while Section 8.3 presents the ILOS guidance.
Section 8.4 presents the adaptive surge-yaw controller that solves the path following
control problem in a cascaded configuration with the ILOS guidance. The stability prop-
erties of the closed loop system are given in Section 8.5 while the analysis is developed
in Section 8.6. Simulation results are given in Section 8.7. Finally, conclusions are found
in Section 8.8. The results presented in this chapter are based on the paper [29].
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8.1. The Control Plant Model

The class of marine vehicles described by the 3-DOF maneuvering model presented in
Section 2.3 of Chapter 2 are considered:

ṗ = R(ψ)νr + Vc, (8.1)

Mν̇r +C(νr)νr +Dνr = Bf +w. (8.2)

The state of the surface vessel is given by the vector [pT ,νTr ]T where p , [x, y, ψ]T

describes the position and the orientation of the vehicle with respect to the inertial
frame i. As shown in Chapter 2, in navigation problems involving irrotational ocean
currents it is useful to describe the state of the vessel with the relative velocity vector:
νr = [ur, vr, r]

T . The vector νr is defined in the body frame b, where ur is the relative
surge velocity, vr is the relative sway velocity and r is the yaw rate. The model (8.1-8.2)
describes the kinematics and dynamics of surface vessels as well as underwater vehicles
moving in the horizontal plane.

Remark 8.1. Notice that the ocean current Vc does not depend on the heading of
the vessel and represents a kinematic bias in (8.1). It defines in fact a constant and
irrotational velocity drift and hence it does not capture the heading dependent disturbing
effects of currents, wind and waves. In this chapter the vector w is used in (8.2) to take
into account these disturbances as well. In particular, the significant effect of wind is
analyzed in this context.

The vector f , [Tu, Tr]
T is the control input vector, containing the surge thrust Tu and

the rudder angle Tr. Notice that the model (8.1-8.2) is underactuated in its configuration
space since it has fewer control inputs than DOFs. The vector w , [wu, wv, wr]

T is the
body-fixed dynamic environmental load vector. The vector w is defined and discussed in
details in Section 8.1.2. The matrix M = MT > 0 is the mass and inertia matrix and
includes hydrodynamic added mass. The matrix C(νr) is the Coriolis and centripetal
matrix, D > 0 is the hydrodynamic damping matrix and B ∈ R3×2 is the actuator
configuration matrix. The structure of the matrices R(ψ), M , C(νr) and B is given in
Chapter 2. The following assumption defines the properties of the damping matrix D:

Assumption 8.1. The hydrodynamic damping is linear.
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Remark 8.2. Nonlinear damping is not considered in order to reduce the complexity
of the controllers. However, the passive nature of the non-linear hydrodynamic damping
forces should enhance the directional stability of the vessel [36].

The hydrodynamic damping matrix D is therefore considered to have the following
structure [52]:

D ,
[
d11 0 0
0 d22 d23
0 d32 d33

]
. (8.3)

The particular structure of D is justified by symmetry arguments (see Section 2.3 of
Chapter 2) and Assumption 8.1. Finally, the following assumption is introduced:

Assumption 8.2. The body-fixed coordinate frame b is located on the center-line of
the vessel at a distance x∗g from the center of gravity (CG), where x∗g is chosen so that
M−1Bf = [τu, 0, τr]

T .

The point (x∗g, 0) exists for all port-starboard symmetric vehicles (see Section 2.3 of
Chapter 2). Notice that in (8.1-8.2) there are two terms describing environmental
disturbances: the current Vc in (8.1), representing a pure kinematic drift, and the vector
w in (8.2), representing heading dependent disturbances that show up at the dynamic
level. The vectors Vc and w are defined and discussed in the following sections.

8.1.1. The Ocean Current

The drifting effect of currents, tides, low frequency swells and second order wave-induced
forces is embodied into the ocean current vector Vc:

Assumption 8.3. The ocean current is defined in the inertial frame i and is assumed
constant, unknown, irrotational and bounded. Hence, Vc , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

Remark 8.3. The constant and irrotational ocean current model is widely accepted to
describe slowly varying disturbances and it represents a good approximation when closed
loop control is implemented on-board of marine vehicles [51].

Remark 8.4. The first order wave-induced forces are neglected in this context since
they cause zero mean oscillatory motions that are usually removed through wave filtering
[52].
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8.1.2. The Environmental Load Vector w

The vector w represents a bias term that embodies unmodeled dynamics and dynamic,
heading dependent disturbances caused by currents, winds and waves. In this context,
the significant effect of constant wind disturbances is assumed to dominate in w. Inspired
by [15] and [52], the overall effect of wind is modeled as a constant pressure Pe acting on
the vessel in a constant direction βe:

Assumption 8.4. The pressure Pe > 0 in considered constant, unknown, and acting
in a constant and known direction βe of the inertial frame. Therefore, there exists a
constant Pmax

e > 0 such that Pmax
e > Pe.

Remark 8.5. The mean and slowly varying drifting effect caused by wind is considered,
while highly oscillating zero mean effects due to wind gusts are not taken into account
since they are often removed through wave filtering. Furthermore, the vessel inertia has
low pass filtering effects as well. βe is assumed known since the tools to measure and
estimate the wind direction are often available [118, 52].

The forces and moments generated by the wind pressure Pe on the ship are proportional
to the frontal and lateral projected areas above the waterline of the ship, and to some
well defined load coefficients. The areas above the waterline are considered since the
effect of wind is mostly limited to the surface and the very upper layers of the sea. The
loading coefficients depend on the geometry of the ship hull and superstructure, and
are functions of the disturbance angle of attack. They are usually obtained through
interpolation of data from simulations and wind tunnel tests for different types of ships
[76, 103, 15]. The environmental load vector w is then defined as:

w ,

[
PeAFwCX(γe)
PeALwCY (γe)

PeALwLoaCN (γe)

]
, (8.4)

where AFw is the frontal projected area above the waterline, ALw is the lateral projected
area above the waterline and Loa is the length overall of the vessel (maximum length
of the vessel hull). The term γe , ψ − βe − π is the angle of attack of the wind. The
terms CX(γe), CY (γe) and CN(γe) are the load coefficients. The following assumption is
introduced:

Assumption 8.5. There are no dynamic disturbances in sway and yaw in presence of
head/following sea (γe = kπ) and no dynamic disturbances in surge in presence of beam
sea (γe = π/2± kπ).
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The load coefficients can be then redefined as: CX(γe) , C∗X(γe) cos(γe), CY (γe) ,

C∗Y (γe) sin(γe) and CN(γe) , C∗N(γe) sin(γe). The vector w is rewritten as:

w =

[ −PeAFwC∗
X(γe) cos(βe−ψ)

PeALwC
∗
Y (γe) sin(βe−ψ)

PeALwLoaC
∗
N (γe) sin(βe−ψ)

]
. (8.5)

Furthermore, the functions C∗X(γe), C∗Y (γe) and C∗N(γe) are required to satisfy:

Assumption 8.6. C∗X(γe), C∗Y (γe), C∗N(γe) are bounded, periodic, class C1 functions
with bounded first derivatives and satisfy:

• C∗X(γe) < 0, ∀ γe,

• C∗Y (γe) > 0, ∀ γe,

• −m23C
∗
Y (γe) +m22LoaC

∗
N(γe) 6= 0 for γe = π/2± kπ.

Finally, the following function is considered:

κv(·) ,
PeALw

m22m33 −m2
23

[m33C
∗
Y (·)−m23LoaC

∗
N(·)] . (8.6)

Since C∗Y (·) and C∗N(·) are bounded, have bounded first derivatives and Pe is bounded,
then there exists κmax

v , κ′max
v such that κv(·) < κmax

v , dκv(·)
d· < κ′max

v .

Assumption 8.7. C∗Y (·) and C∗N(·) are such that, given any constants k ∈ R and
βe ∈ [0, 2π], the following bound holds for all s ∈ R:∣∣∣∣∣κv(γke )− κv(γk+s

e )

√
k2 + 1√

(s+ k)2 + 1

∣∣∣∣∣ ≤ κmax
v

|s|√
(s+ k)2 + 1

, (8.7)

where γke , − tan−1(k)− βe − π and γk+s
e , − tan−1(k + s)− βe − π.

Remark 8.6. Notice that the wind load coefficients given in [76, 103, 15, 52] trivially
satisfy Assumptions 8.5-8.7, or can be easily approximated with functions satisfying
Assumptions 8.5-8.7.

Remark 8.7. Given the model (8.1-8.2) one can choose to consider both the proposed
disturbances, [Vx, Vy, 0]T and w, or only one, depending on the application, type of vessel
and the environmental conditions.
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8.1.3. The Model in Component Form

To solve nonlinear underactuated control design problems it is useful to expand the model
(8.1-8.2) into a component form:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (8.8a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (8.8b)

ψ̇ = r, (8.8c)

u̇r = Fu(ur, vr, r) + Peκ
∗
u(γe) cos(βe − ψ) + τu, (8.8d)

v̇r = X(ur)r + Y (ur)vr + κv(γe) sin(βe − ψ), (8.8e)

ṙ = Fr(ur, vr, r) + Peκ
∗
r(γe) sin(βe − ψ) + τr. (8.8f)

Notice the absence of any control inputs in sway (8.8e) to compensate for the environ-
mental disturbances. The ship should therefore side-slip to counteract for currents, wind
and waves. The expressions for κ∗u(γe), κ∗r(γe), Fr(ur, vr, r), Fu(vr, r), X(ur) and Y (ur)

are given in Appendix 8.A. Furthermore, the functions Y (ur) and X(ur) are bounded
for bounded arguments and thus satisfy the following assumption:

Assumption 8.8. Y (ur) satisfies Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Urd], where
Y min is a positive constant.

Remark 8.8. Assumption 8.8 is justified by a contradiction: Y (ur) ≥ 0 would imply a
nominally unstable vehicle in sway which is not the case for commercial vessels by design.
No bounds are implied on ur and Urd > 0 will be defined later.

8.2. The Control Objective

This section formalizes the control problem solved in this chapter. The control system
should make the vessel follow a given straight line P and maintain a desired constant
surge relative velocity Urd > 0 in the presence of environmental disturbances, modeled
as a combination of the ocean ocean current Vc and the wind pressure Pe. The inertial
reference frame i is placed such that x-axis is aligned with the desired path P as shown
in Figure 8.1. This simplifies the control problem without any loss of generality, giving
P , {(x, y) ∈ R2 : y = 0}. The vehicle y coordinate then corresponds to the horizontal
cross-track error and the control objectives become:
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lim
t→∞

y(t) = 0, (8.9) lim
t→∞

ψ(t) = ψss, (8.10) lim
t→∞

ur(t) = Urd, (8.11)

where ψss ∈ (−π/2, π/2) is constant. The yaw angle ψ(t) is not required to converge to
zero but rather to a steady-state constant value to make the vessel side-slip at equilibrium
and thus counteract the environmental disturbances. This is necessary since the ship is
underactuated and no control forces are available in sway to compensate for the drift.
The value of ψss will be specified later.

Remark 8.9. A control approach based on relative velocities is used. As done in
Chapters 3, 5 and 6, the vessel is required to hold a constant surge relative velocity Urd
as stated in (8.11). Therefore the path following speed is unconstrained and unknown.
This is not ideal for speed profile planning/tracking scenarios. However, controlling the
relative velocity of the ship gives direct control over energy consumption as hydrodynamic
damping depends on νr, and removes the unknown term νc from the velocity feedback
loop. Furthermore, relative velocity is measurable and relative velocity sensors such as
Doppler Velocity Logs (DVLs) are available.

The relative velocity needs to be sufficiently large to guarantee ship maneuverability
in presence of disturbances. In particular, it is shown in this chapter that the following
assumption guarantees path following in presence of kinematic and dynamic disturbances
acting in any direction:

Assumption 8.9. The desired constant relative surge velocity Urd satisfies the following
condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ κmax
v

Y (Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣κmax
v + κ′max

v

Y (Urd)

∣∣∣∣
}
.

Remark 8.10. It is always possible to find values of Urd satisfying Assumption 8.9,
since |Y (ur)| is strictly increasing for ur > 0.

8.3. The Integral Line of Sight Guidance

The ILOS guidance is presented in this section. The ILOS guidance is introduced in a
cascaded configuration with adaptive surge and yaw controllers to solve the path following
problem described in Section 8.2. The surface vessel has to converge and follow the
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ψ ILOS

x

y

P Wind

 
σ y i n t

∆

ψ ss

Current

Figure 8.1.: Integral line of sight guidance for an underactuated surface vessel. At steady
state the nonzero angle ψss allows the underactuated vehicle to counteract the
disturbances.

x-axis in presence of environmental disturbances. In this chapter it is shown that the
ILOS guidance method introduced in Chapter 3 compensates for both kinematic as well
as dynamic disturbances, further extending the results. Hence, the desired heading angle
is defined as:

ψILOS , − tan−1

(
y + σyint

∆

)
, ∆, σ > 0, (8.12a)

ẏint =
∆y

(y + σyint)
2 + ∆2

, (8.12b)

where ∆ is the look-ahead distance and σ is the integral gain. Both are constant design
parameters. The integral effect becomes significant when disturbances push the craft
away from its path. This gives a nonzero angle (8.12a) and makes the vessel to side-slip
while staying on the desired path, so part of its relative forward velocity can counteract
the effect of the disturbances as shown in Figure 8.1. Notice that the law (8.12b) gives
less integral action when the vehicle is far from P , reducing the risk of wind-up effects.
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8.4. The Surge and Yaw Controllers

This section presents the adaptive surge-yaw controller that, added in a cascaded config-
uration with the ILOS guidance from Section 8.3, solves the tasks defined in Section 8.2
when the wind pressure Pe is unknown.

Remark 8.11. An adaptive version for the surge and yaw controllers is presented to
add robustness with respect to the unknown dynamic disturbance Pe. It is common to
have both feed-forward and integral action in modern autopilots and speed controllers
[52].

The following combined surge-yaw controller is proposed:

τu =− Fur(ur, vr, r) + u̇rd − kur(ur − urd)

− P̂eκ∗u(γe) cos(βe − ψ),
(8.13a)

τr =− Fr(ur, vr, r) + ψ̈d − (kψ + λkr)(ψ − ψd)

− (kr + λ)(ψ̇ − ψ̇d)− P̂eκ∗r(γe) sin(βe − ψ),
(8.13b)

˙̂
Pe =γ1G

T (ψ)

[
ur−urd
γ2(ψ−ψd)

γ2[(ψ̇−ψ̇d)+λ(ψ−ψd)]

]
, (8.13c)

whereG(ψ) , [κ∗u(γe) cos(βe−ψ) 0 κ∗r(γe) sin(βe−ψ)]T is the regressor, kur , kψ, kr, λ >
0 are constant controller gains and γ1, γ2 > 0 are constant adaption gains. The controller
(8.13) is an adaptive feedback linearizing controller and, as later shown in Section 8.6,
it makes sure that ur, ψ and r exponentially track urd, ψd and ψ̇d. Furthermore, P̂e
exponentially estimates the magnitude of the unknown disturbance Pe.

8.5. Stability Conditions

This section presents the stability conditions under which the proposed ILOS guid-
ance (8.12) in a cascaded configuration with the adaptive controller (8.13) achieves the
objectives (8.9-8.11). The notation XUrd , X(Urd) and Y Urd , Y (Urd) is used.
Theorem 8.1. Given an underactuated surface vessel described by the dynamical system
(8.8). If Assumptions 8.3-8.9 hold and, if the look-ahead distance ∆ and the integral gain
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σ satisfy the conditions:

∆ >
|XUrd |
|Y Urd |

Ω(σ)

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (8.14)

0 < σ < Urd − Vmax −
5

2

∣∣∣∣κmax
v

Y Urd

∣∣∣∣ , (8.15)

where Ω(σ) is defined as,

Ω(σ) ,
Urd − Vmax − σ

Urd − Vmax − σ − 5
2

∣∣ κmax
v

Y Urd

∣∣ , (8.16)

then the controller (8.13), where ψd is given by (8.12) and urd , Urd, guarantees achieve-
ment of the control objectives (8.9-8.11).

8.6. Proof of Theorem 8.1

In this section the proof of Theorem 8.1 is given. The dynamics of the cross track error y
and the relative sway velocity vr are analyzed first. Given the error signals ũr , ur−Urd,
ψ̃ , ψ − ψd, ˙̃ψ , r − ψ̇d, the vector ζ , [ũr, ψ̃,

˙̃ψ]T is defined. The y − vr subsystem is
obtained combining (8.8b), (8.8e) and (8.12b):

ẏint =
∆y

(y + σyint)
2 + ∆2

, (8.17a)

ẏ =(ũr + Urd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy, (8.17b)

v̇r =X(ũr + Urd)(
˙̃ψ + ψ̇d) + Y (ũr + Urd)vr

+ κv(γe) sin(βe − ψ̃ − ψd).
(8.17c)

The calculation of the equilibrium point of the system (8.17) on the manifold ζ =

[ũr, ψ̃,
˙̃ψ]T = 0 yields the following equation:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

, (8.18)

where s , σyeq
int/∆ and yeq

int is the value of yint at equilibrium. The term κeq
v (s) is defined

as the value of κv(γe) at equilibrium, i.e. when γe = γeq
e , − tan−1(s)− βe − π. It has

to be shown that (8.18) has a unique real solution to have a single equilibrium point.
The equilibrium point equation (8.18) is similar to Equation (7.21) in Section 7.5 and is
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of the same kind of Equation (5.17) in Section 7.5. Therefore, it is straightforward to
apply Lemma 5.1 from Chapter 5 and conclude that if Assumptions 8.6 and 8.9 hold,
then (8.18) has exactly one real solution s = σyeq

int/∆.

At equilibrium yeq = 0 while yeq
int and veq

r are constant values where yeq
int is the unique

solution of (8.18) and veq
r relates to yeq

int as veq
r = Urdσy

eq
int/∆− Vy

√
(σyeq

int/∆)2 + 1). The
heading angle held by the vessel at steady-state is then ψss , − tan−1 (σyeq

int/∆). A new
set of variables is introduced to move the equilibrium point to the origin: e1 , yint − yeq

int,
e2 , y + σe1 and e3 , vr − veq

r . Substituting (8.12a) for ψd and factorizing the result
with respect to ζ leads (8.17) to the following expression:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2) +H(y, yint, ψd, vr, ζ)ζ. (8.19)

The term H contains all the terms vanishing at ζ = 0. A(e2) is given in (8.41) of
Appendix 8.A while B(e2) and H(y, yint, ψd, vr, ζ) are:

B(e2) ,

[
0

Vyf(e2)

− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)+sin(ψss−βe)g(e2)

]
, (8.20)

H(y, yint, ψd, vr, ζ) ,

[ 0 0
1 0

− ∆X(ũr+Urd)

(e2+σy
eq
int

)2+∆2 1

] [
hTy
hTvr

]
, (8.21)

and

f(e2) ,1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, (8.22)

g(e2) ,κeq
v −

κv(γe)
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

. (8.23)

Notice that the following bound holds for f(e2):

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

. (8.24)

One can prove that (8.24) holds by squaring both sides of the inequality two consecutive
times. Furthermore, as a direct consequence of Assumption 8.7, the following bound
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holds for g(e2):

|g(e2)| ≤ κmax
v

|e2|√
(e2 + σyeq

int)
2 + ∆2

. (8.25)

The vectors hy and hvr are given in Appendix 8.A. The system (8.19) on the manifold
ζ = 0 is equivalent to the following nominal system:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (8.26)

Lemma 8.1 states the stability properties of (8.26):
Lemma 8.1. Under the conditions of Theorem 5.1, the nominal system (8.26) is UGAS
and ULES.

Proof. The proof of Lemma 8.1 is given in Appendix 8.B.

The actuated dynamics (8.8d) and (8.8f) of the ship in closed loop configuration with
the controller (8.13) are considered next. Given the error signals ũr, ψ̃, ε ,

˙̃ψ + λψ̃ and
the estimation error P̃e , Pe − P̂e, the vector ξ , [ũr, ψ̃, ε]

T is defined. The dynamics of
ξ and P̃e are obtained by combining the system equations (8.8c), (8.8d) and (8.8f) with
(8.13):

ξ̇ = χ(ξ) +G(ψ̃ + ψd(ξ, t))P̃e, (8.27a)

˙̃Pe = −γ1G
T (ψ̃ + ψd(ξ, t))

[
∂W1(ξ)

∂ξ

]T
, (8.27b)

where:

χ(ξ) ,

[
−kur 0 0

0 −λ 1
0 −kψ −kr

]
ξ, (8.28)

W1(ξ) ,
1

2
ũ2
r +

γ2kψ
2

ψ̃2 +
γ2

2
ε2. (8.29)

The stability properties of the origin (0, 0) of (8.27) are assessed using Theorem A.3.
Assumption (A2) of Theorem A.3 is considered first. In particular, notice that it is
trivial to find three constants c1, c2, c3 > 0 such that c1 ‖ ξ ‖≤ W1(ξ) ≤ c2 ‖ ξ ‖ and
[∂W1(ξ)/∂ξ] χ(ξ) ≤ −c3 ‖ ξ ‖. This satisfies Assumption (A2) of Theorem A.3.

Assumption (A1) of Theorem A.3 is considered next. To this end notice that the
regressor G(ψ̃+ψd(ξ, t)) relies on the error signal ψ̃ and the reference ψd(ξ, t) to estimate
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the unknown Pe, where the reference ψd(ξ, t) is allowed to depend upon ξ as well.
According to Theorem A.3 the regressor G(ψ̃ + ψd(ξ, t)) has to be analyzed on the
manifold ξ = 0 (notice that ξ = 0 implies ζ = 0). The notation ψ0

d , ψd(0, t) and
G0(ψ

0
d(t)) , G(ψ̃ + ψd(ξ, t))|ξ≡0 is introduced for this purpose. Furthermore, some

preliminary analysis of ψ0
d and its time derivative ψ̇0

d = ρ(yint(t), y(t), vr(t))|ξ≡0, where
ρ(yint, y, vr) is given in Appendix 8.A, is necessary:

Corollary 8.1. The signals ψ0
d and ψ̇0

d are bounded and continuous.

Proof. The signal ψd(t) = − tan−1[(y(t)+σyint(t))/∆] is function of the time trajectories
[e1(t), e2(t), e3(t), ξ

T (t), P̃e(t)]
T as suggested by (8.19). However, the condition ξ = 0

required by Theorem A.3 and that defines ψ0
d, opens the loop. In fact, ψ0

d = − tan−1[(y(t)+

σyint(t))/∆]|ξ≡0 is function of the time trajectories [e1(t), e2(t), e3(t)]T |ξ≡0 generated by
the nominal system (8.26). Following Lemma 8.1, the nominal system (8.26) is UGAS
and ULES, and therefore, the signals ψ0

d and ψ̇0
d are always bounded and continuous.

It is now possible to check that all the conditions of Assumption (A1) in Theorem A.3
are satisfied. First, notice that it is trivial to find a continuous non-decreasing function
θ1(·) such that max{‖ χ(ξ) ‖, ‖ ∂W1(ξ)/∂ξ ‖} ≤ θ1(‖ ξ ‖) ‖ ξ ‖. Next, since G(·) is
globally bounded, it is straightforward to find a continuous non-decreasing function θ2(·)
satisfying the inequality max{‖ G(ψ̃ + ψd(ξ, t)) ‖, ‖ G0(ψ

0
d(t)) ‖} ≤ θ2(‖ [ξT , P̃e]

T ‖).
Furthermore, Assumption 8.6 guarantees that there exists a constant bm > 0 such that
G(·)TG(·) ≥ bm, regardless of the argument. Therefore, conditions (A.18), (A.19) and
(A.21) in Assumption (A1) of Theorem A.3 are satisfied. This last condition is often
referred to as the persistence of excitation (PE) condition.

Finally, the partial derivative ∂G0(ψ
0
d)/∂P̃e and the time derivative ∂G0(ψ

0
d)/∂t

are analyzed to show that condition (A.20) in Theorem A.3 is fulfilled. In particu-
lar, ∂G0(ψ0

d)/∂P̃e = 0, while the term ∂G0(ψ
0
d)/∂t can be rewritten as ∂G0(ψ

0
d)/∂t

= (∂G0(ψ0
d)/∂ψ

0
d)ψ̇

0
d. Assumption 8.6 makes sure that ∂G0(ψ0

d)/∂ψ
0
d is well defined and

bounded, while continuity and boundedness of ψ̇0
d is shown by Corollary 8.1. Thus, the

time derivative ∂G0(ψ0
d)/∂t is bounded and there exists a non-decreasing function θ3(·)

such that max{‖ ∂W1(ξ)/∂P̃e ‖, ‖ ∂G0(ψ
0
d(t))/∂t ‖} ≤ θ3(|P̃e|). This fulfills condition

(A.20) in Assumption (A1) of Theorem A.3.

All the assumptions of Theorem A.3 are thus satisfied and it is therefore possible to
conclude UGAS and ULES for the origin of the system (8.27). Therefore the control goal
(8.11) is achieved with exponential converging properties in any ball of initial conditions.
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Remark 8.12. The nominal system (8.26) represents the closed loop dynamics of
ILOS guidance when the actuated surge and yaw dynamics are neglected (ζ = 0). It
can be considered as an ideal unperturbed case since (8.26) has very strong stability
properties. Notice that the time trajectories of (8.26) play a role in determining the
stability properties of (8.27).

Finally, the interconnected dynamics of (8.17) and (8.27) are considered. The complete
cascaded system of (8.17) and (8.27) is given by:[

ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2) +H(y, yint, ψd, vr,Λξ)Λξ, (8.30a)

ξ̇ = χ(ξ) +G(ψ̃ + ψd)P̃e, (8.30b)

˙̃Pe = −γ1G
T (ψ̃ + ψd)

[
∂W1(ξ)

∂ξ

]T
, Λ ,

[
1 0 0
0 1 0
0 −λ 1

]
, (8.30c)

where ζ = Λξ, with Λ > 0 non-singular. Notice that the system (8.30) is a cascaded
system, where the subsystem (8.30b-8.30c) perturbs the dynamics (8.30a) through the
interconnection matrix H. The perturbing system (8.30b-8.30c) is UGAS and ULES
and the interconnection matrix H can be shown to satisfy:

‖H ‖≤ θ4(‖ ζ ‖)(|y|+ |yint|+ |vr|) + θ5(‖ ζ ‖), (8.31)

where θ4(·) and θ5(·) are some continuous non-negative functions. Therefore, applying
Theorem A.2 and Lemma A.2 concludes that under the conditions of Theorem 5.1
the origin (e1, e2, e3, ξ, P̃e) = (0, 0, 0,0, 0) of the system (8.30) is UGAS and ULES,
or alternatively, globally κ-exponentially stable. Hence, the objectives (8.9-8.10) are
achieved with exponential converging properties in any ball of initial conditions and
ψss = − tan−1(σyeq

int/∆).

Remark 8.13. The value yeq
int makes sure that, at equilibrium, the vessel holds the

heading ψss = − tan−1(σyeq
int/∆) and is the only real solution of (8.18), i.e. ψss is the only

possible heading that guarantees path following and compensates for the two disturbances.

Remark 8.14. The lower bound (8.14) is expected and has a clear physical interpreta-
tion: a too short look-ahead distance ∆ > 0 makes the vessel overshoot the target and
thus causes chattering [35].
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8.7. Simulations

Results from numerical simulations are presented in this section. The ILOS guidance
(8.12) from Section 8.3 in a cascaded configuration with the adaptive surge-yaw controller
(8.13) presented in Section 8.4, is applied to an underactuated supply vessel where both
the kinematic and the dynamic disturbances are considered. The supply ship model from
Section B.1 of Appendix B is used. The objective is to make the vessel follow the path P
with a desired surge relative velocity Urd = 6 [m/s] in presence of both ocean currents and
wind disturbances. The intensity of the current is |Vc| = 0.9 [m/s] and its direction is ran-
domly generated. In this case its components are Vx = −0.17 [m/s] and Vy = 0.88 [m/s],
having a direction of 100.7 [deg]. Thus, Assumption 8.3 is fulfilled with Vmax = 1 [m/s]

and it can be verified that Assumption 8.8 is satisfied with Ymin = 0.039 [s−1]. The
upper limit for the wind pressure Pe is set to Pmax

e = 570 [N/m2]. It corresponds ap-
proximately to the dynamic pressure generated by wind having 30 [m/s] of speed at the
temperature of 10 [C◦]. This is a reasonable upper limit since most offshore operations
will not be carried out in such harsh conditions. The pressure Pe and its direction βe
are also randomly generated and in this case their values are Pe = 139.25 [N/m2] and
βe = 196.9 [deg]. Notice that the two disturbances act in different directions.

The wind load coefficients for the offshore supply vessel case from [15] and given
in Appendix B satisfy Assumption 8.5 and are chosen to define C∗X(γe), C

∗
Y (γe), C

∗
N(γe).

Notice that C∗X(γe), C
∗
Y (γe), C

∗
N(γe) are smoothened as shown in Appendix B to become

class C1 functions with bounded first derivatives. Hence, it is possible to verify that
Assumptions 8.6-8.7 are verified with κmax

v = 0.036 [m/s2] and κ′max
v = 0.02 [m/s2].

Furthermore, the frontal and lateral projected areas above the waterline of the supply
vessel in Appendix C are estimated as AFw = 282.00 [m2] and ALw = 554.90 [m2], and
its length overall is Loa = 82.45 [m]. Notice that, given the bounds Vmax = 1 [m/s],
κmax
v = 0.036 [m/s2] and κ′max

v = 0.02 [m/s2], the desired relative velocity Urd = 6 [m/s]

satisfies Assumption 8.9.

Remark 8.15. The coefficients from [15] are chosen to define the environmental load
vector w in consideration of their wide use to assess wind loads on ships.

The values for the guidance law integral gain and look-ahead distance are chosen
to satisfy (8.14-8.15) and are σ = 1 [m/s] and ∆ = 340 [m]. The adaptive controller
(8.13) is implemented with the following gains: kur = 0.1, kψ = 0.04, kr = 0.9 and
λ = 0.05. The values for kur , kψ and kr are chosen to give a time constant of 10 [s] for
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the ũr first order closed loop system and to make the ψ̃ second order closed loop system
overdamped with ω0 = 0.2 [rad/s] when the adaption law (8.13c) is turned off (Pe = 0).
The adaptation gains are set to γ1 = 106 and γ2 = 103. Such high values for γ1 and γ2 are
necessary to guarantee fast convergence since the quantities 1/m11 and 1/(m22m33−m2

23)

render κu(γe)
∗ and κr(γe)∗ very small (see Appendix 8.A). Finally, the supply vessel has

1600 [kN] of maximum available thrust in surge, while the maximum rudder angle is
35 [deg] and the maximum turning rate is 10 [deg/s].

The ship is given an initial cross track error of 1500 [m] and initially holds zero
relative velocity. Its surge axis is parallel to the desired path P . Figures 8.2a-8.2d show
how the underactuated vessel successfully follows the path P with a constant side-slip
angle ψss ≈ −8.0◦ to compensate for the disturbances. Hence, choosing the guidance
law parameters according to the criteria (8.14-8.15) gives smooth convergence and does
not overload the ship surge-yaw controller (8.13). The relative surge velocity is shown
in Figure 8.2d while the rudder angle is given in Figure 8.2b. Furthermore, Figure
8.2e shows the performance of the adaption law (8.13c). As expected, the estimate P̂e
converges to the real value. Notice that for angles of attack that at equilibrium are
close to γeq

e ≈ ±π/2 convergence is slower as shown in Figure 8.2f. When γe ≈ ±π/2
the product G(γe)

TG(γe) > 0 is at its minimum and therefore the convergence of the
persistently exciting (PE) regressor G(γe) is slower.

8.8. Conclusions

In this chapter it has been shown that the ILOS guidance law developed in Chapters 5 and
6 for path following purposes of underactuated surface vehicles effectively compensates
for kinematic as well as dynamic disturbances. Theoretical results and simulations have
been presented in a unified manner for this purpose. The disturbances are modeled as a
combination of a constant irrotational ocean current and constant heading dependent
wind forces. It has been shown that the ILOS guidance guarantees path following with
global κ-exponential stability properties in closed loop configuration with an adaptive
surge-yaw controller, in presence of both the disturbances. The full kinematic-dynamic
closed loop system has been considered and explicit conditions to guarantee stability
have been derived. The theoretical results are supported by numerical simulations.
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(a) Simulation of convergence and path following of the sup-
ply vessel in presence of multiple disturbances. The time
interval 0− 1400 [s] is considered.
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(b) Yaw angle ψ(t) and rudder angle Tr(t) of the supply
ship from simulations. Notice the side-slip angle ψss ≈
−7.9 [deg] in steady state.
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(c) Cross track error y(t) of the vessel.
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(e) Adaptive surge-yaw controller estimate P̂e(t) from simu-
lations. In this case Vx = −0.17 [m/s], Vy = 0.88 [m/s],
Pe = 139.25 [N/m2] and βe = 196.9 [deg]. The steady
state attack angle is γeq

e ≈ −24.8 [deg].
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(f) Adaptive surge-yaw controller estimate P̂e(t) from simu-
lations. In this case Vx = −0.41 [m/s], Vy = −0.80 [m/s],
Pe = 382.76 [N/m2] and βe = 286.3 [deg]. The steady
state attack angle is γeq

e ≈ −96.2 [deg].

Figure 8.2.: Simulation results for ∆ = 340 [m] and σ = 1 [m/s].
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8.A. Appendix: Functional Expressions

κu(γe)
∗ = − 1

m11

AFwC
∗
X(γe), (8.32)

κr(γe)
∗ = −m23ALwC

∗
Y (γe)

m22m33 −m2
23

+
m22LoaALwC

∗
N(γe)

m22m33 −m2
23

, (8.33)

Fur(ur, vr, r) ,
1

m11

(m22vr +m23r)r −
d11

m11

ur, (8.34)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (8.35)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (8.36)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(8.37)

The vectors hy , [hy1, hy2, hy3]T , hvr , [hvr1, hvr2, hvr3]T are:

hy1 = sin(ψ̃ + ψd), hy3 = 0,

hy2 = Urd

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

(8.38)

hvr1 =
X(ũr + Urd)−XUrd

ũr
ρ(yint, y, vr) + vr

Y (ũr + Urd)− Y Urd

ũr
,

hvr2 = κv(γe)

[
cos(ψ̃)− 1

ψ̃
sin(βe − ψd)−

sin(ψ̃)

ψ̃
cos(βe − ψd)

]
,

hvr3 = X(ũr + Urd),

(8.39)

where the limits of hy2 for ψ̃ → 0 and hvr1 for ũr → 0 exist and are finite. The expression
ρ(yint, y, vr) is defined as:

ρ(yint, y, vr) ,
∆Urd(y + σyint)−∆2vr
((y + σyint)2 + ∆2)3/2

− σ∆2

((y + σyint)2 + ∆2)2
y − ∆Vy

(y + σyint)2 + ∆2
.

(8.40)
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8.B. Appendix: Proof of Lemma 8.1

The nominal system (8.26) is written again:[
ė1
ė2
ė3

]
= A(e2)

[
e1
e2
e3

]
+B(e2). (8.42)

The nominal system (8.26) is equivalent to the system (5.28) analyzed in Chapter 5.
Hence, the proof follows along the lines of the proof of Lemma 5.2 given in Appendix
5.B of Chapter 5. Consider the quadratic Lyapunov function candidate (LFC):

V ,
1

2
σ2e2

1 +
1

2
e2

2 +
1

2
µe2

3, µ > 0. (8.43)

The notation ē1 , e1/
√

(e2 + σyeq
int)

2 + ∆2, ē2 , e2/
√

(e2 + σyeq
int)

2 + ∆2, Assumptions
8.3-8.9 and inequalities (8.24-8.25) yield the following bound for the time derivative V̇ :

V̇ ≤ −W2(|ē1|, |e3|)−W3(|ē2|, |e3|). (8.44)

The functions W2 and W3 are defined as:

W2 , σ3∆|ē1|2−µ
σ2|XUrd |

∆
|ē1||e3|+ µη

(
|Y Urd | − |X

Urd |
∆

)
|e3|2, (8.45)

W3 ,∆
[
|ē2| |e3|

] β −α

−α α(2α−1)
β

|ē2|

|e3|

 , (8.46)

where 0 < η < 1, β , Urd − Vmax − σ and α is given by:

α , (1− η)
(Urd − Vmax − σ)(∆|Y Urd | − |XUrd |)
|XUrd | (Urd + Vmax + σ) + 2∆κmax

v

. (8.47)

The parameter µ is chosen as:

µ ,
∆2(2α− 1)

|XUrd |(Urd + Vmax + σ) + 2∆κmax
v

. (8.48)

If both W2 and W3 are definite positive then V̇ is negative definite. Positive definiteness
of W2 is ensured if (8.49) and (8.50) are satisfied:

∆ >
|XUrd |
|Y Urd |

, (8.49) µ <
4η∆2

[
∆|Y Urd | − |XUrd |

]
σ|XUrd |2

. (8.50)
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Notice that condition (8.49) is met as long as (8.14) holds. It is straightforward to show
that η ≥ 1/5 is a sufficient condition for µ, defined in (8.48), to satisfy (8.50). Therefore,
without any loss of generality, η is set to 1/5. Both β and α must fulfill β > 0 and α > 1

to guarantee positive definiteness ofW3. Assumption 8.9 and (8.15) make sure that β > 0

while it is easy to check that conditions (8.14) and (8.15) imply α > 1. Furthermore, α > 1

guarantees µ > 0 and ensures positive definiteness of V . Therefore under the conditions
stated in Theorem 8.1, V , W2 and W3 are positive definite and hence, following standard
Lyapunov arguments, the nominal system (8.42) is UGAS. Furthermore, the inequality
W , W2 +W3 ≥ λ̄1|ē1|2 + λ̄2|ē2|2 + λ3|e3|2 holds in a neighbourhood of the origin for
some constants λ̄1, λ̄2, λ3 > 0 and thus in any ball Br , {|e2| ≤ r}, r > 0 the function W
can be estimated as W ≥ λ1|e1|2 + λ2|e2|2 + λ3|e3|2 where λi = λ̄i/((r + σyeq

int)
2 + ∆2),

i = 1, 2. This, together with the fact that V is a quadratic function of e1, e2 and vr,
concludes that (8.42) is also uniformly locally exponentially stable, ULES [82].
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Chapter 9.

Path Following Control of
Underactuated AUVs in the
Presence of Ocean Currents

“And the sea will grant each man new hope, as sleep brings dreams of
home.”

— Larry Ferguson, Screenwriter

In Chapter 4 a three dimensional (3D) Integral Line-of-Sight (ILOS) guidance law was
presented and applied to a kinematic model of underactuated underwater vehicles. The
actuated and underactuated dynamics were not considered and the guidance law was
designed to make the vehicle follow 3D straight lines in the presence of constant and
irrotational ocean currents. A discussion involving intuitive and practical aspects of
the current compensation problem and the 3D ILOS control law was also given. The
resulting analysis of the closed loop system gave explicit bounds on the integral gains
but did not give any guidelines on how to choose the look-ahead distances of the ILOS.
The underactuated sway dynamics were included in the analysis of the two dimensional
(2D) ILOS in Chapter 5 while the complete kinematic and dynamic closed loop system
of the 2D ILOS guidance law was analyzed in Chapter 6. In this way an explicit bound
for the choice of the look-ahead distance was derived.

In this chapter the underactuated and the actuated dynamics are included in the
analysis of the 3D ILOS guidance law from Chapter 4. The analysis developed in
Chapters 5 and 6 for surface vessels is hence extended to underactuated AUVs for 3D
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straight-line path following applications in the presence of constant irrotational ocean
currents acting in any direction of the inertial frame. The 3D ILOS guidance law from
Chapter 4 with integral action in both the vertical and horizontal directions is shown to
solve the task together with three feedback controllers in a cascaded configuration. The
control approach is based on relative velocities with direct control over the AUV relative
speed. It is shown that redefining the AUV dynamics in terms of relative velocities
only, as explained in [52], makes it possible to prove the stability properties of uniform
global asymptotic stability (UGAS) and uniform local exponential stability (ULES) for
the origin of the closed loop system. Compared to Chapter 4, both the kinematic and
dynamic levels of the problem are addressed and explicit bounds on all of the guidance
law parameters are given to guarantee stability. The proposed 3D ILOS guidance control
scheme is applied to the LAUV autonomous underwater vehicle [126]. First, simulations
are run using a mathematical model of the LAUV vehicle to analyze the guidance law
response and tune the ILOS controllers. The simulations include an example of a 3D
underwater path following case and a 2D underwater way-point following case, analogous
to the sea trial runs, for a back-to-back comparison. Next, experimental results from full
scale underwater 2D way-point following tests are shown. Finally, the ILOS guidance
law is compared to the vector field guidance law for path following purposes from [100].
The comparison is based on experimental results.

The chapter is organized as follows: Section 9.1 presents the model of the vehicle
and Section 9.2 identifies the control objective. Section 9.3 presents the strategy that
solves the path following task defined in Section 9.2. The stability conditions are given in
Section 9.4 and proven in Section 9.5. The simulation results are shown in Section 9.6 and
the results from field experiments with the LAUV are presented in Section 9.7. Finally,
the ILOS guidance law is compared to the vector field guidance law in Section 9.8.
Conclusions are given in Section 9.9. The results presented in this chapter are based on
the papers [34, 30].
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9.1. The Control Plant Model

The class of marine vehicles described by the 5-DOF maneuvering model presented in
Section 2.4 of Chapter 2 are considered:

η̇ = J(η)νr + [V T
c , 0, 0]T , (9.1)

Mν̇r +C(νr)νr +Dνr + g(η) = Bf . (9.2)

The state of the underwater vehicle is given by the vector η , [x, y, z, θ, ψ]T which
describes the position and the orientation of the AUV with respect to the inertial frame
i. In particular, θ is the vehicle pitch angle and ψ is the vehicle yaw angle. As shown in
Chapter 2, in navigation problems involving irrotational ocean currents it is useful to
describe the state of the vessel with the relative velocity vector: νr = [ur, vr, wr, q, r]

T .
The vector νr is defined in b where ur is the relative surge velocity, vr is the relative sway
velocity, wr is the relative heave velocity, q is pitch rate and r is the yaw rate.

Remark 9.1. The models used in [26, 33] contain the velocity vector ν as well as
the relative velocity vector νr. This complicates the controller design and weakens the
cascade configuration. The model (9.1-9.2) overcomes the problem.

The vector f , [Tu, Tq, Tr]
T is the control input vector, containing the surge thrust

(Tu), the pitch rudder angle (Tq) and the yaw rudder angle (Tr). The dimension of the
control input vector f is two less than the DOF of the vessel, therefore the model (9.2) is
underactuated in its configuration space. The term J(η) is the velocity transformation
matrix defined as:

J(η) ,
[
R(θ,ψ) 0

0 T (θ)

]
, (9.3)

where T (θ) , diag(1, 1/ cos(θ)), |θ| 6= π
2
.

Remark 9.2. The definition of T (θ) implies a singularity in θ. However the global
results refer to the analysis of the closed loop system given in Section 9.5, where no
singularity is present.

The matrix M = MT > 0 is the mass and inertia matrix, and includes hydrodynamic
added mass. The matrix C(νr) is the Coriolis and centripetal matrix, D > 0 is the
hydrodynamic damping matrix, g(η) is the gravity vector and B ∈ R5×3 is the actuator
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configuration matrix. The structure of the matrices R(θ, ψ), M , C(νr), B and of the
vector g(η) is given in Chapter 2. The following assumption defines the properties of
the damping matrix D:

Assumption 9.1. Damping is considered linear.

Remark 9.3. For low speed maneuvering, Assumption 9.1 is a mild assumption as any
non-linear damping should enhance the directional stability of the vehicle due to the
passive nature of the hydrodynamic damping forces.

The hydrodynamic damping matrix D is therefore considered to have the following
structure [52]:

D ,

 d11 0 0 0 0
0 d22 0 0 d25
0 0 d33 d34 0
0 0 d43 d44 0
0 d52 0 0 d55

 . (9.4)

The particular structure of D is justified by symmetry arguments (see Section 2.4 of
Chapter 2) and Assumption 9.1. Furthermore, the following assumption is introduced:

Assumption 9.2. The body-fixed coordinate frame b is located in a point (x∗g, 0, 0)

from the vehicle’s center of gravity (CG) along the center-line of the vessel, where x∗g is
chosen so that M−1Bf = [τu, 0, 0, τq, τr]

T .

The point (x∗g, 0, 0) exists for all AUVs of cylindrical shape employing symmetric steer-
ing and diving control surfaces, (see Section 2.4 of Chapter 2). Finally the following
assumption is taken from Section 2.4 for clarity and completeness:

Assumption 9.3. The ocean current in the inertial frame i, Vc , [Vx, Vy, Vz]
T , is

constant, irrotational and bounded. Hence, there exists Vmax > 0 such that Vmax ≥√
V 2
x + V 2

y + V 2
z .
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9.1.1. The Model in Component Form

To solve nonlinear underactuated control design problems it is convenient to expand
(9.1-9.2) into:

ẋ = ur cos(ψ) cos(θ)− vr sin(ψ) + wr cos(ψ) sin(θ) + Vx, (9.5a)

ẏ = ur sin(ψ) cos(θ) + vr cos(ψ) + wr sin(ψ) sin(θ) + Vy, (9.5b)

ż = −ur sin(θ) + wr cos(θ) + Vz, (9.5c)

θ̇ = q, (9.5d)

ψ̇ =
r

cos(θ)
, (9.5e)

u̇r = Fur(vr, wr, r, q)−
d11

m11

ur + τu, (9.5f)

v̇r = Xvr(ur)r + Yvr(ur)vr, (9.5g)

ẇr = Xwr(ur)q + Ywr(ur)wr + Zwr sin(θ), (9.5h)

q̇ = Fq(θ, ur, wr, q) + τq, (9.5i)

ṙ = Fr(ur, vr, r) + τr. (9.5j)

The expressions Fur , Xvr , Yvr , Xwr , Ywr , Zwr , Fq and Fr are given in Appendix 9.A.
Notice that the functions Xvr(ur), Xwr(ur), Yvr(ur) and Ywr(ur) are bounded for bounded
arguments. An additional key assumption is introduced:

Assumption 9.4. The functions Yvr(ur) and Ywr(ur) satisfy: Ya(ur) ≤ −Y min
a < 0,

∀ur ∈ [−Vmax, Urd], a ∈ {vr, wr}.

Remark 9.4. Assumption 9.4 is justified by the following contradiction: Yvr(ur) ≥ 0

and Ywr(ur) ≥ 0 would imply an undamped or nominally unstable vehicle in sway and
heave which is not the case in practice [25]. This assumption is thus linked to the
straight-line stability properties the AUV. Notice that no bounds are implied on ur while
Urd > 0 will be defined later.

9.2. The Control Objective

This section formalizes the control problem solved in this chapter. The control system
should make the vehicle follow a given straight line P and maintain a desired constant
surge relative velocity Urd > 0 in the presence of unknown constant and irrotational
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ocean currents. The inertial reference frame i is placed such that the z-axis points down
and the x-axis is aligned with the desired path P as shown in Figure 9.1. This simplifies
the control problem without any loss of generality. The desired path P is then defined
as P , {(x, y, z) ∈ R3 : y = 0, z = 0}. Hence, the y and z coordinates of the vehicle
correspond to the horizontal and vertical cross-track errors and the objectives the control
system should pursue can be formalized as:

lim
t→∞

y(t) = 0, (9.6)

lim
t→∞

z(t) = 0, (9.7)

lim
t→∞

ψ(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (9.8)

lim
t→∞

θ(t) = θss, θss ∈
(
−π

2
,
π

2

)
, (9.9)

lim
t→∞

ur(t) = Urd, (9.10)

where θss as well as ψss are constants. The yaw angle ψ(t) and the pitch angle θ(t) are
not required to converge to zero but rather to steady-state constant values to make the
vehicle pitch and side-slip at equilibrium in order to counteract the ocean current. This
is necessary when the ocean current has components in the transverse y and z directions
of the path, since the vehicle is underactuated and no control forces are available in sway
and heave to compensate. The AUV is thus required to side-slip in order not to drift
away. The values of ψss and θss will be specified later.

Remark 9.5. Notice that non horizontal motion can also be considered. Non horizontal
motion affects the the gravity vector g(η) where gravity is represented by the term
Zwr sin(θ) in (9.5h). In particular, this term is seen as an additional bounded constant
disturbance in heave that the guidance system compensates for as well (see Section 9.5).

Remark 9.6. In [26] and [33] the vehicle is required to follow P with a constant speed
Ud > 0. In this chapter the AUV is required to hold a constant surge relative velocity Urd
as stated in (9.10). Therefore the constant path following speed is not directly controlled,
but is instead results from the relative speed and the current velocity. This would not be
ideal if speed profile planning/tracking scenarios were considered. However, controlling
the relative velocity of the ship gives direct control over the energy consumption as
hydrodynamic damping depends on νr, and also it removes the unknown term νc from
the velocity feedback loop. Furthermore, relative velocity can be measured or estimated
using devices such as Doppler Velocity Logs or other sensor fusion techniques [99].
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Current  σ y y i nt

 σ z zin t
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ψ ILOS

θ ILOS

∆

Figure 9.1.: Integral line of sight guidance for an underactuated underwater vehicle, in this case
∆y = ∆z = ∆. At steady state the angles ψss and θss allow the underactuated
AUV to counteract the current.

Finally, the desired relative surge velocity needs to be sufficiently large compared to
the ocean current velocity in order to guarantee maneuverability of the AUV. It is later
shown that the particular bound given in Assumption 9.5 allows the AUV to achieve
path following for currents acting in any direction of the 3D space:

Assumption 9.5. The desired constant relative surge velocity Urd satisfies the following
condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ Zwr
Ywr(Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣ Zwr
Ywr(Urd)

∣∣∣∣
}
,

Remark 9.7. It is always possible to find values of Urd satisfying Assumption 9.5, since
|Ywr(ur)| is strictly increasing for ur > 0.

9.3. The Control System

In this section a control strategy to solve the control problem defined in Section 9.2 is
proposed. First, the LOS guidance is introduced and then the surge, pitch and yaw
controllers are added in a cascaded configuration.
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9.3.1. Path Following Control Strategy

The following integral LOS guidance law is chosen to set the heading and pitch angles,
and make the AUV converge and follow the x-axis in presence of ocean currents:

θILOS , tan−1

(
z + σzzint

∆z

)
, ∆z > 0, (9.11a)

żint =
∆zz

(z + σzzint)
2 + ∆2

z

, (9.11b)

ψILOS , − tan−1

(
y + σyyint

∆y

)
, ∆y > 0, (9.11c)

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (9.11d)

where the look-ahead distances in the vertical and horizontal planes ∆z and ∆y, as well
as the integral gains σy > 0 and σz > 0, are constant design parameters. A graphical
explanation of the integral LOS is given in Figure 9.1. The integral effects become
significant when disturbances push the craft away from its path. This gives nonzero
angles (9.11a), (9.11c) and makes the AUV side-slip and pitch while staying on the
desired path, so part of its relative forward velocity can counteract the effect of the ocean
current as shown in Figure 9.1. The laws (9.11b) and (9.11d) give less integral action
when the vehicle is far from P, reducing the risk of wind-up effects. The integral LOS
guidance laws (9.11) were proposed in [26] and [33].

In this chapter it is shown how integral action in both the heading and pitch LOS
angles generators in a cascaded configuration with three feedback controllers guarantees
path following of underwater vessels in the presence of constant irrotational currents
acting in any direction of the inertial frame.

9.3.2. The Surge, Pitch and Yaw Controllers

According to (9.10), the relative surge velocity of the vessel ur should follow the desired
value urd(t) = Urd. Therefore, to track urd(t) the following controller is used:

τu = −Fur(vr, wr, r, q) +
d11

m11

urd + u̇rd − kur(ur − urd). (9.12)
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The gain kur > 0 is constant. The controller (9.12) is a feedback linearizing P-controller
that in a closed loop configuration with (9.5f) guarantees exponential tracking of urd(t).
Damping is not canceled to guarantee some robustness with respect to model uncertainties.

The following controller is used to track the desired pitch angle θd , θILOS:

τq = −Fq(θ, ur, wr, q) + θ̈d − kθ(θ − θd)− kq(θ̇ − θ̇d), (9.13)

where kθ, kq > 0 are constant gains. The controller (9.13) is a feedback linearizing PD
controller that in a closed loop configuration with (9.5d)-(9.5i) makes sure that θ and q
exponentially track θd and θ̇d respectively.

Finally, the following feedback linearizing PD-controller is used to track the desired
yaw angle ψd , ψILOS:

τr = −Fr(ur, vr, r)− q sin(θ)ψ̇ + cos(θ)
[
ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d)

]
. (9.14)

The parameters kψ, kr > 0 are constant gains and the yaw control law (9.14), in a closed
loop configuration with (9.5e)-(9.5j), guarantees exponential convergence of ψ and ψ̇ to
ψd and ψ̇d respectively.

Remark 9.8. The closed loop system given by the controller (9.14) in combina-
tion with (9.5e)-(9.5j) does not have singularities since the limits of cos(θ)/ cos(θ) and
cos2(θ)/ cos2(θ) for θ → π/2 + kπ exist and equal 1 (see for instance [25]).

Remark 9.9. The controllers (9.12), (9.13) and (9.14) are feedback linearizing con-
trollers, hence if the model suffers from high uncertainty other approaches should be
considered. It can be seen in the following stability analysis that any control law that
gives UGES or UGAS and ULES of the fully actuated dynamics will give the derived
stability result.
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9.4. Stability Conditions

This section presents the main result of this chapter, including the conditions under
which the proposed control law achieves (9.6-9.10). The abbreviations XUrd

a , Xa(Urd)

and Y Urd
a , Ya(Urd) are used, where a ∈ {vr, wr}.

Theorem 9.1. Given an underactuated underwater vehicle described by the dynamical
system (9.5). If Assumptions 9.3-9.5 hold and if the look-ahead distances ∆y, ∆z satisfy
the conditions:

∆y >
|XUrd

vr |
|Y Urd
vr |

[
5

4

Γmax + Vmax + σy
Γinf − Vmax − σy

+ 1

]
, (9.15)

∆z >
|XUrd

wr |
|Y Urd
wr |

ρ(σz)

[
5

4

Urd + Vmax + σz
Urd − Vmax − σz

+ 1

]
, (9.16)

where the integral gains σy, σz satisfy:

0 <σy < Γinf − Vmax, (9.17)

0 < σz <Urd − Vmax −
5

2

∣∣∣∣ ZwrY Urd
wr

∣∣∣∣ , (9.18)

then the controllers (9.12-9.14) and the guidance law (9.11) with urd(t) = Urd guarantee
achievement of the control objectives (9.6-9.10). The control objectives (9.8-9.9) are
fulfilled with ψss = − tan−1

(
Vy/
√

Γ(s)2 − V 2
y

)
and θss = tan−1 (s).

Remark 9.10. The constant s is defined in Section 9.5. The constants Γmax, Γinf and
the functions Γ(s), ρ(σz) are given in (9.19-9.21). It is shown in Section 9.5 that s is
such that Γinf < Γ(s) ≤ Γmax. Notice that Γinf > 0 as long as Assumption 9.5 is satisfied.

Γ(s) ,Urd
1√
s2 + 1

− Zwr

Y Urd
wr

s2

s2 + 1
, (9.19)

Γinf ,
3

5

[
Urd −

∣∣∣∣ ZwrY Urd
wr

∣∣∣∣] , Γmax , Urd, (9.20)

ρ(σz) ,
Urd − Vmax − σz

Urd − Vmax − σz − 5
2

∣∣∣ Zwr
Y
Urd
wr

∣∣∣ . (9.21)
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9.5. Proof of Theorem 9.1

The actuated dynamics (9.5f), (9.5i) and (9.5j) of the AUV in closed loop configuration
with the controllers (9.12-9.14) are considered first. Given the vector ζ , [ũr, θ̃,

˙̃θ, ψ̃, ˙̃ψ]T

where ũr , ur − Urd, θ̃ , θ − θd, ˙̃θ , θ̇ − θ̇d, ψ̃ , ψ − ψd and ˙̃ψ , ψ̇ − ψ̇d, the dynamics
of ζ are obtained by combining the system equations (9.5d), (9.5e), (9.5f), (9.5i) and
(9.5j) with the control laws (9.12-9.14):

ζ̇ =

 −kur− d11
m11

0 0 0 0

0 0 1 0 0
0 −kθ −kq 0 0
0 0 0 0 1
0 0 0 −kψ −kr

 ζ , Σζ. (9.22)

The system (9.22) is linear and time-invariant. Furthermore, the gains kur , kθ, kq, kψ,
kr and the term d11

m11
are all strictly positive. Therefore the matrix Σ is Hurwitz and

the origin ζ = 0 of (9.22) is UGES. Hence, u(t)→ urd(t), θ(t)→ θd(t) and ψ(t)→ ψd(t)

exponentially. As a result, the control goal (9.10) is achieved with exponential converging
properties in any ball of initial conditions.

The dynamics of the cross track error z and the relative heave velocity wr are analyzed
next. The z − wr subsystem is obtained combining (9.5c), (9.5h) and (9.11b):

żint =
∆zz

(z + σzzint)
2 + ∆2

z

. (9.23)

ż = −ur sin(θ̃ + θd) + wr cos(θ̃ + θd) + Vz, (9.24)

ẇr = Xwr(ũr + Urd)(
˙̃θ + θ̇d) + Ywr(ũr + Urd)wr + Zwr sin(θ̃ + θd). (9.25)

The calculation of the equilibrium point of the system (9.23-9.25) on the manifold ζ = 0

yields the following equation:

s
√
s2 + 1 =

Vz
Urd

s2 − Zwr

UrdY
Urd
wr

s+
Vz
Urd

, (9.26)

where s , σzz
eq
int/∆z and zeq

int is the value of zint at equilibrium. It has to be shown that
(9.26) has a unique real solution to have a single equilibrium point. The following Lemma
gives the sufficient conditions for (9.26) to have a unique real solution:
Lemma 9.1. If Assumption 9.5 holds then (9.26) has exactly one real solution s =

σzz
eq
int/∆z.

Proof. The proof of Lemma 9.1 is given in Appendix 9.B.
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At equilibrium zeq = 0 while zeq
int and weq

r are constant values where zeq
int is the unique

solution of (9.26) and weq
r relates to zeq

int as:

weq
r = Urd

σzz
eq
int

∆z

− Vz

√(
σzz

eq
int

∆z

)2

+ 1. (9.27)

The pitch angle held by the AUV at steady state is then θss = tan−1(s) = tan−1(σzz
eq
int/∆z).

Before proceeding with the analysis of the system (9.23-9.25) another consequence of
Assumption 9.5 is considered: as long as Assumption 9.5 is satisfied, the following bound
holds: ∣∣∣∣ VzUrd s2 − Zwr

UrdY
Urd
wr

s+
Vz
Urd

∣∣∣∣ < 1

2

(
s2 + |s|+ 1

)
. (9.28)

The upper bound ssup > |s| can be then calculated by equalizing the bound (9.28) to
|s
√
s2 + 1|: ∣∣∣ssup

√
ssup

2 + 1
∣∣∣ =

1

2

(
ssup

2 + |ssup|+ 1
)
. (9.29)

Solving (9.29) for ssup > 0 gives the only accepted real positive solution ssup ≈ 1.13.
Therefore, it is straightforward to verify that Γinf < Γ(ssup) ≤ Γ(s), where Γinf and Γ(s)

were defined in (9.19-9.20).

At this point a new set of variables is introduced to move the equilibrium of (9.23-9.25)
to the origin:

ez1 , zint − zeq
int, ez2 , z + σzez1, ez3 , wr − weq

r . (9.30)

Substituting (9.11a) for θd, factorizing the result with respect to ζ and applying the
transformation (9.30) leads to the following transformed interconnected dynamics:[

ėz1
ėz2
ėz3

]
= A1(ez2)

[
ez1
ez2
ez3

]
+B1(ez2)f(ez2) +H1(z, zint, θd, wr, ζ)ζ, (9.31a)

ζ̇ = Σζ. (9.31b)
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The matrix H1 contains all the terms vanishing at ζ = 0. A1(ez2) is given in (9.81) of
Appendix 9.A while B1(ez2), H1(z, zint, θd, wr, ζ) and f(ez2) are:

B1(ez2) ,

[
0
Vz

∆zX
Urd
wr Vz

(ez2+σzz
eq
int

)2+∆2
z
−Zwr s√

s2+1

]
, (9.32)

H1(z, zint, θd, wr, ζ) ,

[ 0 0
1 0

∆zXwr (ũr+Urd)

(ez2+σzz
eq
int

)2+∆2
z

1

] [
hTz
hTwr

]
, (9.33)

f(ez2) = 1−
√

(σzz
eq
int)

2 + ∆2
z√

(ez2 + σzz
eq
int)

2 + ∆2
z

. (9.34)

The expression of f(ez2) given in (9.34) has been obtained using (9.26) and (9.27). The
vectors hz(θd, wr, ζ) and hwr(z, zint, θd, wr, ζ) are given in Appendix 9.A and the following
bound holds for f(ez2):

|f(ez2)| ≤ |ez2|√
(ez2 + σzz

eq
int)

2 + ∆2
z

. (9.35)

One can prove that (9.35) holds by squaring both sides of the inequality two consecutive
times.

The system (9.31) is a cascaded system, where the linear UGES system (9.31b)
perturbs the dynamics (9.31a) through the interconnection matrix H1. The next lemma
states the stability properties of the cascade (9.31).
Lemma 9.2. Under the conditions of Theorem 9.1, the origin of the system (9.31) is
UGAS and ULES.

Proof. The proof follows along the line of the proof of Lemma 5.2 given in Appendix 5.B
of Chapter 5. Consider the nominal system[

ėz1
ėz2
ėz3

]
= A1(ez2)

[
ez1
ez2
ez3

]
+B1(ez2)f(ez2), (9.36)

and the quadratic Lyapunov function candidate (LFC)

V =
1

2
σ2
ze

2
z1 +

1

2
e2
z2 +

1

2
µe2

z3, µ > 0. (9.37)
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The time-derivative of V is:

V̇ = − σ3
z∆z

(ez2 + σzz
eq
int)

2 + ∆2
z

e2
z1 −

[
− σz∆z

+ Urd

√
(ez2 + σzz

eq
int)

2 + ∆2
z

]
e2
z2

(ez2 + σzz
eq
int)

2 + ∆2
z

+
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

ez2ez3 + Vzf(ez2)ez2

− µ
[
− Y Urd

wr −
∆2
zX

Urd
wr

((ez2 + σzz
eq
int)

2 + ∆2
z)

3/2

]
e2
z3

+ µ

[
− sZwr√

s2 + 1
+

∆zX
Urd
wr Vz

(ez2 + σzz
eq
int)

2 + ∆2
z

]
f(ez2)ez3

+ µ

[
−

Urd∆zX
Urd
wr

(ez2 + σzz
eq
int)

2 + ∆2
z

+ Zwr

+
σz∆

2
zX

Urd
wr

((ez2 + σzz
eq
int)

2 + ∆2
z)

3/2

]
ez2ez3√

(ez2 + σzz
eq
int)

2 + ∆2
z

−
µσ2

z∆
2
zX

Urd
wr

((ez2 + σzz
eq
int)

2 + ∆2
z)

2
ez1ez3.

(9.38)

The variables ēz1 , ez1/
√

(ez2 + σzz
eq
int)

2 + ∆2
z and ēz2 , ez2/

√
(ez2 + σzz

eq
int)

2 + ∆2
z are

defined to simplify the expression (9.38). This notation together with Assumptions 9.3-9.4
and (9.35) yields the following bound for V̇ :

V̇ ≤ −W1(|ēz1|, |ez3|)−W2(|ēz2|, |ez3|), (9.39)

W1 , σ3
z∆z|ēz1|2 − µ

σ2
z |XUrd

wr |
∆z

|ēz1||ez3|

+ µη

(
|Y Urd
wr | −

|XUrd
wr |

∆z

)
|ez3|2,

(9.40)

W2 , ∆z [ |ēz2| |ez3| ]
[

β −α
−α α(2α−1)

β

] [
|ēz2|
|ez3|

]
, (9.41)

where 0 < η < 1, β , Urd − Vmax − σz and α is given by the expression:

α , (1− η)
(Urd − Vmax − σz)(∆z|Y Urd

wr | − |X
Urd
wr |)

|XUrd
wr |

(
Urd + Vmax + σz + 2∆z

|Zwr |
|XUrd
wr |

) . (9.42)
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The parameter µ is chosen as:

µ ,
2α− 1

|XUrd
wr |
∆2
z

(Urd + Vmax + σz) + 2 |Zwr |
∆z

. (9.43)

If both W1 and W2 are definite positive then V̇ is negative definite. Positive definiteness
of W1 is ensured if (9.44) and (9.45) are satisfied:

∆z >
|XUrd

wr |
|Y Urd
wr |

, (9.44) µ <
4η∆2

z

[
∆z|Y Urd

wr | − |X
Urd
wr |
]

σz|XUrd
wr |

. (9.45)

Notice that condition (9.44) is met as long as (9.16) holds. It is straightforward to show
that η ≥ 1/5 is a sufficient condition for µ, defined in (9.43), to satisfy (9.45). Therefore,
without any loss of generality, η is set to 1/5.

To guarantee positive definiteness of W2, β and α must fulfil the inequalities β > 0

and α > 1. Assumption 9.5 and (9.18) make sure that β > 0 while through some
simple manipulation it is easy to check that conditions (9.16) and (9.18) imply α >

1. Furthermore, α > 1 guarantees µ > 0 as required for V to be positive definite.
Therefore under the conditions stated in Theorem 9.1 V , W1 and W2 are positive definite
and hence, according to standard Lyapunov theory, the origin of the nominal system
(9.36) is UGAS. Moreover, the inequality W , W1 +W2 ≥ λ̄1|ēz1|2 + λ̄2|ēz2|2 + λ3|ez3|2

holds in a neighbourhood of the origin for some constants λ̄1, λ̄2, λ3 > 0 and thus in
any ball Br , {|ez2| ≤ r}, r > 0 the function W can be estimated as W ≥ λ1|ez1|2 +

λ2|ez2|2 + λ3|ez3|2 where λi = λ̄i/((r + σzz
eq
int)

2 + ∆2
z), i = 1, 2. This, together with the

fact that V is a quadratic function of ez1, ez2 and ez3, concludes that (9.36) is also
uniformly locally exponentially stable, ULES [82]. Finally, since the perturbing system
(9.31b) is UGES and the interconnection matrix H1(z, zint, θd, wr, ζ) can be shown to
satisfy ‖H1 ‖≤ δ1(‖ ζ ‖)(|z|+ |zint|+ |wr|) + δ2(‖ ζ ‖), where δ1(·) and δ2(·) are some
continuous non-negative functions, applying Theorem A.2 and Lemma A.2 it is possible
to conclude UGAS and ULES for the cascaded system (9.31).

According to Lemma 9.2, under the conditions of Theorem 9.1, the origin of the
system (9.31) given by (ez1, ez2, ez3, ζ) = (0, 0, 0,0) is UGAS and ULES. Hence, the
control objectives (9.7) and (9.9) are achieved with exponential converging properties
with θss = θ∗ss and χ , [ez1, ez2, ez3, ζ

T ]T is a vector of exponentially converging signals.
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Finally, the y − vr subsystem is considered. The AUV dynamics and kinematics form
a cascaded system where (9.31) perturbs the y cross-track error. The y − vr subsystem
is obtained from (9.5b), (9.5g) and (9.11d):

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (9.46)

ẏ = ur cos(θ̃ + θd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd)

+ wr sin(ψ̃ + ψd) sin(θ̃ + θd) + Vy,
(9.47)

v̇r = Xvr(ũr + Urd)(
˙̃ψ + ψ̇d) cos(θ̃ + θd) + Yvr(ũr + Urd)vr. (9.48)

The equilibrium point of the system (9.46-9.48) on the manifold χ = 0 is:

yeq
int =

∆y

σy

Vy√
Γ(s)2 − V 2

y

, yeq = 0, veq
r = 0, (9.49)

where Γ(s) is defined in (9.19). Therefore, a new set of variables is introduced to move
the equilibrium point to the origin:

ey1 , yint − yeq
int, ey2 , y + σyey1. (9.50)

Substituting (9.11a) and (9.11c) for θd and ψd, factorizing the result with respect to
χ and moving the equilibrium point to the origin yields the following interconnected
dynamics:[

ėy1

ėy2

v̇r

]
=A2(ey2)

[
ey1
ey2
vr

]
+B2(ey2)g(ey2) +H2(y, yint, θd, ψd, vr,χ)χ, (9.51a)

χ̇ =
[
A1(ez2) H1(z,zint,θd,wr,ζ)

0 Σ

]
χ+

[
B1(ez2)

0

]
f(ez2). (9.51b)

The term H2 contains all the terms vanishing at χ = 0. A2(ey2) is given in (9.82) of
Appendix 9.A while B2(ey2) and H2(y, yint, θd, ψd, vr,χ) are defined as:

B2(ey2) ,

[
0
Vy

− 1√
s2+1

∆yX
Urd
vr Vy

(ey2+σyy
eq
int

)2+∆2
y

]
, (9.52)

H2(y, yint, θd, ψd, vr,χ) ,

[ 0 0
1 0

−∆yXvr (ũr+Urd) cos(θ̃+θd)

(ey2+σyy
eq
int

)2+∆2
y

1

] [
hTy
hTvr

]
. (9.53)
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The function g(ey2) is identical to f(ez2), i.e. g(·) ≡ f(·), and thus the same bound
(9.35) applies. The vectors hy(θd, ψd, vr,χ) and hvr(y, yint, θd, ψd, vr,χ) are given in
Appendix 9.A.

The system (9.51) is a cascaded system, where the UGAS and ULES system (9.51b)
perturbs the dynamics (9.51a) throughH2. The next lemma states the stability properties
of (9.51).
Lemma 9.3. Under the conditions of Theorem 9.1, the origin of the system (9.51) is
UGAS and ULES.

Proof. The nominal system:[
ėy1

ėy2

v̇r

]
= A2(ey2)

[
ey1
ey2
vr

]
+B2(ey2)g(ey2), (9.54)

is equivalent to the system considered in Lemma 9.2. The conditions (9.15) and (9.17)
on ∆y and σy are equivalent to (9.16) and (9.18) on ∆z and σz. However, there are two
minor differences: the absence of the gravity term Zwr and the presence of the unknown
constants Γ(s) and s. Nevertheless, the bounds 0 < Γinf < Γ(s) ≤ Γmax from (9.19-9.20),
1/
√
s2 + 1 < 1 and |s|/

√
s2 + 1 < 1 are available. Hence, by repeating the first part of

the proof of Lemma 9.2 it follows that the nominal system (9.54) is UGAS and ULES.

The perturbing system (9.51b) is UGAS and ULES, as proved in Lemma 9.2. Fur-
thermore the interconnection matrix H2(y, yint, θd, ψd, vr,χ) can be shown to satisfy
‖H2 ‖≤ δ3(‖ χ ‖)(|y|+ |yint|+ |vr|) + δ4(‖ χ ‖), where δ3(·) and δ4(·) are some continu-
ous non-negative functions. Therefore, Theorem A.2 and Lemma A.2 conclude UGAS
and ULES for the cascaded system (9.51).

According to Lemma 9.3, under the conditions of Theorem 9.1, the origin of the
system (9.51), given by (ey1, ey2, vr,χ) = (0, 0, 0,0), is UGAS and ULES. Therefore, the
control objectives (9.6) and (9.8) are achieved with exponential converging properties
and ψss = − tan−1

(
Vy/
√

Γ(s)2 − V 2
y

)
.

Remark 9.11. The values yeq
int and z

eq
int make sure that, at equilibrium, the AUV holds

θss = tan−1(σzz
eq
int/∆z) and ψss = − tan−1(σyy

eq
int/∆y) which is the only possible attitude

that guarantees path following and compensates for the ocean current disturbances.

Remark 9.12. The lower bounds (9.15) and (9.16) are expected and has a clear
physical interpretation: short look-ahead distances ∆y,∆z > 0 make the vessel overshoot
the target and thus causes instability as shown in Chapter 4.
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9.6. Simulations

In this section results from numerical simulations are presented. The ILOS guidance laws
(9.11) in a cascaded configuration with the surge, pitch and yaw controllers (9.12-9.14)
are applied to the underactuated LAUV vehicle [126]. A short description of the LAUV is
given in Section 9.7. First, simulations are run to confirm that the ILOS guidance (9.11)
makes the AUV follow a straight line in a 3D environment. Furthermore, in order to have
simulation results that can be directly compared with the experiments and since most
of underwater operations involve horizontal path following or constant altitude motion,
results from planar way-point following simulations are shown as well. The model of the
LAUV from Section B.3 of Appendix B is used. In particular, following the requirements
of Section 9.1 and given the low speed motion of the AUV, only linear damping is
considered and lift is not taken into account. The rudder coefficients of the B matrix
are calculated as done in [85] for the desired constant surge relative velocity Urd set in
the simulation. The forward thrust Tu ∈ [−Tmax

u (ur), T
max
u (ur)] is dynamically saturated

with saturation limits given by Tmax
u = Tnnn

2
max−Tunnmaxur. Here, nmax = 2500/60 [rps],

Tnn = 0.0096 and Tun = 0.1260 are taken from [85]. The maximum rudder angle is
25 [deg] and their maximum turning rate is set to 10 [deg/s].

9.6.1. ILOS for Straight Line Path Following in 3D

The objective is to make the AUV follow the path P with a desired surge relative velocity
Urd = 1.9 [m/s] in presence of ocean currents acting in any direction of the space. The
intensity of the current is |Vc| = 0.2 [m/s] and its direction is randomly generated. In this
case its components are Vx = 0.07 [m/s], Vy = −0.16 [m/s] and Vz = 0.10 [m/s], having
−66.7 [deg] of azimuth and 30.8 [deg] of elevation in the North-East-Down (NED) frame.
Thus, Assumption 9.3 is fulfilled with Vmax = 0.21 [m/s] and it can be verified that
Assumption 9.4 is satisfied with Y min

vr = 0.67 [s−1] and Y min
wr = 0.67 [s−1]. Notice that,

given the bound Vmax = 0.21 [m/s], the desired relative velocity Urd = 1.9 [m/s] satisfies
Assumption 9.5.

The values for the guidance law look-ahead distances and integral gains are chosen to
satisfy (9.15-9.16) and (9.17-9.18), and are ∆y = 4 [m], σy = 0.2 [m/s] for the horizontal
plane and ∆z = 8 [m], σz = 0.2 [m/s] for the vertical plane. The controllers (9.12-9.14)
are implemented with the following gains: kur = 1, kθ = 1, kq = 2, kψ = 1 and kr = 2.
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(a) Simulation of convergence and path following in 3D of the
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(d) Cross track errors y(t) and z(t) of the LAUV from simula-
tions: convergence is faster in the horizontal plane since
∆z > ∆y .
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Figure 9.2.: Simulation results for ∆y = 4 [m], ∆z = 8 [m] and σy = σz = 0.2 [m/s].
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The value for kur is chosen to give a time constant of 1 [s] for the ũr first order closed
loop system. The values chosen for kθ, kq kψ and kr make the θ̃ and ψ̃ second order
closed loop systems critically damped with ωn = 1 [rad/s] and ζ = 1. The pitch and yaw
closed loop systems are made critically damped to have the fastest possible response
without overshoots.

The vehicle is given an initial cross track error of 25 [m] in both the horizontal and
vertical directions, and initially holds zero relative velocity. Its surge axis is parallel to the
desired path P . Figures 9.2a and 9.2d show how the underactuated vehicle successfully
converges to and follows the path P in the NED frame. The pitch and yaw angles of the
AUV are given in Figures 9.2b and 9.2c where it is shown that the AUV holds non-zero
pitch and yaw angles while on path to compensate for the ocean current acting in the
horizontal and vertical planes. At steady state the pitch side-slip angle is θss ≈ 3.2 [deg]

while the yaw side-slip angle is ψss ≈ 4.8 [deg]. Figures 9.2b and 9.2c present the pitch
and yaw rudder angles as well. The performance of the speed controller (9.12) is shown
in Figure 9.2e, where the surge thrust Tu(t) is also plotted. The plotted results show that
choosing the guidance law parameters according to the criteria (9.15-9.18) gives smooth
convergence and does not overload the controllers (9.12-9.14). Notice that a shorter
look-ahead distance in the horizontal plane ∆y compared to ∆z makes convergence in
the xy plane faster.

9.6.2. ILOS for Planar Way-Point Following

The way-point following simulations involve 2D planar motion only and given the shallow
waters where the tests were carried out, the current is assumed horizontal, i.e. its vertical
component is Vz = 0. Therefore, simulations are run with the vertical ILOS (9.11a-9.11b)
acting as a depth controller with σz = 0, while the horizontal ILOS (9.11c-9.11d) makes
the vehicle converge to the straight lines connecting the way-points. Therefore, the
bounds (9.15-9.17) become:

∆y >
|XUrd

vr |
|Y Urd
vr |

[
5

4

Urd + Vmax + σy
Urd − Vmax − σy

+ 1

]
, (9.55)

∆z >
|XUrd|

wr

|Y Urd|
wr

2Urd

Urd − |Zwr/Y
Urd
wr |

, (9.56)

0 < σy < Urd − Vmax, (9.57)
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where Assumption 9.5 can be relaxed to Urd > max{Vmax, |Zwr/Y Urd
wr |}. The values

for the guidance law look-ahead distances and integral gain are in this case chosen to
satisfy (9.55-9.57), and are ∆y = 4 [m], ∆z = 4 [m] and σy = 0.5 [m/s]. The velocity
Urd = 1.2 [m/s] and satisfies Urd > max{Vmax, |Zwr/Y Urd

wr |} with Vmax = 0.2 [m/s]. The
controllers (9.12-9.14) are implemented with the same gains as in Section 9.6.1. A
switching system that turns on the horizontal ILOS integrator exclusively when the AUV
is located within a certain distance from the desired path is implemented to make the
simulations resemble the tests even more. This is done not to have too much integral
error and hence to avoid overshoots. The corridor in which the integral action is turned
on is 3 [m] wide and is centered around the desired straight path. Moreover, the LOS
used outside this corridor has a horizontal look-ahead distance ∆y = 5.6 [m]. A longer ∆y

is used compared to the in-corridor situation to make the tested ILOS guidance scheme
comparable in its gains to the vector filed guidance law from [100] tested on the same
day.

It is straightforward to show mathematically through Lemma 9.2 that a LOS guidance
without integral action in presence of current will not make the vehicle converge to the
path. It will instead make the vehicle hold a constant offset with respect to it and hence
move along a parallel line if Urd > Vmax. This steady state offset depends on the choice
of the look-ahead distance, the magnitude of the current and the AUV surge relative
velocity. Its maximum expected value is found from 9.5b to be:

Emax
eq = ∆y

Vmax√
U2
rd − V 2

max

. (9.58)

This offset should be smaller then half of the corridor width to make sure that the vehicle
does not enter the steady state condition before the integral action turns on. For the case
above, with Urd = 1.2 [m/s], ∆y = 5.6 [m] and Vmax = 0.2 [m/s], the maximum expected
offset is 0.95 [m]. This is clearly below the 1.5 [m] distance from the path that triggers
the integrator on. Therefore, the LOS guidance with ∆y = 5.6 [m] will make the AUV
enter the 3 [m] wide corridor.

Finally, a way-point switching system based on a circle of acceptance algorithm is
employed [52]. The radius of the way-point acceptance circle is set to 5 [m] as it was done
in the experiments. The simulation procedure resembles the test runs shown in Section
9.7 and requires the vehicle to move along an 8 shaped path to exhibit the transient
response and the steady-state behavior of the ILOS guidance system. An 8 shaped path
is used since it contains a complete set of port/starboard maneuvers to test the AUV
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performance and is defined by 6 way-points. The way-points are located 40 [m] from
each other with the longest legs measuring 80 [m] in length. They are placed as shown
in Figures 9.4a and 9.4b. This configuration makes the vehicle hold 4 different courses:
−170 [deg], 100 [deg], 10 [deg] and −80 [deg]. The desired depth is set to 3 [m] and the
vehicle is initially at rest on the surface with a heading of 180 [deg]. The ocean current is
set to Vx = −0.15 [m/s] and Vy = 0.04 [m/s], and equals the drift of the vehicle measured
before the test runs shown in Section 9.7. Figures 9.4a, 9.4c and 9.4e show how the
vehicle successfully converges to the paths defined by the way-points and side-slips to
compensate for the disturbances.

9.7. Experiments

In this section results from field experiments are presented. The LAUV vehicle was used
as a test platform and the sea trials were carried in the sheltered waters at the entrance of
the Leixões seaport near the city of Porto in Portugal. First, a description of the LAUV
is given and then the results from the experiments are presented and discussed. Weather
conditions on the test day were good and a tidal change from high to law was reported
at the time when the trials were carried out. The resulting tidal current is in accordance
with the drift of the vehicle of −0.15 [m/s] North and 0.04 [m/s] East measured before
the test run. Notice that tidal changes, fresh water from Rio Leça and the relatively
small size of the bay suggest that the local current may vary in space and time.

Figure 9.3.: The LAUV vehicle.
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9.7.1. Vehicle description

The Light Autonomous Underwater Vehicle (LAUV) system has been developed and
designed by the Laboratório de Sistemas e Tecnologia Subaquática (LSTS) from the
University of Porto in cooperation with OceanScan-MST Lda. The LAUV is shown in
Figure 9.3 and is 1.1 [m] long and 0.30 [m] wide. It is classified as a ’One-man portable
AUV’ since it can be deployed and controlled by a single operator. The hull of the vehicle
is made of different materials to make the AUV weight less then 20 [kg] and at the same
time achieve 100 [m] of maximum rated depth. Thrust is provided by a brush-less DC
motor magnetically coupled to a 3-bladed propeller capable of providing a maximum
water speed of approximately 2 [m/s]. The permanent magnetic coupling physically
separates the dry motor shaft from the wet rotor attached to the propeller. Steering
is provided by four independent fins directly actuated by four high-torque DC servos.
A set of 546 [Wh] rechargeable lithium-ion batteries guarantees 6− 8 [h] of continuous
operations at a speed of 1.4 [m/s], depending on the vehicle configuration. The LAUV is
equipped with on board electronics and sensors. In particular, the control and navigation
computer has a low power PC104 CPU and a high speed solid state disk. A Linux
based operative system runs the DUNE navigation software that operates the vehicle [85].
Different navigation solutions are employed depending on the payload, the environment
and the required accuracy. For low accuracy navigation a Long Base Line (LBL) aided
dead reckoning compass is used. The LBL aided Doppler Velocity Log (DVL) option
adds robustness with respect to LBL faults while the DVL aided Inertial Navigation
System (INS) configuration can be used for long range operations. All these solutions
calibrate the estimated navigation state with GPS fixes every time the AUV surfaces.
On the surface the vehicle communicates with the remote operators through a WiFi
radio link or through the HSDPA/GSM radio network. Underwater, a low bandwidth
acoustic communication is established. Given its low bitrate, it is mostly used to send
telemetry data. Different payload configurations of the LAUV include a multibeam sonar,
a sidescan sonar, a CTD sensor and a downwards looking camera. More information
about the LAUV vehicle can be found in [40, 126].

9.7.2. Sea Trials

An extensive set of sea trials has been carried out with the purpose of evaluating the
performance of the ILOS guidance law. As explained in Section 9.6, the AUV is required
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(a) Simulation of convergence and path following of the
LAUV in presence of constant irrotational ocean currents.
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(b) Experimental ILOS test run of the LAUV in Porto, Por-
tugal.
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(c) Cross-track error of the LAUV from simulations. Notice
the overshoots caused by integral action.
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(d) Cross-track error of the LAUV from sea trials. Notice the
overshoots caused by integral action.
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(e) Yaw angle ψ(t) of the LAUV from simulations. The vehi-
cle side-slips to compensate for the ocean current.
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(f) Yaw angle ψ(t) of the LAUV from sea trials. The side-
slip angle varies in time since the sea current probably
exhibits spatial variations.

Figure 9.4.: Back to back comparison between simulations and experimental results.

186



9.8 A Comparison between the ILOS Guidance and the Vector Field
Guidance

to move along a geo-referenced 8 shaped path identified by 6 way-points to exhibit
both the transient response as well as the steady state behavior of the guidance law.
Focus is put on comparing the ILOS performances with the simulations from Section 9.6.
In particular, the guidance law parameters ∆y and σy are set to 4 [m] and 0.5 [m/s],
respectively, as suggested by the simulations. The ILOS guidance is used for underwater
planar motion purposes because most of underwater operations involve horizontal path
following or constant altitude motion. Constant depth is set by standard PID depth
controller since the implementation of an ILOS-based depth controller such as the one
from Section 9.6 would require a significant redesign of the DUNE software system
governing the LAUV vehicle. The desired absolute/water speed of the vehicle is set to
1.2 [m/s] and the desired depth is set to 3 [m].

Remark 9.13. The DUNE control system of the LAUV does not provide the option to
directly control its relative velocity. The speed controller automatically combines water
speed measurements and absolute speed measurements and chooses the most reliable
data.

Figures 9.4b, 9.4d and 9.4f show that the experimental results are in good agreement
with the simulations results given in Figures 9.4a, 9.4c and 9.4e. The LAUV successfully
follows the lines defined by the 6 way-points. Side-slipping is achieved to compensate for
underwater currents. The side-slip angels are however often different compared to the
simulation results and during the longest 80 [m] long legs the angle varies significantly.
This is most probably due to the spatial variation of the current. Nevertheless, the vehicle
stays on path as shown in Figure 9.4d, thus proving robustness of the ILOS guidance law
with respect to varying current as well.

9.8. A Comparison between the ILOS Guidance and

the Vector Field Guidance

In this section the experimental results of the ILOS guidance law shown in Section 9.7
are compared to similar test runs where a Vector Field (VF) guidance law is used instead.
In particular, the VF guidance law presented in [100] for straight line path following
purposes is implemented on the LAUV as well. Its implementation algorithm is given
in [127] and [85]. First, rejection of time-varying disturbances at zero cross track error
y = 0 of the two guidance laws is evaluated. Afterwards, the behavior of the ILOS and
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the VF guidance laws are analyzed away from the path. Finally, the data from the tests
are analyzed and the performances of the two guidance laws are compared.

9.8.1. The VF Guidance and the ILOS Guidance at Equilibrium

The VF guidance from [100] performs course control rather then heading control and
it hence requires an estimation of the side-slip angle to compensate for the current.
Moreover, it is a sliding mode controller and its design is based on a kinematic model
of the vehicle where the width of the corridor around the desired path represents an
invariant set. The closed loop system of the vector field guidance law in steady state and
on the sliding surface S , {(y, χ), χ = −χ∞ 2

π
tan−1(ky)} is:

ẏ = −Vg sin

(
χ∞

2

π
tan−1(ky)

)
, (9.59)

where Vg is the absolute or ground speed of the vehicle, y is the cross track error,
χ∞ ∈ (0, π/2] is the approach course at y → ∞, and k > 0 is a gain parameter. The
system (9.59) is linearized about the equilibrium point y = 0 to assess the sensitivity of
the VF guidance law with respect to small time-varying disturbances:

ẏ = −Vgχ∞
2

π
ky + dVy(t). (9.60)

The term dVy(t) represents time-varying zero average current disturbances around the
mean value Vy, which is, in this case, compensated for through direct course control. The
disturbance transfer function in the frequency domain is given by:

Td,vf(jω) =
1

jω + kp,vf

, (9.61)

where kp,vf = Vgχ
∞ 2
π
k. Notice that (9.61) is a low pass filter where higher speeds make

the VF guidance less sensitive to time-varying disturbances. At equilibrium the kinematic
closed loop system of the 2D ILOS guidance law is approximated by (3.21-3.22) given in
Chapter 3 since the underactuated and the actuated dynamics are not considered:

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (9.62)

ẏ = −Urd
y + σyyint√

(y + σyyint)2 + ∆2
y

+ Vy. (9.63)
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The system (9.62-9.63) is linearized about the equilibrium point (∆y

σy
Vy/
√
U2
rd − V 2

y , 0)

to assess the sensitivity of the ILOS guidance law with respect to small time-varying
disturbances:

ẏint = αy, (9.64)

ẏ = −ki,ilos yint − kp,ilos y + dVy(t), (9.65)

where ki,ilos = Urdσy
∆y

[
1− V 2

y /U
2
rd

]3/2, kp,ilos = Urd
∆y

[
1− V 2

y /U
2
rd

]3/2, α = 1
∆y

[
1− V 2

y /U
2
rd

]
and dVy(t) again represents time-varying zero average current disturbances around the
mean value Vy, which is, in this case, compensated through integral action. The distur-
bance transfer function in the frequency domain is:

Td,ilos(jω) =
jω

−ω2 + jωkp,ilos + αki,ilos

, (9.66)

Notice that (9.66) is a band pass filter. In particular, high Urd values and low Vy values
decrease its quality factor, hence rendering the ILOS system more robust to time-varying
disturbances. Vice versa, lower speeds Urd and higher currents Vy increase the quality
factor of the filter and make the ILOS more sensitive to the disturbances. Given the
values used in the tests Vg = 1.2 [m/s], χ∞ = 15 [deg], k = 1 [1/m], Urd = 1.2 [m/s],
∆y = 4 [m], σy = 0.5 [m/s] and Vy = Vmax = 0.2 [m/s], the disturbance transfer functions
Td,vf(jω) and Td,ilos(jω) are evaluated in the frequency domain in Figure 9.5. The two
guidance laws exhibit similar responses with respect to disturbances at higher frequencies,
while the band pass behavior of the ILOS guidance makes it more prone to time-varying
disturbance rejection at lower frequencies respect to the VF guidance. Notice the peak
at around 0.03 [Hz] of the frequency response of the ILOS guidance.

9.8.2. The VF Guidance and the ILOS Guidance Away from the

Path

To make the VF guidance converge to the invariant set represented by the 3 [m] wide
corridor, a course control guidance similar to a line-of-sight guidance is employed [85].
Its line-of-sight is approximately 5.6 [m]. Therefore the ILOS guidance is implemented
with ∆y = 5.6 [m] outside the corridor to make the ILOS and the VF guidance laws
comparable when the vehicle is away from the path. Notice that the ILOS integrator is
turned on when the AUV is located within the 3 [m] corridor. This is done in order not
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Figure 9.5.: Frequency response with respect to disturbances of the VF and ILOS guidance
laws at equilibrium.

to have too much integral error and hence to avoid overshoots as explained in Section 9.6.
In Section 9.6 it is furthermore shown that, despite the absence of integral action and
the presence of current, the ILOS will make the vehicle enter the corridor. At that point
the integrator is turned on and makes the vehicle converge on the path.

9.8.3. Comparison of Experimental Results

The same 8-shaped test runs described in Sections 9.6 and 9.7 are completed using
the VF guidance law to make the system exhibit its transient response and its steady
state behavior. Since the VF and the ILOS guidance laws show very similar behavior in
transient condition (Figures 9.6a and 9.6b), focus is put on the steady state when the
vehicle is on path. In particular, the cross track error data are analyzed to assess the path
following performance of the guidance laws while the servo data are analyzed to assess
the stress on the actuators. The steady state intervals are identified by checking the cross
track error. Each steady state interval is then considered to represent a realization of a
discrete periodic wide-sense stationary random process. Hence, the realization windows
are autocorrelated and then averaged to estimate the autocorrelation function. The
spectral density of the random process is then calculated. This procedure is followed to
analyze and compare the cross track error data and the servo data. The results are shown
in Figures 9.6 and 9.7. Moreover, the overall mean values and standard deviations for
the selected data are calculated and are given in Table 9.1 and Table 9.2. The analysis
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of the cross track in Figure 9.6, and Tables 9.1-9.2 shows good path following properties
for both the VF and the ILOS guidance laws, with the VF controller preforming slightly
better since it exhibits lower mean cross track error and lower standard deviation. Notice
that the spectra of Figures 9.6e and 9.6f resemble the expected disturbance responses
of Figure 9.5, with a peak value at around 0.09 [Hz]. However the analysis of the servo
data in Figure 9.7 and Tables 9.1-9.2 tells a different story: the VF guidance law suffers
from significant chattering on the horizontal rudders (Servos 0 and 3) while the ILOS
guidance law does not stress the actuators excessively giving smooth servo commands.
The difference in magnitude between the spectral densities shown in Figures 9.7e and
9.7f reaches and often exceeds the factor 100 for the horizontal rudders (Servos 0 and
3). The chattering is probably caused by the switching nature of the sliding mode VF
guidance law.

Table 9.1.: Evaluation statistics of the ILOS guidance law.

data type mean value standard deviation
Cross track error -0.03 [m] 0.11 [m]
Servo 0 4.39 [deg] 3.03 [deg]
Servo 1 -5.68 [deg] 1.68 [deg]
Servo 2 0.99 [deg] 1.66 [deg]
Servo 3 -2.51 [deg] 3.59 [deg]

Table 9.2.: Evaluation statistics of the VF guidance law.

data type mean value standard deviation
Cross track error -0.01 [m] 0.07 [m]
Servo 0 4.01 [deg] 6.93 [deg]
Servo 1 -5.66 [deg] 2.40 [deg]
Servo 2 0.84 [deg] 1.60 [deg]
Servo 3 -2.16 [deg] 6.74 [deg]
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(a) Cross track error of the ILOS guidance law. The identified
steady state intervals are highlighted.
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(b) Cross track error of the VF guidance law. The identified
steady state intervals are highlighted.
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(c) Estimation of the autocorrelation function of the cross
track error - ILOS guidance law.
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(d) Estimation of the autocorrelation function of the cross
track error - VF guidance law.
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(e) Estimation of the spectral density of the cross track error
- ILOS guidance law.
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(f) Estimation of the spectral density of the cross track error
- VF guidance law.

Figure 9.6.: Comparsion between the VF and the ILOS: the cross track error.
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(a) Servo positions set by the ILOS guidance law.
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(b) Servo positions set by the VF guidance law.
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(c) Estimation of the autocorrelation functions of the servo
data - ILOS guidance law.
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(d) Estimation of the autocorrelation functions of the servo
data - VF guidance law.
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(e) Estimation of the spectral density of the servo data - ILOS
guidance law.
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Figure 9.7.: Comparsion between the VF and the ILOS: the servo data.
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9.9. Conclusions

In this chapter a control strategy for path following of underactuated AUVs in presence
of constant irrotational ocean currents acting in any direction of the inertial frame has
been developed. It is based on the modified LOS guidance law with integral action
in both the vertical and horizontal directions that was first presented in Chapter 4.
The three dimensional integral LOS is combined with three feedback controllers in a
cascaded configuration and the full kinematic-dynamic closed loop system is analyzed
using Lyapunov techniques and nonlinear cascaded systems theory. In particular, the
analysis gives explicit conditions on the control design parameters to guarantee UGAS and
ULES stability. The theoretical results are supported and completed with an extensive
set of simulations and sea trials. In particular, the presented guidance law shows good
path following performance, comparable to the vector field guidance law, it does not
stress the actuators and it gives smooth servo signals.
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9.A. Appendix: Functional Expressions

The expressions Fur(vr, wr, r, q), Xvr(ur), Yvr(ur), Xwr(ur), Ywr(ur), Zwr , Fq(θ, ur, wr, q)
and Fr(ur, vr, r) are:

Fur(vr, wr, r, q) ,
1

m11

[
(m22vr +m25r)r − (m33wr +m34q)q

]
, (9.67)

Xvr(ur) ,
m2

25 −m11m55

m22m55 −m2
25

ur +
d55m25 − d25m55

m22m55 −m2
25

, (9.68)

Yvr(ur) ,
(m22 −m11)m25

m22m55 −m2
25

ur −
d22m55 − d52m25

m22m55 −m2
25

, (9.69)

Xwr(ur) ,
−m2

34 +m11m44

m33m44 −m2
34

ur +
d44m34 − d34m44

m33m44 −m2
34

, (9.70)

Ywr(ur) ,
(m11 −m33)m34

m33m44 −m2
34

ur −
d33m44 − d43m34

m33m44 −m2
34

, (9.71)

Zwr ,
BGzWm34

m33m44 −m2
34

, (9.72)

Fq(θ, ur, wr, q) ,
m34d33 −m33(d43 − (m33 −m11)ur)

m33m44 −m2
34

wr

+
m34(d34 −m11ur)−m33(d44 −m34ur)

m33m44 −m2
34

q − BGzWm33

m33m44 −m2
34

sin(θ),

(9.73)

Fr(ur, vr, r) ,
m25d22 −m22(d52 + (m22 −m11)ur)

m22m55 −m2
25

vr

+
m25(d25 +m11ur)−m22(d55 +m25ur)

m22m55 −m2
25

r.

(9.74)

The vectors hz , [hz1, hz2, hz3, hz4, hz5]
T and hwr , [hwr1, hwr2, hwr3, hwr4, hwr5]

T are
defined as:

hz1 = − sin(θ̃ + θd), (9.75a)

hz2 = −Urd

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]

+ wr

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
,

(9.75b)

hz3 = hz4 = hz5 = 0, (9.75c)
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hwr1 =
Xwr(ũr + Urd)−XUrd

wr

ũr
γwr(zint, z, wr)

+ wr
Ywr(ũr + Urd)− Y Urd

wr

ũr
,

(9.76a)

hwr2 = Zwr

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
, (9.76b)

hwr3 = Xwr(ũr + Urd), (9.76c)

hwr4 = hwr5 = 0, (9.76d)

Notice that the limits of hz2 for θ̃ → 0, hwr1 for ũr → 0 and hwr2 for θ̃ → 0 exist and
are finite. The vectors hy , [hy1, hy2, hy3, hy4, hy5, hy6, hy7, hy8]

T and hvr , [hvr1, hvr2,

hvr3, hvr4, hvr5, hvr6, hvr7, hvr8]T are defined as:

hy2 =
Urd
ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

− 1√
s2 + 1

]

− s√
s2 + 1

Zwr

Y Urd
wr

1

ez2

[
ez2 + σzz

eq
int√

(ez2 + σzz
eq
int)

2 + ∆2
z

− s√
s2 + 1

]
,

(9.77a)

hy3 = sin(θ̃ + θd) sin(ψ̃ + ψd), (9.77b)

hy4 = cos(θ̃ + θd) sin(ψ̃ + ψd), (9.77c)

hy5 = Urd sin(ψd)

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]

− s√
s2 + 1

Zwr

Y Urd
wr

sin(ψd)

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
,

(9.77d)

hy7 =

[
Urd cos(θ̃ + θd)−

s√
s2 + 1

Zwr

Y Urd
wr

sin(θ̃ + θd)

]
·

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

(9.77e)

hy1 = hy6 = hy8 = 0, (9.77f)

(9.77g)
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hvr2 =
XUrd
vr

ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

− 1√
s2 + 1

]
γvr(yint, y, vr), (9.78a)

hvr4 =
Xvr(ũr + Urd)−XUrd

vr

ũr
cos(θ̃ + θd)γvr(yint, y, vr)

+ vr
Yvr(ũr + Urd)− Y Urd

vr

ũr
,

(9.78b)

hvr5 =

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
XUrd
vr γvr(yint, y, vr), (9.78c)

hvr8 = Xvr(ũr + Urd) cos(θ̃ + θd), (9.78d)

hvr1 = hvr3 = hvr6 = hvr7 = 0. (9.78e)

(9.78f)

Notice that the limits of hy2 for ez2 → 0, hy5 for θ̃ → 0, hy7 for ψ̃ → 0, hvr2 for ez2 → 0,
hvr4 for ũr → 0 and hvr5 for θ̃ → 0 exist and are finite. The expressions γwr(zint, z, wr)

and γvr(yint, y, vr) are defined as:

γwr , −
∆zUrd(z + σzzint)

((z + σzzint)2 + ∆2
z)

3/2
+

∆2
z

((z + σzzint)2 + ∆2
z)

3/2
wr

+
σz∆

2
z

((z + σzzint)2 + ∆2
z)

2
z +

∆zVz
(z + σzzint)2 + ∆2

z

,

(9.79)

γvr ,
∆yΓ(s)(y + σyyint)

((y + σyyint)2 + ∆2
y)

3/2
−

∆2
y

((y + σyyint)2 + ∆2
y)

3/2
vr

−
σy∆

2
y

((y + σyyint)2 + ∆2
y)

2
y − ∆yVy

(y + σyyint)2 + ∆2
y

.

(9.80)
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9.B. Appendix: Proof of Lemma 9.1

Equation (9.26) is written again:

s
√
s2 + 1 =

Vz
Urd

s2 − Zwr

Y Urd
wr

s+
Vz
Urd

. (9.83)

This Lemma proves that there exists only one real solution to (9.83) if Assumption 9.5
holds. The proof follows along the lines of the proof of Lemma 5.1 given in Appendix 5.A
of Chapter 5. First, it is shown that there exist real solutions to (9.83) and then
uniqueness is argued. Squaring both sides of (9.83) gives:

p(s) ,(M2 − U2
rd)s

4 + 2MNs3 + (2MP +N2 − U2
rd)s

2 + 2NPs+ P 2 = 0, (9.84)

whereM , Vz, N , −Zwr/Y Urd
wr and P , Vz. Hence,M2−U2

rd < 0 as long as Urd > Vmax

which is guaranteed by Assumption 9.5. This means that, if Assumption 9.5 holds, the
polynomial p(s) → −∞ as s → ±∞. Furthermore, since P 2 ≥ 0, then p(0) ≥ 0.
Therefore, p(s) has at least one real zero, or at least two real zeros - one positive and
one negative - if P > 0. This proves the existence of real solutions to (9.83).

The intersections between the curves defined by the two sides of (9.83) are considered
next to show uniqueness:

L1(s∗) ,s∗
√
s∗2 + 1, (9.85)

L2(s∗) ,
Vz
Urd

s∗2 − Zwr

UrdY
Urd
wr

s∗ +
Vz
Urd

. (9.86)

The curve L1(s∗) is strictly increasing while L2(s∗) is a parabola. The first derivatives in
s∗ of L1(s∗) and L2(s∗) are analyzed:

dL1

ds∗
=

2s∗2 + 1√
s∗2 + 1

, (9.87)

dL2

ds∗
=

2Vz
Urd

s∗ − Zwr

UrdY
Urd
wr

, (9.88)

The following bound holds:

dL2

ds∗
≤ 2Vmax

Urd
|s∗|+ |Zwr |

Urd|Y Urd
wr |

. (9.89)
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Notice that as long as Urd > 2Vmax and Urd > 2|Zwr |/|Y Urd |, which are both guaranteed
by Assumption 9.5, the following inequality holds:

dL1

ds
>

2Vmax

Urd
|s∗|+ |Zwr |

Urd|Y Urd
wr |

≥ dL2

ds
, ∀s∗. (9.90)

This inequality has two important consequences: if there exist any intersections between
L1 and L2, these intersections are transverse intersections. Yet, if there exists an
intersection between L1 and L2, then this intersection is unique: since dL1/ds > dL2/ds,
if the curves intersect in one point, they will never intersect again. The proven existence
of real solutions to (9.83) guarantees that L1 and L2 intersect each other and hence it
is possible to conclude that the intersection point is unique. To conclude, as long as
Assumption 9.5 is satisfied, there exists only one real solution s for (9.83).
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Chapter 10.

Counter-Current and Co-Current
Guidance of Underactuated Marine
Vehicles

“Adventure is just bad planning.”
— Roald Amundsen, Explorer

In this chapter the problem of steering a marine vessel against the ocean current or with
the ocean current is addressed. This is an interesting problem since an autonomous marine
vehicle capable of sensing the current and follow the flow could exploit the drift when
exact positioning is not as critical as energy efficiency. In fact, such guidance law makes
the vehicle determine the direction that guarantees the minimum energy consumption for
a given absolute speed. Moreover, an underwater vehicle that can turn against the flow
could, for instance, help locate a hydrothermal vent or detect hydrocarbon leaks from
subsea oil and gas installations. Furthermore, a control law for counter-current guidance
can be integrated into more complex weather optimal heading/positioning control systems
(WOHC-WOPC) since it is meant to steer the vessel against the disturbance.

Two guidance laws for counter-current and co-current guidance of underactuated
marine vehicles in 3 degrees of freedom (DOF) are presented in this chapter. The
proposed solutions can be applied to surface vessels as well as to underwater vehicles and
are designed to perform counter-current or co-current guidance in presence of constant
and irrotational ocean currents acting in any direction of the inertial frame. The guidance
laws are based on the relation between the relative and absolute velocities. In particular,

201



Counter-Current and Co-Current Guidance of Underactuated Marine Vehicles

it is shown that the counter-current direction and the co-current direction are two possible
steady-state headings having zero absolute sway velocity and zero component of the
ocean current acting in the sway direction.

In the first guidance law the absolute sway velocity is viewed as the error signal of the
guidance system. In particular, the system integrates the absolute sway velocity signal
to define the desired heading and to detect the two directions having zero sway velocity.
The vehicle is shown to converge to the counter-current course or to the co-current course
depending on the sign of a constant gain parameter. The closed loop stability analysis
reveals a pendulum-like system with one of the two mentioned directions as the stable
equilibrium point and the other as the unstable equilibrium point. The control system
is based on relative velocities with direct control over the vehicle relative speed. In
this first case the surge and yaw dynamics are not taken into account in the stability
analysis. Finally, local exponential stability (LES) of the closed loop system is proved
using Lyapunov perturbation theory theory and simulation results are presented.

In the second guidance law the component of the ocean current acting in the sway
direction is chosen as the integrated error signal instead of the absolute sway velocity.
It is shown that this separates the underactuated sway dynamics from the closed loop
guidance dynamics. This simplifies the control system. Moreover, the sway subsystem is
shown to be input-to-state stable (ISS). Again, the closed loop system reveals multiple
stable/unstable equilibrium points, corresponding to the counter-current/co-current
directions, respectively. The sign of a gain parameter selects which of the two courses
is the stable one. Compared to the first guidance law, the complete cascaded closed
loop system is considered and uniform semiglobal exponential stability (USES) is shown.
Lyapunov theory is used in the proof. Simulation results support the theoretical findings.

The chapter is organized as follows: Section 10.1 presents the control plant model
of the vehicle and Section 10.2 identifies the control objective. The feedback linearizing
speed and heading controllers are introduced in Section 10.3 while Section 10.4 presents
the first proposed guidance law that solves the control task. Its stability properties are
analyzed in Section 10.5 and the control system is simulated in Section 10.6. The second
proposed guidance law is presented in Section 10.7 and its stability properties are assessed
in Section 10.8. Simulation results are shown in Section 10.9. Finally, conclusions are
given in Section 10.10.
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10.1. The Vehicle Model

The class of marine vehicles described by the 3-DOF maneuvering model presented in
Section 2.3 of Chapter 2 are considered:

ṗ = R(ψ)νr + Vc, (10.1)

Mν̇r +C(νr)νr +Dνr = Bf . (10.2)

Assumption 10.1. The body-fixed coordinate frame b is considered located at a point
(x∗g, 0) from the vehicle’s center of gravity (CG) along the center-line of the vessel, where
x∗g is such that M−1Bf = [τu, 0, τr]

T .

The point (x∗g, 0) exists for all port-starboard symmetric vehicles, (see Section 2.3 of
Chapter 2). Notice that in (10.1-10.2) the effects of the disturbances are integrated into
the irrotational ocean current Vc. In this chapter the vector w is not taken into account.
The following assumption is introduced for clarity and completeness:

Assumption 10.2. The ocean current is defined in the inertial frame i and is assumed
constant, unknown, irrotational and bounded. Hence, Vc , [Vx, Vy, 0]T and there exists a
constant Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .

The state of the surface vessel is given by the vector [pT ,νTr ]T where p , [x, y, ψ]T

describes the position and the orientation of the vehicle with respect to the inertial
frame i. As shown in Chapter 2, in navigation problems involving irrotational ocean
currents it is useful to describe the state of the vessel with the relative velocity vector:
νr = [ur, vr, r]

T . The vector νr is defined in the body frame b, where ur is the relative
surge velocity, vr is the relative sway velocity and r is the yaw rate. The model (10.1-10.2)
describes the kinematics and dynamics of surface vessels as well as underwater vehicles
moving in the horizontal plane. The ocean current is constant and irrotational in i, i.e.
V̇c = 0 and therefore:

ν̇c = [rvc,−ruc, 0]T . (10.3)

The vector f , [Tu, Tr]
T is the control input vector, containing the surge thrust Tu and the

rudder angle Tr. Notice that the model (10.1-10.2) is underactuated in its configuration
space since it has fewer control inputs than DOFs. The matrix M = MT > 0 is the
mass and inertia matrix and includes hydrodynamic added mass. The matrix C(νr) is
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the Coriolis and centripetal matrix, D > 0 is the hydrodynamic damping matrix and
B ∈ R3×2 is the actuator configuration matrix. The structure of the matrices R(ψ), M ,
C(νr) and B is given in Chapter 2. The following assumption defines the properties of
the damping matrix D:

Assumption 10.3. Damping is considered linear.

Remark 10.1. Nonlinear damping is not considered in order to reduce the complexity
of the controllers. However, the passive nature of the non-linear hydrodynamic damping
forces should enhance the directional stability of the vessel.

The hydrodynamic damping matrix D is therefore considered to have the following
structure [52]:

D ,
[
d11 0 0
0 d22 d23
0 d32 d33

]
. (10.4)

The particular structure of D is justified by symmetry arguments (see Section 2.3 of
Chapter 2) and Assumption 10.3.

10.1.1. The Model in Component Form

To solve nonlinear underactuated control design problems it is useful to expand (10.1-10.2)
into:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (10.5a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (10.5b)

ψ̇ = r, (10.5c)

u̇r = Fur(vr, r)− (d11/m11)ur + τu, (10.5d)

v̇r = X(ur)r + Y (ur)vr, (10.5e)

ṙ = Fr(ur, vr, r) + τr. (10.5f)

The expressions for Fr(ur, vr, r), Fur(vr, r), X(ur) and Y (ur) are given in Appendix 10.A.
Notice that the functions Y (ur) and X(ur) are bounded for bounded arguments and thus
the following notation is used:

Xmax , max
Ω
|X(ur)|, (10.6)
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Figure 10.1.: The vehicle has to align its relative velocity vector νr with the current vector
νc to perform counter-current or co-current guidance.

where Ω , {−Vmax ≤ ur ≤ Urd} and the following assumption is introduced:

Assumption 10.4. The function Y (ur) satisfies:

Y (ur) ≤ −Y min < 0, ∀ur ∈ Ω.

Remark 10.2. Assumption 10.4 is justified by a contradiction: Y (ur) ≥ 0 would imply
a nominally unstable vehicle in sway which is not the case for commercial vessels by
design. Furthermore, notice that no bounds are implied on ur. The constant Urd > 0 is
a design parameter and is defined in Section 10.2.

10.2. The Control Objective

This section formalizes the control problem solved in this paper: the control system should
make the vessel turn against the current, or follow the current, in the complementary
case. In addition, the vehicle should also maintain a desired constant surge relative
velocity Urd > 0. The ocean current is considered constant and unknown.

The case of a marine vehicle moving at constant speed and holding a constant course
ψc, in presence of ocean currents, should be considered first to properly define the control
objectives. This case has been addressed in [26], [28] and [34], where it has been proven
that the relative sway velocity of the vessel, vr, decays exponentially to zero due to
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Assumption 10.4. Furthermore it can be seen that the current component acting in the
sway direction vc becomes vc → vc,ss , −Vx sin(ψc)+Vy cos(ψc), exponentially. Moreover,
since v = vr + vc, at equilibrium v → vc,ss. Therefore, in presence of constant irrotational
ocean current, vr → 0, vc → vc,ss and vc → vc,ss, at steady state.

To achieve counter-current guidance as well as co-current guidance, the vessel is
required to align its relative velocity vector νr with the current velocity vector νc, as
shown in Figure 10.1. At steady state, when the two vectors are parallel, the current
vector νc has clearly its sway component vc,ss = 0 and thus v = 0. It is trivial to show
that vc,ss = 0 and v = 0 if and only if the vessel is pointing against the current or going
with the current, i.e. if and only if ψc = atan2(Vy, Vx) +kπ, k ∈ Z. Hence, the objectives
the control system should pursue can be formalized as follows:

lim
t→∞

v(t) = 0, (10.7)

lim
t→∞

vc(t) = 0, (10.8)

lim
t→∞

ψ(t) = atan2(Vy, Vx) + kπ, k ∈ {0, 1}, (10.9)

lim
t→∞

ur(t) = Urd, (10.10)

where k = 0 identifies the co-current guidance and k = 1 identifies the counter-current
guidance. Finally, the following assumption allows the vessel to move against sea currents
acting in any directions of the plane:

Assumption 10.5. The propulsion system is rated with power and thrust capacity
such that Urd satisfies Urd > Vmax.

Remark 10.3. For most marine vehicles Assumption 10.5 is easy to meet since their
propulsion systems are typically designed to give more than 2− 3 [m/s] of relative speed
Urd. The ocean current has usually an intensity of less than 1 [m/s].

Remark 10.4. Notice that Assumption 10.5 is strictly necessary for the vessel to be
able to move against the current.

Remark 10.5. The properties v → 0 and vc → 0 can be exploited to search for the
current direction. In the first guidance law presented in this chapter the signal v represent
the error signal, while the second guidance law considers vc as the error signal.
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10.3. The Surge and Yaw Controllers

According to (10.10), ur(t) should follow the desired value urd(t) , Urd > 0. To this end
the following controller is used:

τu = −Fur(vr, r) +
d11

m11

urd + u̇rd − kur(ur − urd). (10.11)

The gain kur > 0 is constant. The controller (10.11) is a feedback linearizing P-controller
that in a closed loop configuration with (10.5d) guarantees exponential tracking of urd(t).
Notice that part of the damping is not canceled in order to guarantee some robustness
with respect to model uncertainties. The following controller can be used to track the
desired yaw angle ψd:

τr = −Fr(ur, vr, r) + ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d), (10.12)

where kψ, kr > 0 are constant gains. The controller (10.12) is a feedback linearizing PD
controller that in a closed loop configuration with (10.5c)-(10.5f) makes sure that ψ and
r exponentially track ψd and ψ̇d.

Remark 10.6. The speed and heading controllers (10.11-10.12) are used in a cascaded
configuration with both the guidance laws presented in this chapter.

10.4. The Integral Guidance - First Solution

The first guidance system that solves the control problem defined in Section 10.2 is
presented in this section. This first solution integrates the absolute sway velocity v to
search for the current direction. Hence, the following heading reference is proposed to
achieve counter-current guidance, or alternatively co-current guidance:

ψG1 , −σvint, σ 6= 0, (10.13a)

v̇int = v, (10.13b)

where σ > 0 makes the vehicle turn against the flow and σ < 0 makes the vehicle follow
the flow. The integral effect (10.13b) forces the vessel to search for the two directions
having zero absolute sway velocity at steady state, while the sign of the gain σ defines
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whether the counter-current course or the co-current course is the stable equilibrium
point of the closed loop system. It is shown in this chapter how the simple and intuitive
guidance system (10.13) performs counter-current guidance, or co-current guidance,
with strong stability properties. Notice that alternative integral laws, such as the one
introduced in [26], can be used to improve the performance of (10.13).

Remark 10.7. The error signal in (10.13b) is the absolute sway velocity and it can be
measured or estimated using DVL devices or other sensor fusion techniques [11].

Remark 10.8. Notice that ψ̇d and ψ̈d are well defined if ψd , ψG1 since (10.3) is a
consequence of Assumption 10.2.

In this first case the surge and yaw dynamics are not taken into account in the
stability analysis since the controllers (10.11-10.12) guarantee exponential tracking of
the reference signals ur, ψd and ψ̇d. Hence, the following assumption is introduced:

Assumption 10.6. The controllers (10.11-10.12) are assumed to be fast compared to
the guidance law (10.13).

Remark 10.9. The gains ku, kψ and kr can be set so that the closed loop surge and
yaw dynamics do not affect the guidance system significantly.

Remark 10.10. Applying Assumptions 10.6 decouples the sway dynamics from the
surge and yaw closed loop dynamics. In particular, the convergence rate of the guidance
(10.13) is proportional to σ (see Section 10.5). Therefore, qualitatively, Assumption 10.6
is valid as long as σ is chosen small enough.

10.5. Closed Loop Stability Analysis - First Solution

This section presents the conditions under which the first proposed guidance law (10.13)
in a cascaded configuration with the controllers (10.11-10.12) achieves the objectives
(10.7-10.10). The notation XUrd , X(Urd) and Y Urd , Y (Urd) is introduced and the
euclidean norm ‖ · ‖ , ‖ · ‖2 is used. The following stability analysis considers the
counter-current guidance case only (σ > 0). The same discussion can be repeated for the
co-current case (σ < 0).
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Theorem 10.1. Given an underactuated marine vehicle described by the dynamical
system (10.5). If Assumptions 10.2-10.6 hold, there exists a small enough σ satisfying

0 < σ < |Y Urd |/|XUrd |, (10.14)

such that the guidance law (10.13) and the controllers (10.11-10.12), where urd , Urd,
guarantee achievement of the control objectives (10.7-10.10).

Proof. The actuated dynamics (10.5d) and (10.5f) of the ship in closed loop configuration
with the controllers (10.11) and (10.12) are considered first. Given the vector ζ ,

[ũr, ψ̃,
˙̃ψ]T where ũr , ur − Urd, ψ̃ , ψ − ψd and ˙̃ψ , ψ̇ − ψ̇d, the dynamics of ζ are

obtained by combining the system equations (10.5c), (10.5d) and (10.5f) with the control
laws (10.11) and (10.12):

ζ̇ =

[
−kur−

d11
m11

0 0

0 0 1
0 −kψ −kr

]
ζ , Σζ. (10.15)

The system (10.15) is linear and time-invariant. Furthermore, since the gains kur , kψ,
kr and the term d11/m11 are all strictly positive, the system matrix Σ is Hurwitz and
the origin ζ = 0 is globally exponentially stable. Therefore the control goal (10.10) is
achieved with exponential converging properties in any ball of initial conditions.

The dynamics of the sway velocity v are analyzed next. The v, vint subsystem is
obtained combining (10.5e) and (10.13b). Then, the equations ν = νr+νc, νc = RT (ψ)Vc

and (10.13) lead to:

v̇int = v, (10.16)

v̇ =
[
X(Urd + ũr)− (Vx cos(ψd + ψ̃) + Vy sin(ψd + ψ̃))

]
(ψ̇d + ˙̃ψ)

+ Y (Urd + ũr)v − Y (Urd + ũr)(−Vx sin(ψd + ψ̃) + Vy cos(ψd + ψ̃)),
(10.17)

where ψd = −σvint and ψ̇d = −σv, from (10.13). Since ζ → 0 exponentially, it is possible
to apply Assumption 10.6 and consider ζ = 0. Moreover, according to Assumption 10.4,
Y (Urd) = −|Y (Urd)|. Therefore, the system (10.16-10.17) becomes:

v̇int = v, (10.18)

v̇ = −
[
|Y (Urd)|+ σX(Urd)

]
v + |Y (Urd)|

[
Vx sin(σvint) + Vy cos(σvint)

]
+ σ(Vx cos(σvint)− Vy sin(σvint))v.

(10.19)
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The equilibrium points of (10.18-10.19) are:

veq
int,k = − 1

σ
[atan2 (Vy, Vx) + kπ] , veq

k = 0, (10.20)

where k ∈ Z. The system (10.18-10.19) has two physical equilibrium points: the counter-
current direction and the co-current direction. This is clearly seen if the course held by
the ship at equilibrium is calculated:

ψeq
k = atan2 (Vy, Vx) + kπ, k ∈ Z. (10.21)

The equilibrium point that corresponds to the counter-current course, (veq
int,1, v

eq
1 ), is

considered. The variable e , vint − veq
int,1 is introduced to move the equilibrium point

to the origin. This is in fact a rotation of the inertial frame i against the current. The
system (10.18-10.19) can then be rewritten in the following form:

χ̇ = F (χ) +G(χ), (10.22)

where χ , [e, v]T . The vectors F (χ) and G(χ) are:

F (χ) , [
v

−A sin(σe)−Bv ] , (10.23)

G(χ) ,
[

0
−C cos(σe)v

]
. (10.24)

The constants A , Vc|Y (Urd)|, B , |Y (Urd)| + σX(Urd) and C , σVc, where Vc ,√
V 2
x + V 2

y is the intensity of the current. Notice that A > 0 and that B > 0 as long as
σ satisfies (10.14). In (10.22) the vanishing perturbation G(χ) perturbs the following
nominal system:

χ̇ = F (χ). (10.25)

The stability of (10.25) is considered first. The system (10.25) is a pendulum-like system
and has the same equilibrium points as (10.22). Hence, following [82], it is straightforward
to define a positive definite Lyapunov function candidate (LFC):

W1 ,
σ

2
χTPχ+ A(1− cos(σe)), P ,

[
B2

2
B
2

B
2

1

]
. (10.26)
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This gives:

Ẇ1 = −σ
2
ABe sin(σe)− σ

2
Bv2. (10.27)

As long as A > 0 and B > 0, Ẇ1 is negative definite on 0 < |e| < π/σ. Therefore, if σ
satisfies (10.14), the origin is an asymptotically stable equilibrium point of (10.25). In
addition, the following bounds hold globally:

σ

2
χTPχ ≤ W1 ≤

σ

2
χTQχ, Q ,

[
σA+B2

2
B
2

B
2

1

]
, (10.28)

where Q is positive definite. Recalling that a positive definite quadratic form χTTχ

satisfies λmin(T )χTχ ≤ χTTχ ≤ λmax(T )χTχ, there exist two constants c1 > 0 and
c2 > 0 such that:

c1‖χ‖2 ≤ W1 ≤ c2‖χ‖2, (10.29)

globally. Moreover, the time derivative of the LFC satisfies:

Ẇ1 ≤ −
σBc3

2

[
Ae2 + v2

]
≤ −σBc3

2
min{A, 1}‖χ‖2, (10.30)

for some positive constant c3 < 1, in a neighborhood D , {χ | sin(σe)/(σe) ≥ c3, 0 <

|e| < π/σ} of the origin. Notice that D 6= ∅ for every σ > 0 as long as c3 < 1. Thus, it is
possible to conclude [82] that the origin is also a locally exponentially stable equilibrium
point of (10.25).

The stability of the perturbed system (10.22) is considered next. The LFC (10.26)
satisfies the following bound globally:∥∥∥∥[∂W1

∂e
,
∂W1

∂v

]∥∥∥∥ ≤ σ
√
λmax(S)‖χ‖ ≤ σc4‖χ‖, (10.31)

where the positive constant c4 ≥
√
λmax(S). The matrix S is positive definite and is

given by:

S ,

 (
B2
M
2

+AMσmax

)2

+
B2
M
4

BM
2

[(
B2
M
2

+AMσmax

)
+1

]
BM

2

[(
B2
M
2

+AMσmax

)
+1

]
B2
M
4

+1

 , (10.32)
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where σmax , |Y Urd |/|XUrd |, AM , Vmax|Y Urd | and BM , 2|Y Urd |, from (10.14). Notice
that the bounds on c3 and c4 do not depend on σ. Furthermore, the perturbation G(χ)

satisfies the linear growth bound:

‖G(χ)‖ ≤ γ‖χ‖, (10.33)

for a non-negative constant γ , σVmax. Given c∗3 , (c3/2) min{A, 1}, if σ > 0 is chosen
such that:

σ <
|Y Urd |

Vmax
c4
c∗3

+ |XUrd |
< σmax, (10.34)

then γ < Bc∗3
c4

for any:

c3 < 1, (10.35)

c4 ≥ max

{√
λmax(S),

|XUrd |
2Vmax

}
. (10.36)

Therefore, there exists a small enough σ satisfying (10.14) and γ < Bc∗3
c4

for all χ ∈ D.
Hence, according to standard perturbation theory arguments [82, Lemma 9.1], the origin of
the perturbed system (10.22) is locally exponentially stable and the objectives (10.7-10.9)
are achieved with exponential converging properties with ψ(t)→ atan2(Vy, Vx) + π.

Similarly, the same proof can be repeated for the co-current guidance (σ < 0).

10.6. Simulations - First Solution

In this section results from numerical simulations are presented. The first guidance
law presented in this chapter (10.13) is applied to the HUGIN AUV. The model of the
vehicle is given in Section B.4 of Appendix B where the planar motion in 3DOF of the
AUV is considered. The objective is to make the vehicle move against the sea current or,
complementary, to follow the sea current. The AUV should also hold a desired surge
relative speed Urd = 1 [m/s]. Notice that the guidance law sets the heading of the vessel
only, while its position is unconstrained.

The intensity of the current is |Vc| = 0.5 [m/s] and its direction is randomly generated.
In this case, its components are Vx = 0.19 [m/s] and Vy = −0.46 [m/s], giving a direction

212



10.6 Simulations - First Solution

of −68.2 [deg]. Thus, Assumptions 10.2 and 10.5 are fulfilled with Vmax = 0.6 [m/s].
Furthermore, it can be verified that Assumption 10.4 is satisfied with Y min = 0.60 [s−1]

and that σmax = 0.104 [m−1]. The chosen values for the gain σ in the counter-current
case and in the co-current case are 0.1 [m−1] and −0.1 [m−1], respectively. Therefore,
(10.14) as well as (10.34) are satisfied with c3 = 0.9 and c4 = 2.7. Notice that linearizing
(10.22) at the origin gives an overdamped second order system with ω0 ≈ 0.2 [rad/s].
The restoring term A sin(σe)e is strongest at the origin, thus the guidance dynamics are
faster around the stable equilibrium point. The internal controllers (10.11-10.12) are
implemented with the following gains: kur = 0.7, kψ = 1 and kr = 2. Hence, the ũr first
order closed loop system has a time constant of 1.4 [s] while the ψ̃ second order closed loop
system is overdamped with ωn = 1 [rad/s]. The yaw closed loop system is made critically
damped to have the fastest possible response without overshoots. The chosen gains
make the controllers (10.11-10.12) faster then the guidance system (10.22), as required
by Assumption 10.6. Notice that in the simulations saturation is considered for both
the rudder and the propeller. The maximum rudder angle is 20 [deg] and the maximum
rudder turning rate is 10 [deg/s]. The forward thrust Tu ∈ [−Tmax

u (ur), T
max
u (ur)] is

dynamically saturated with saturation limits given by Tmax
u (ur) = Tnnn

2
max − Tunnmaxur.

Here, nmax = 230/60 [rps] and Tnn > 0 and Tun > 0 are some coefficients given by the
propeller characteristics (see [52]).

The AUV is initially located at the origin of the inertial frame and holds zero relative
velocity. Its surge axis is parallel to the x axis of the inertial frame. Figures 10.2a and
10.2b show that counter-current and co-current guidance are successfully achieved. Notice
that the current is acting in the −68.2 [deg] direction and that the guidance law correctly
identifies the counter-current course as well as the co-current course (Figures 10.3a and
10.3b). Figures 10.3c and 10.3d show the relative sway velocity and the absolute sway
velocity over time in the two cases. As expected, the absolute sway velocity converges to
zero since it is the error signal of the guidance law. The practical implementability of the
counter-current/co-current guidance can be assessed by analyzing the rudder angle of
the AUV from Figures 10.3a and 10.3b, and the thrust developed by the main propeller
in Figures 10.3e and 10.3f. The performance of the speed controller (10.11) is also shown
in Figures 10.3e and 10.3f. Figures 10.3a and 10.3b show that the yaw controller (10.12)
moves the rudder smoothly without sharp variations. Therefore, it is possible to conclude
that the proposed guidance law is implementable for values of the parameter σ satisfying
(10.34), as long as reliable measurements of the absolute sway velocity v of the vehicle
are available. Furthermore, the controller (10.11) develops the necessary thrust to make
the vessel reach the desired water speed of 1 [m/s] (Figures 10.3e and 10.3f).
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(a) Counter-current guidance of the underactuated HUGIN
AUV (σ = 0.1 [m−1]).
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(b) Co-current guidance of the underactuated HUGIN AUV
(σ = −0.1 [m−1]).

Figure 10.2.: Simulation results of the first counter-current/co-current guidance law (10.13).

10.7. The Integral Guidance - Second Solution

The second solution of the guidance system that solves the control problem defined in
Section 10.2 is presented in this section. This second solution integrates the current
component in the sway direction o achieve counter-current guidance, or alternatively
co-current guidance. Hence, the heading reference generator is redefined as:

ψG2 , −σvint, σ 6= 0, (10.37a)

v̇int = vc, (10.37b)

where σ > 0 makes the vehicle turn against the flow and σ < 0 makes the vehicle follow
the flow. The integral effect (10.37b) forces the vessel to search for the two directions
having zero current component in the sway direction vc at steady state, while the sign
of the gain σ defines whether the counter-current course or the co-current course is
the stable equilibrium point of the closed loop system. It is shown in the following
sections how the modified guidance system (10.37) performs counter-current guidance, or
co-current guidance, with stronger stability properties than the guidance law presented
in Section 10.4. Notice that alternative integral laws can be used to improve (10.37).
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(a) Yaw angle ψ(t) of the vehicle in counter-current guidance
mode (σ = 0.1 [m−1]). Notice that the steady state yaw
angle is ψss = 111.8 [deg] while the current is acting in
exactly the opposite direction of −68.2 [deg].
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(b) Yaw angle ψ(t) of the vehicle in co-current guidance mode
(σ = −0.1 [m−1]). Notice that the steady state yaw angle
is ψss = −68.2 [deg] which is exactly the current direc-
tion.
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(c) The relative and absolute sway velocities of the AUV in
counter-current guidance mode converge to zero as ex-
pected (σ = 0.1 [m−1]).
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(d) The relative and absolute sway velocities of the AUV in
co-current guidance mode converge to zero as expected
(σ = −0.1 [m−1]).
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(e) Relative surge velocity ur(t) and surge thrust Tu(t) of the
HUGIN AUV from simulations (counter-current case).

0 50 100 150 200 250 300
0

0.3

0.6

0.9

1.2

Time [s]

V
el

oc
ity

 [m
/s

]

 

 

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Th
ru

st
 [N

]Relative surge velocity, ur(t)

Desired relative surge velocity, urd(t)

Surge thrust, Tu(t)

(f) Relative surge velocity ur(t) and surge thrust Tu(t) of the
HUGIN AUV from simulations (co-current case).

Figure 10.3.: Simulation results of the first counter-current/co-current guidance law (10.13).
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Remark 10.11. The error signal in (10.37b) is the current component acting in the
sway direction. This component can be measured or estimated using DVL devices or
other sensor fusion techniques [99].

Remark 10.12. In this second case the actuated surge and yaw dynamics are included
in the analysis. Therefore, Assumption 10.6 is removed in this context.

Remark 10.13. The surge and yaw controllers (10.11-10.12) from Section 10.3 are
used in a cascaded configuration with the redefined guidance law (10.37) to solve the
problem defined in Section 10.2.

10.8. Closed Loop Stability Analysis - Second

Solution

This section presents the conditions under which the proposed control system achieves
the objectives (10.7-10.10). The counter-current guidance case (σ > 0) is considered
only. However, the same derivations and conclusions can be drawn for the co-current
case (σ < 0).
Theorem 10.2. Given an underactuated marine vehicle described by the dynamical
system (10.5). If Assumptions 10.2-10.5 hold, the controllers (10.11-10.12), with
kur , kψ, kr > 0, urd , Urd and ψd , ψG2, guarantee achievement of the control objectives
(10.7-10.10) with USES. The USES properties hold on the parameter set Θ , {σ > 0}.

Proof. The actuated surge and yaw dynamics of the vehicle are considered first. The
closed loop surge subsystem is obtained combining (10.5d) with (10.11) and given
ũr , ur − Urd, the ũr dynamics become:

˙̃ur = −
(
d11

m11

+ kur

)
ũr, (10.38)

where d11,m11, kur > 0. The ũr subsystem is clearly uniformly globally exponentially
stable (UGES). Therefore, the control goal (10.10) is achieved with exponential converging
properties in any ball of initial conditions. The yaw ψ, r subsystem is obtained from
(10.5c) and (10.5f) in closed loop configuration with (10.12). Given the error variables
ψ̃ , ψ − ψd and r̃ , r − ψ̇d, the dynamics of ψ̃ and r̃ are:

ξ̇ =
[

0 1
−kψ −kr

]
ξ , Σξ, (10.39)
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where ξ , [ψ̃, r̃]T . The system (10.39) is linear and time-invariant. Furthermore, since
the gains kψ, kr are strictly positive, the system matrix Σ is Hurwitz and hence the
origin ξ = 0 is UGES.

The guidance system (10.37) is considered next. Since νc = RT (ψ)Vc (see Section 10.1)
and ψ̃ , ψ − ψd, the integrator (10.37b) can be written as:

v̇int = −Vx sin(ψd + ψ̃) + Vy cos(ψd + ψ̃), (10.40)

where ψd = −σvint. The interconnected dynamics of vint are given combining (10.40)
with (10.39):

v̇int = Vx sin(σvint) + Vy cos(σvint) +Hv(vint, ξ)ξ, (10.41a)

ξ̇ = Σξ, (10.41b)

where Hv(vint, ξ) , [hvint
(vint, ψ̃), 0] and the function hvint

(vint, ψ̃) is given in Ap-
pendix 10.A. The system (10.41) is a cascaded system where the linear UGES system
(10.41b) perturbs the dynamics (10.41a) through the interconnection term Hv.

Remark 10.14. Compared to Section 10.5, the relative sway velocity vr does not show
up in (10.41). This is due to the choice of vc instead of v as the error signal in (10.37).
Complexity of the closed loop stability analysis is therefore reduced.

Analyzing (10.41) at equilibrium shows that ξeq = 0 and:

Vx sin(σveq
int) + Vy cos(σveq

int) = 0, (10.42)

therefore:

veq
int,k = −(1/σ) [atan2 (Vy, Vx) + kπ] , k ∈ Z. (10.43)

The system (10.41) has multiple equilibrium points that identify two physical directions:
the counter-current direction and the co-current direction. This is clearly seen if the
course held by the ship at equilibrium is calculated:

ψeq
k = atan2 (Vy, Vx) + kπ, k ∈ Z, (10.44)

where the equilibrium points with k = 1 + 2n, n ∈ Z correspond to the counter-current
direction, while the equilibrium points identified by k = 2n, n ∈ Z correspond to the
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co-current direction. In particular, the equilibrium point with k = 1 that corresponds to
the counter-current course, veq

int,1, is considered.

Remark 10.15. The equilibrium point having k = 1 is equivalent to all the counter-
current equilibrium points identified by k = 1 + 2n, n ∈ Z, hence their analysis is
identical.

The variable e , vint − veq
int,1 is introduced to move the equilibrium point to the origin.

This is in fact a rotation of the inertial frame i for an angle ψeq
1 . The cascaded system

(10.41) can be then rewritten in the following form:

ė = −Vc sin(σe) +He(e, ξ)ξ, (10.45a)

ξ̇ = Σξ, (10.45b)

where Vc > 0 is the magnitude of the ocean current, Vc ,
√
V 2
x + V 2

y , and He ,

[he(e, ψ̃), 0]. The function he(e, ψ̃) is given in Appendix 10.A.

The following positive definite quadratic Lyapunov function candidate is introduced
to analyze the stability properties of the cascaded system (10.45):

W2 , χ
TPχ, (10.46)

where χ , [e, ψ̃, r̃]T and the matrix P is defined as:

P ,


1
2

0 0

0 ρ
2

[
kψ
kr

(
1+ 1

kψ

)
+ kr
kψ

]
ρ

2kψ

0 ρ
2kψ

ρ
2kr

(
1+ 1

kψ

)
 , (10.47)

where ρ > 0 is a constant parameter. Notice that the matrix P is symmetric and positive
definite. Hence, its eigenvalues λ1, λ2, λ3 are real and positive. In particular λ1 = 1/2 and
the other two are linearly dependent on ρ: λ2(ρ) = c2(kψ, kr)ρ and λ3(ρ) = c3(kψ, kr)ρ,
where c2(kψ, kr) > 0 and c3(kψ, kr) > 0. The time derivative of the LFC (10.46) is:

Ẇ2 = −ρψ̃2 − ρr̃2 − Vce sin(σe) + eψ̃h(e, ψ̃). (10.48)
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Notice that the function h(e, ψ̃) is globally bounded, since |h(e, ψ̃)| ≤ 2Vmax. Therefore,
in any ball B1/σ , {|e| ≤ 1/σ}, the time-derivative ofW2 satisfies the following inequality:

Ẇ2 ≤ −ρψ̃2 − ρr̃2 − Vmaxσ
e2

2
+ 2Vmax|e||ψ̃|. (10.49)

The bound (10.49) can be rewritten as:

Ẇ2 ≤ −WB(|r̃|, |e|, |ψ̃|), (10.50)

where:

WB(|r̃|, |e|, |ψ̃|) , [ |r̃| |e| |ψ̃| ]

[
ρ 0 0

0 Vmaxσ
2

−Vmax

0 −Vmax ρ

] [
|r̃|
|e|
|ψ̃|

]
(10.51)

It is straightforward to show that WB is positive definite as long as ρ > 2Vmax

σ
. Without

any loss of generality one can choose for instance ρ = 3Vmax

σ
, hence making two of the

eigenvalues of W linearly dependent on 1/σ and all the eigenvalues of WB dependent on
1/σ. Given that the tuning parameter σ > 0 can be chosen arbitrarily small, this shows
exponential stability on a domain of attraction that can be made arbitrarily large by
picking σ small enough. Therefore, according to Theorem A.1, it is possible to conclude
uniform semiglobal exponential stability on the parameter set Θ = {σ > 0} for the
system (10.45).

Remark 10.16. Precise definitions of the USES stability property are given in Defini-
tion A.5 and in [37, Definition 2.2].

Remark 10.17. Even though the equilibria of (10.45) are multiple, they all can be
separated by an arbitrarily large distance by picking σ > 0 small enough. This explains
intuitively why the stability properties of (10.45) hold semiglobally.

Hence, following Remark 10.15, all the counter-current equilibrium points (k =

1 + 2n, n ∈ Z) have USES and stability properties. Moreover, linearization shows
instability of the equilibrium points identifying the co-current direction (k = 2n, n ∈ Z).

Finally, ISS for the sway dynamics (10.5e) is shown. The underactuated sway
subsystem (10.5e) can be rewritten using r = ψ̇d + r̃:

v̇r = Y (ur)vr +X(ur)f(χ), (10.52)
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where:

f(χ) , σVc sin(σe)− σψ̃he(e, ψ̃) + r̃, (10.53)

and it can be shown that:

|f(χ)| ≤ g(||χ||) , κ(|e|+ |ψ̃|+ |r̃|), (10.54)

for some κ > 0. Notice that χ(t) perturbs the sway subsystem and that f(0) = 0. The
unforced sway subsystem is v̇r = Y (ur)vr. Applying (10.54) and Assumption 10.4 to the
time derivative of the quadratic function W3 , (1/2)v2

r yields the following bound:

Ẇ3 = Y (ur)v
2
r +X(ur)f(χ)vr ≤ −Y minv2

r +Xmaxg(||χ||)|vr|. (10.55)

Given 0 < θ < 1, (10.55) becomes:

Ẇ3 ≤ −(1− θ)Y minv2
r , ∀|vr| ≥

1

θ

Xmax

Y min
g(||χ||) > 0. (10.56)

Hence, following [82, Theorem 4.19], the sway subsystem (10.5e) is ISS with respect to
χ.

Remark 10.18. The use of Assumption 10.4 in the proof of above is justified by the
fact that ur is bounded, as clearly shown at the beginning of this section. See [26, 34] for
similar arguments.

To conclude, the guidance (10.37) in a cascaded configuration with the controllers
(10.11-10.12) guarantee USES on the parameter set Θ = {σ > 0} of the counter-current
equilibrium points (k = 1 + 2n, n→ Z) of the closed loop system (10.45). Hence, for any
ball of initial conditions χo there exists a small enough σ > 0 such that the objectives
(10.7-10.10) are achieved exponentially. Notice that the goal (10.7) is included as a direct
consequence of the relation v = vr + vc.

Similarly, the same proof can be repeated for the co-current guidance (σ < 0).
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10.9. Simulations - Second Solution

In this section results from numerical simulations are presented where the second solution
of the counter-currant/co-current guidance law (10.37) is applied to the HUGIN AUV
in a similar way as done with the guidance law (10.13) in Section 10.6. The model
of the vehicle is given in Section B.4 of Appendix B and the objective is to make the
vehicle move against the sea current or, complementary, to follow the sea current. The
AUV should also hold a desired surge relative speed Urd = 1 [m/s]. Notice that the
guidance law sets the heading of the vessel only, while its position is unconstrained. The
intensity of the current is |Vc| = 0.5 [m/s] and its direction is randomly generated. In
this case, its components are Vx = −0.41 [m/s] and Vy = 0.29 [m/s], giving a direction
of 144.2 [deg]. Thus, Assumptions 10.2 and 10.5 are fulfilled with Vmax = 0.6 [m/s].
Furthermore, it can be verified that Assumption 10.4 is satisfied with Y min = 0.60 [s−1]

and Xmax = 1.08 [m/s].

The chosen values for the gain σ in the counter-current case and in the co-current
case are 0.1 [m−1] and −0.1 [m−1], respectively. Choosing too high values for σ may
induce chattering due to saturation in the magnitude and the turning rate of the rudder
actuators. Linearizing the system (10.45) in the origin shows that the convergence rate
of the guidance law is in first approximation dependent on the constant σVc. Given that
Vc = 0.5 [m/s] and |σ| = 0.1 [m−1], this gives a time constant of 20 [s]. In particular,
the restoring term Vc sin(σe) is strongest at the origin, thus the guidance dynamics are
faster close to the stable equilibrium point. The internal controllers (10.11-10.12) are
implemented with the following gains: kur = 0.7, kψ = 1 and kr = 2. Hence, the ũr first
order closed loop system (10.38) has a time constant of 1.4 [s] while the ψ̃ second order
closed loop system (10.39) is critically damped with ωn = 1 [rad/s].

The ship is initially located at the origin of the inertial frame and holds zero relative
velocity. Its surge axis is parallel to the x axis of the inertial frame. Figures 10.4 and
10.5 show how counter-current and co-current guidance are successfully achieved. Notice
that the current is acting in the 144.2 [deg] direction and that the guidance law correctly
identifies the counter-current course as well as the co-current course (Figures 10.5a and
10.5b). Figures 10.5c and 10.5d show the relative sway velocity and the sway current
component over time in the two cases. As expected, the sway current component converges
to zero since it is the error signal of the guidance law. The practical implementability of
the counter-current/co-current guidance can be assessed by analyzing the rudder angle of
the vessel from Figures 10.5a and 10.5b. The performance of the speed controller (10.11)

221



Counter-Current and Co-Current Guidance of Underactuated Marine Vehicles

is also shown in Figures 10.5e and 10.5f. Notice that in the simulations saturation is
taken into account for both the rudder and the propeller as described in Section 10.6.
Figures 10.5a and 10.5b show that the controller moves the rudder smoothly without
sharp variations. This illustrates that the proposed guidance is implementable as long as
reliable measurements of the vc current component are available.
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(a) Counter-current guidance of the underactuated HUGIN
AUV (σ = 0.1 [m−1]).
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(b) Co-current guidance of the underactuated HUGIN AUV
(σ = −0.1 [m−1]).

Figure 10.4.: Simulation results of the second counter-current/co-current guidance law (10.37).

10.10. Conclusions

Two guidance laws for counter-current and co-current guidance of underactuated marine
vehicles in 3DOF have been presented in this chapter. The proposed solutions can be
applied to surface vessels as well as to underwater vehicles and are based on the relation
between the relative and absolute velocities. In particular, the counter-current direction
and the co-current direction are two possible steady-state headings having zero absolute
sway velocity and zero sway current component.

The first presented guidance law integrates the absolute sway velocity. This makes the
vessel determine the two possible directions: the counter-current course and the co-current
course. It has been shown that the two directions represent a set of stable equilibrium
points and a set of unstable equilibrium points of a closed loop pendulum-like system. The
sign of the gain σ defines whether the vehicle converges to the counter-current direction
or to the co-current direction. Explicit conditions upon the guidance law parameter σ
have been derived using standard Lyapunov arguments as well as perturbation theory
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(b) Yaw angle ψ(t) of the vehicle in co-current guidance mode
(σ = −0.1 [m−1]). Notice that the steady state yaw angle
is ψss = 144.2 [deg] [deg] which is exactly the current
direction.
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0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

V
el

oc
ity

 [m
/s]

 

 

Sway current component, vc(t)

Relative sway velocity, vr(t)

(d) The relative and absolute sway velocities of the AUV and
the sway current component in co-current guidance mode
converge to zero as expected (σ = −0.1 [m−1]).

0 50 100 150 200 250 300
0

0.3

0.6

0.9

1.2

Time [s]

V
el

oc
ity

 [m
/s]

 

 

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Th
ru

st 
[N

]Relative surge velocity, ur(t)

Desired relative surge velocity, urd(t)

Surge thrust, Tu(t)

(e) Relative surge velocity ur(t) and surge thrust Tu(t) of the
HUGIN AUV from simulations (counter-current case).
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Figure 10.5.: Simulation results of the second counter-current/co-current guidance law (10.37).
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elements to guarantee local exponential stability for both the counter-current guidance
as well as the co-current guidance. However, the surge and yaw dynamics have not been
included in the analysis.

The second presented guidance law represents an improvement of the first. It integrates
the sway current component and as a result it determines the two possible directions
having zero absolute sway velocity: the counter-current course and the co-current course.
Again, the two directions represent a set of stable equilibrium points and a set of unstable
equilibrium points. In this case the closed loop system is analyzed without neglecting the
surge and yaw dynamics and the stronger stability property of USES is shown for the
complete multiple-equilibria closed loop system. The sign of the gain σ defines whether
the vehicle converges to the counter-current direction or to the co-current direction. No
upper bounds on the gain σ have been derived. However high values should be avoided
not to cause chattering.

Results from numerical simulations have been presented to verify the theoretical
results and compare the two guidance laws. Their transient as well as steady state
response are very similar, suggesting that stronger stability properties may hold for
the first guidance law as well. The choice between the two is then left to the available
feedback signal: the absolute sway velocity v or the sway current component vc. Given the
increasing number of sensors mounted on board of ships and unmanned marine vehicles
(GPS, DVL, IMU, . . . ), it should be possible to have at least one of them available. This
however should be well filtered and processed before being fed into the integrator. Finally,
notice that the stronger the current, the faster both the guidance laws react.
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10.A. Appendix: Functional Expressions

Fur(vr, r) ,
1

m11

(m22vr +m23r)r, (10.57)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (10.58)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (10.59)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(10.60)

The functions hvint
(vint, ψ̃) and he(e, ψ̃) are:

hvint
(vint, ψ̃) , −1− cos(ψ̃)

ψ̃
(Vx sin(σvint) + Vy cos(σvint))

− sin(ψ̃)

ψ̃
(Vx cos(σvint)− Vy sin(σvint)) ,

(10.61)

he(e, ψ̃) , Vc
1− cos(ψ̃)

ψ̃
sin(σe) + Vc

sin(ψ̃)

ψ̃
cos(σe), (10.62)

where the limits of hvint
and he for ψ̃ → 0 exist and are finite. The constant Vc > 0 is

the magnitude of the current: Vc ,
√
V 2
x + V 2

y . Notice that the following identities are
used when moving the equilibrium point veq

int,1 to the origin in Section 10.8 (recall that
e = vint − veq

int,1):

Vx sin(σvint) + Vy cos(σvint) = −Vc sin(σe), (10.63)

Vx cos(σvint)− Vy sin(σvint) = −Vc cos(σe), (10.64)

sin(atan2 (Vy, Vx)) = Vy/Vc, (10.65)

cos(atan2 (Vy, Vx)) = Vx/Vc. (10.66)
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Chapter 11.

Conclusions and Future Work

“At the end of the project, we should all be able to look ourselves in the
eye. . . in the mirror. . . and honestly say: I gave it my very best shot!”

— Sir Peter Blake, Yachtsman

This dissertation has focused on the Integral Line-of-Sight (ILOS) guidance solution for
path following applications of underactuated marine vessels in presence of environmental
disturbances. Path following of straight lines is considered and some of the obtained
results closely relate to bounded control and modeling of marine crafts. Furthermore,
the problem of steering a vehicle against the ocean current or with the ocean current is
addressed as well.

The ILOS guidance law from [26] has been improved, revisited, extended and validated
through full scale experiments. The improvements introduced to the ILOS guidance law
from [26] relate to the redefinition of the vessel state in terms of its relative velocity.
As shown in [67, 52] it is possible to rewrite the model of the vessel in terms of the
relative velocity vector as long as the ocean current disturbance is assumed constant and
irrotational. Since the constant and irrotational current is a widely accepted description
of slowly varying disturbances [52, 51], the property presented in [67, 52] is here applied.
In Chapter 6 the model of the vessel in terms of the relative velocity vector allows to
prove stronger stability properties compared to [26]. In [26] both the relative velocity
vector and the absolute velocity vector are present in the system dynamics forcing the
introduction of adaptive control systems to estimate the unknown terms, hence increasing
complexity and weakening stability. In the cases presented and analyzed in this thesis it
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is shown that having the state of the vessel described with relative velocities only, makes
the adaptive terms unnecessary since the unknown current terms do not show up.

In Chapter 6 the designed control system consists of the 2D ILOS guidance law in a
cascaded configuration with two feedback linearzing controllers. It is hence possible to
prove the stronger stability properties of uniform global asymptotic stability (UGAS) and
uniform local exponential stability (ULES) for the 3 degrees of freedom (DOFs) case of
an underactuated ship or vehicle in a planar motion configuration. The full state of the
closed loop system is analyzed, including the actuated and the underactuated dynamics.
Furthermore, it is shown that in steady state it is possible to estimate the unknown
current by using the integral term of the ILOS guidance law as well as measurements
of the absolute and relative speeds of the vessel. The theoretical analysis is strongly
supported by results from simulations and field experiments where the ILOS guidance
has been applied to the CART Unmanned Semi-Submersible Vehicle (USSV) for sea
trials. Furthermore, different models of a supply ship are used to simulate the control
system and to assess its robustness with respect to parameter uncertainties and process
noise.

The same theoretical results are obtained in Chapter 9 for the more complex case
of an underactuated underwater vehicles moving in a 3D environment in the presence
of constant irrotational ocean currents acting in any direction. In this case a 3D ILOS
guidance law is used with integral action in both the vertical and horizontal directions,
hence extending the previous findings and the vehicle is described by a 5-DOFs control
plant model where the state is given by the its relative velocity. The three dimensional
ILOS is combined with three feedback controllers in a cascaded configuration and the
full kinematic-dynamic closed loop system is analyzed using Lyapunov techniques and
nonlinear cascaded systems theory. In particular, the analysis gives explicit conditions on
the control design parameters to guarantee UGAS and ULES stability. The theoretical
results are supported and completed with an extensive set of simulations and sea trials
where the LAUV vehicle is used. In particular, the presented guidance law shows good
path following performance, comparable to the vector field guidance low, it does not
stress the actuators and it gives smooth servo signals.

In Chapter 7 a combined control strategy for path following of fully actuated surface
marine vehicles in presence of constant irrotational ocean currents has been developed.
This extends the results of 6 to fully actuated surface vessels. Saturation of the sway
actuators is analytically taken into account yielding a partially bounded control problem.
The guidance system is based on the ILOS guidance law developed in Chapter 6 and a
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sway nonlinear bounded PI controller. In particular, it is shown in Chapter 5 that the
ILOS guidance can effectively compensate for disturbances in sway and this property
is here exploited to combine the ILOS with a bounded sway controller. The control
system compensates for the current and guarantees path following even when the sway
thrusters are saturated, by making the ship side-slip. The analysis of the full state closed
loop system through Lyapunov techniques and nonlinear cascaded systems theory gives
explicit conditions to guarantee exponential stability. Numerical simulations support the
theoretical results.

In Chapter 8 it is shown that the ILOS guidance law developed in Chapter 6 for path
following purposes of underactuated surface vehicles effectively compensates for kinematic
disturbances, such as irrotational ocean currents, as well as dynamic disturbances, such
as the heading dependent wind forces. Theoretical results and simulations have been
presented in a unified manner for this purpose. In particular, a 3-DOFs control plant
model for maneuvering purposes that includes environmental disturbances has been
introduced. The disturbances are modeled as a combination of a constant irrotational
ocean current and constant heading dependent wind forces. Furthermore, it has been
shown that the ILOS guidance guarantees path following with UGAS and ULES (global
κ-exponential stability) properties in closed loop configuration with an adaptive surge-yaw
controller, in presence of both the disturbances. The full kinematic-dynamic closed loop
system has been considered and explicit conditions to guarantee stability have been
derived. The theoretical results are supported by numerical simulations.

The first methods of analysis and interpretations presented in this thesis are however
linked to simple kinematic models of underactuated vehicles. These methods make it
possible to develop simple and intuitive arguments that explain the results developed
in the chapters mentioned above. In particular, in Chapter 3 the ILOS guidance has
been presented and applied to a simple kinematic model of surface vessels. An intuitive
approach has been followed to explain the problem of disturbance compensation for
underactuated marine vessels. In particular, constant irrotational ocean currents have
been considered and it has been shown that the problem has one possible solution only.
The ILOS guidance is used to achieve side-slipping and compensate for the current where
the closed loop system has been analyzed as a pure nonlinear kinematic problem. The
analysis reveals UGAS as well as ULES stability properties and explicit conditions upon
the choice of the integral gain σ are derived but no conditions upon the look-ahead
distance ∆ are derived since the dynamics are not taken into account within this kinematic
approach. A similar kinematic approach is followed in Chapter 4 to first introduce the
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3D version of the ILOS guidance later analyzed in details in Chapter 6. The intuitive
approach followed in Chapter 3 is repeated and extended for underactuated underwater
vehicles moving in a 3D space. In particular, 3D constant irrotational ocean currents
are considered and it is shown that the problem has one possible solution only. The
integral LOS guidance is used to hold non-zero pitch and yaw angles at equilibrium and
thus compensate for the current. The closed loop system has been analyzed revealing
a cascaded structure with UGAS and ULES stability properties. Explicit conditions
upon the choice of the integral gains σy and σz are derived but no conditions upon the
look-ahead distances ∆y and ∆z are derived since the dynamics are neglected within this
kinematic approach. Explicit bounds for the choice of the ILOS guidance look-ahead
distance are derived in Chapter 5 by including the underactuated dynamics into the
Lyapunov analysis where disturbances in the form of constant irrotational ocean currents
and constant dynamic, attitude dependent, forces have been also taken into account and
their maximum ratings show up in the bounds derived for the guidance law parameters.

Finally two guidance laws for counter-current and co-current guidance of underactu-
ated marine vehicles in 3DOF have been presented in Chapter 10. The proposed solutions
can be applied to surface vessels as well as to underwater vehicles and are based on
the relation between the relative and absolute velocities. In particular, it is shown that
the counter-current direction and the co-current direction are two possible steady-state
headings having zero absolute sway velocity and zero sway current component. In the
first guidance law the absolute sway velocity is the error signal of the guidance system,
while in the second guidance law the sway current component is the error signal. The
two laws show different stability properties: local exponential stability (LES) for the first
and uniform semiglobal exponential stability (USES) for the second. In both the cases
the closed loop system reveals multiple stable/unstable equilibrium points, corresponding
to the counter-current/co-current directions depending on the setting. Results from
numerical simulations have been presented that support the theoretical results and
compare the two guidance laws. Their transient as well as steady state responses are
very similar, suggesting that stronger stability properties may hold for the first guidance
law as well. The choice between the two is then left to the available feedback signal: the
absolute sway velocity v or the sway current component vc. Given the increasing number
of sensor mounted on board of ships and unmanned marine vehicles (GPS, DVL, IMU,
. . . ), it should be possible to have at least one of them available. This however should be
well filtered and processed before being fed into the integrator.
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Future developments of this thesis include several aspects of the guidance methods
developed in the mentioned chapters. The extension of the ILOS guidance law to curved
paths for path following purposes in presence of environmental disturbances should be
considered since this dissertation has focused exclusively on path following of straight
lines. The use of different controllers such as sliding mode, backstepping, PID or passivity
based for the steering of the vehicle and the speed control represents a possible future
development as well. It would be also interesting to test the control system that combines
the ILOS guidance law with the bounded sway controller presented in Chapter 7 on
a fully actuated vehicle. Additional tests and simulations with more complex process
plan models can be also considered to further test the ILOS guidance and validate the
control plant models used in this dissertation, in particular the model from Chapter 8 or
to see how a complete system based on relative velocities behaves. Future extensions
related to the counter-current and co-current guidance laws presented in Chapter 10
include on the field testing and their integration into more complex weather optimal
heading control/weather optimal postion control (WOHC/WOPC) systems. Finally,
future developments and additional validation of the control plant models discussed in
Chapter 2 can be considered as well.
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Appendix A.

Mathematical Tools

Several mathematical concepts and tools from nonlinear control theory are used through-
out this dissertation. This appendix presents the notation, the definitions and the
theorems that are of relevance to the results and analysis given in the previous chapters.

A.1. Notation

In this thesis the space Rn is the Euclidean space of dimension n and R+ is the set of all non-
negative real numbers. The p norm of a vector x ∈ Rn is denoted as ‖x‖p, for p ∈ [1,+∞].
When a norm is written without subscript, such as ‖x‖, the 2-norm is implied. The
induced p-norm of a real matrix A ∈ Rn×n is defined as ‖A‖p = max‖x‖p=1 ‖Ax‖p.
Finally, the following definitions are taken from [82]:

Definition A.1. A continuous function α : R+ → R+ is said to belong to class K if
it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if α(r) → ∞ as
r →∞.

Definition A.2. A continuous function β : R+ × R+ → R+ is said to belong to class
KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and,
for each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s)→ 0 as
s→∞.
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A.2. General Stability

Some important definitions of stability for nonlinear systems are given in this section.
Given the nonlinear time-varying system:

ẋ = f(t,x), x ∈ Rn, (A.1)

where f : R+ × Rn → Rn is assumed as piecewise continuous in t and locally Lipschiz in
x. Since some of the systems analyzed in this thesis are time-varying, the concept of
uniform stability is introduced. The following definitions of uniform stability are taken
from [82] and [23].

Definition A.3 (Uniform stability). The equilibrium point x = 0 of the system (A.1)
is said to be:

• uniformly locally stable (ULS) if there exists a class K function α and a positive
constant c, independent of t0, such that:

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c. (A.2)

• uniformly globally stable (UGS) if the inequality (A.2) is satisfied fora any initial
state x(t0).

• uniformly locally asymptotically stable (ULAS) if there exists a class KL function
β and a positive constant c, independent of t0, such that:

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c. (A.3)

• uniformly globally asymptotically stable (UGAS) if the inequality (A.3) is satisfied
fora any initial state x(t0).

• uniformly locally exponentially stable (ULES) if there exists the positive constants
c, k and λ such that:

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c. (A.4)

• uniformly globally exponentially stable (UGES) if the inequality (A.4) is satisfied
fora any initial state x(t0).
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Definition A.4 (Exponential stability in any ball of initial conditions). The equilibrium
point x = 0 of the system (A.1) is said to be exponentially stable in any ball of initial
conditions if there exists a positive constant γ and a class K function α such that for
any initial state x(t0):

‖x(t)‖ ≤ α(‖x(t0)‖)e−λ(t−t0), ∀t ≥ t0 ≥ 0. (A.5)

Remark A.1. Definition A.4 is equivalent to the definition of global κ-exponential
stability introduced in [129].

Remark A.2. Definition A.4 and the concept of global κ-exponential stability are
equivalent to the origin of the system (A.1) being UGAS and ULES [88].

Remark A.3. Robustness with respect to disturbances leads to the notion of uniform
stability. If the time-varying nonlinear system (A.1) is ULAS and ULES and locally
Lipschitz in t, is also locally Input-to-State Stable (ISS) [94]. Therefore, the concept of
uniform stability is instrumental when analyzing stability of perturbed systems and of
nonlinear time-varying systems in cascade.

A.3. Practical Stability

The term practical stability has different meanings in literature: see [37, 38, 65, 64] for a
discussion on the matter. In this thesis the definition of practical stability given in [37]
and [65] is used. According to [37] and [65], semiglobal and practical stability properties
relate to parametrized nonlinear time-varying systems of the form:

ẋ = f(t,x,θ), (A.6)

where θ ∈ Rm is a vector of constant parameters and f : R+×Rn×Rm → Rn is assumed
as piecewise continuous in t and locally Lipschiz in x, for any θ under consideration. θ
is a free tuning parameter, such as a control gain. The concept of practical stability is
applicable when the domain of attraction of the equilibrium point x = 0 of (A.6) can be
arbitrarily enlarged and diminished by a convenient choice of θ. The following definition
of uniform semiglobal exponential stability is taken from [65] and [64].

Definition A.5 (Unifrom semiglobal exponential stability). Let Θ ⊂ Rm be a set of
parameters. The equilibrium point x = 0 of the system (A.6) is said to be uniformly
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semiglobally exponentially stable (USES) on Θ if, given any positive constant c, there
exists a parameter θ?(c) ∈ Θ and the positive constants k(c) and λ(c) such that:

‖x(t,θ?)‖ ≤ k(c)‖x(t0)‖e−λ(c)(t−t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c. (A.7)

Remark A.4. Definition A.5 differs from UGES since the choice of the parameter
θ?(c) and the constants k(c) and λ(c) depend on the positive constant c.

The following theorem from [65] gives the sufficient condition for the USES property to
hold:
Theorem A.1 ([65, Theorem 2]). Let Θ be a subset of Rm and suppose that, given any
constant c > 0, there exists a parameter θ? ∈ Θ, a continuous differentiable Lyapunov
function Vc : R+ ×Rn → R+ and the positive constants κ(c), κ(c), κ(c) such that, for all
x ∈ {x ∈ Rn : ‖x‖ ≤ c} and all t ≥ 0:

κ(c)‖x‖q ≤ Vc(t,x) ≤ κ(c)‖x‖q, (A.8)
∂Vc(t,x)

∂t
+
∂Vc(t,x)

∂x
f(t,x,θ?) ≤ −κ(c)‖x‖q, (A.9)

where q is a positive constant. Then, under the condition that:

lim
c→∞

κ(c)cq

κ(c)
=∞, (A.10)

the system (A.6) is USES on the parameter set Θ.

A.4. Stability of Cascades

Given the nonlinear time-varying cascaded system:

ẋ =f1(t,x) + g(t,x,y), (A.11)

ẏ =f2(t,y), (A.12)

where x ∈ Rn, y ∈ Rm and, f1(·, ·) and f2(·, ·) are continuously differnetiable in their
arguments. The following results characterize the stability properties of the origin
(x,y) = (0,0) of the cascade (A.11-A.12).
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Lemma A.1 ([106, Lemma 2]). Given the cascaded system (A.11-A.12), if both ẋ =

f1(t,x) and ẏ = f2(t,y) are UGAS and the solutions of (A.11-A.12) are globally
uniformly bounded, then the cascaded system (A.11-A.12) is UGAS.
Theorem A.2 ([105, Theorem 2]). Given the cascaded system (A.11-A.12). Assume
that the system ẋ = f1(t,x) is UGAS with a Lyapunov function V (x, t) satisfying:∥∥∥∥∂V∂x

∥∥∥∥ ‖x‖ ≤ c1V (x, t), ∀‖x‖ ≥ η > 0, (A.13)

where c1 > 0 and η > 0. If Assumptions (A1) and (A2) below are satisfied as well, then
the cascaded system (A.11-A.12) is UGAS.

(A1) The function g(t,x,y) satisfies:

‖g(t,x,y)‖ ≤ θ1(‖y‖) + θ1(‖y‖)x, (A.14)

where θ1, θ2 : R+ → R+ are continuous.

(A2) The system ẏ = f2(t,y) is UGAS and, for all t0 ≥ 0:∫ t

t0

‖x(s)‖ds ≤ φ(‖x(t0)‖), (A.15)

where the function φ(·) is a class K function.

Remark A.5. If the nominal system ẋ = f1(t,x) is UGAS with a quadratic Lyapunov
function, then the condition (A.13) satisfied trivially.

Remark A.6. If the perturbing system ẏ = f2(t,y) is UGAS and ULES (or equivalently
exponentially stable in any ball of initial conditions), then the integrability condition
(A.15) is satisfied trivially.

Lemma A.2 ([104, Lemma 8]). If in addition to the assumptions required by Theorem A.2,
both ẋ = f1(t,x) and ẏ = f2(t,y) are globally κ-exponentially stable (exponentially stable
in any ball of initial conditions), then the cascaded system (A.11-A.12) is globally κ-
exponentially stable (exponentially stable in any ball of initial conditions),
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A.5. Robust Control of Mechanical Systems

Systems in the following from include applications in adaptive control of nonlinear
time-varying systems, some of whom are presented in this dissertation as well:

ẋ = h(t,x) +G(t,x,y)y, (A.16)

ẏ = −PG(t,x,y)T
(
∂W (x, t)

∂x

)T
, P = P T > 0, (A.17)

where x ∈ Rn, y ∈ Rm and W : R+ × Rn → R+ is a C1 function. It is furthermore
assumed that all the functions in (A.16-A.17) are such that the solutions exist and are
unique (for instance, locally Lipschitz in x and y, uniformly in t and continuous in both
arguments). The following result from [55] characterizes the stability properties of the
origin (x,y) = (0,0) of the system (A.16-A.17).
Theorem A.3 ([55, Theorem 1]). If Assumptions (A1) and (A2) below hold, then the
origin of the system (A.16-A.17) is UGAS.

(A1) Given G0(t,y) , G(t,x,y)|x≡0. Assume that there exist nondecreasing functions
θj : R+ → R+, j ∈ 1, 2, 3 such that, for all t ≥ 0, x ∈ Rn and y ∈ Rm:

max

{
‖h(t,x)‖ ,

∥∥∥∥∂W (t,x)

∂x

∥∥∥∥} ≤ θ1(‖x‖)‖x‖, (A.18)

max {‖G(t,x,y)‖ , ‖G0(t,y)‖} ≤ θ2(‖[xT ,yT ]T‖), (A.19)

max

{∥∥∥∥∂G0(t,y)

∂(y)i

∥∥∥∥ ,∥∥∥∥∂G0(t,y)

∂t

∥∥∥∥} ≤ θ3(‖y‖)‖, i ∈ {1, . . . ,m}. (A.20)

Furthermore, for each compact set K ∈ Rm there exists bm > 0 such that:

G0(t,y)TG0(t,y) ≥ bmI, ∀(t,y) ∈ R+ ×K. (A.21)

(A2) There exist class K∞ functions α1 and α2, and a constant c > 0 such that:

α1(‖x‖) ≤ W (t,x) ≤ α2(‖x‖), (A.22)
∂W (t,x)

∂t
+
∂W (t,x)

∂x
h(t,x,θ?) ≤ −c‖x‖2. (A.23)

Moreover, if α2(s) ∝ s2 for sufficiently small s then the origin of (A.16-A.17) is also
ULES.
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Simulations Models

B.1. The Supply Vessel Simulation Model

In this dissertation the 3-DOF simulation model of an offshore supply vessel derived from
[58] and [56] is often used. Compared to [58] the model has an improved linear damping
matrix which is obtained from more complex nonlinear damping models. The damping
model is discussed at the end of the section. The offshore supply vessel is characterized
by the dimensions and parameters given in Table B.1.

Figure B.1.: A platform supply vessel underway.

The dynamic model of the vessel in terms of relative velocities (see Chapter 2) is:

Mν̇r +C(νr)νr +D(νr)νr = Bf , (B.1)
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where νr = [ur, vr, r]
T , f = [Tu, δ]

T and:

M =


7.22 · 106 0 0

0 1.21 · 107 −3.63 · 107

0 −3.63 · 107 4.75 · 109

 , (B.2)

C(νr) =


0 0 −1.21 · 107vr + 3.63 · 107r

0 0 7.22 · 106ur

1.21 · 107vr − 3.63 · 107r −7.22 · 106ur 0

 , (B.3)

B =


1 0

0 −1.13 · 106

0 9.63 · 107

 . (B.4)

The control inputs are the propeller thrust Tu and the rudder deflection angle δ.

B.1.1. The Nonlinear Damping Model

In this section a nonlinear version of the damping term D(νr) is given. It is obtained
as the sum of the linear zero-speed damping matrix from [56] and the nonlinear surge
resistance, and cross flow drag [52]:

D(νr)νr = Dlνr +Dn(νr), (B.5)

where:

Dl =


8.22 · 104 0 0

0 2.72 · 105 −2.17 · 106

0 −7.17 · 105 4.11 · 108

 . (B.6)

The nonlinear damping forces are calculated as:

Dn(νr) =


1
2
ρS(1 + k)Cf (ur)|ur|ur

1
2
ρ
∫ Lpp/2
−Lpp/2 TC

2D
d (x)|vr + xr|(vr + xr)dx

1
2
ρ
∫ Lpp/2
−Lpp/2 TC

2D
d (x)x|vr + xr|(vr + xr)dx

 . (B.7)
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The coefficients and parameters used to calculate (B.7) are given in Table B.2. As an
alternative to (B.5), the following formulation for nonlinear damping can be used to
discriminate between the linear and nonlinear damping, and their speed regimes [52]:

D(νr)νr = Dl

[
exp(−β1u2

r) 0 0

0 exp(−β2(v2
r+r2)) 0

0 0 exp(−β2(v2
r+r2))

]
νr +Dn(νr), (B.8)

where β1, β2 > 0 can be both set to 0.5, for example.

B.1.2. The Linear Damping Model

As an approximation of the nonlinear damping model (B.8) over the intervals ur ∈
[0, umax

r ], vr ∈ [0, 2] and r ∈ [0, 0.5], the linear damping model D(νr)νr = Dνr is
introduced, where:

D =


1.74 · 105 0 0

0 1.25 · 106 2.14 · 106

0 −6.24 · 107 1.35 · 109

 . (B.9)

Table B.1.: Dimensions and parameters of the offshore supply vessel.

symbol description value
m mass 6.4 · 106 [kg]

Lpp length between the perpendiculars 76.20 [m]

Loa length overall 82.45 [m]

B beam 18.80 [m]

T draught 6.25 [m]

km form factor - maneuvering 0.1

kDP form factor - DP 0.25

Tmax
u maximum surge thrust 1600 [kN]

umax
r maximum relative speed - at maximum surge thrust 7 [m/s]
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Table B.2.: Coefficients and parameters used to calculate (B.7).

symbol description value/formula
ρ seawater density 1025 [kg/m3]

V volume of displaced seawater mρ

Cb Block coefficient V/(LppBT )

S wetted surface hull - Denny-Mumford formula V/(1.7T +BCb)

k form factor - function of ur, varies between kDP and km |kDP−km|1.54

(u2
r+1.52)2 + km

νvis kinematic viscosity at 10 [◦C] 1.3 · 10−6 [m/s2]

Rn Reynolds number urLpp/νvis

Rmin
n minimum Rn to avoid singularities 106

CR surge residual friction - calculated at umax
r , Tmax

u , km ≈ 0.03

Cf (ur) surge friction coefficient 0.075
(log10Rn−2)2 + CR

C2D
d constant 2D current coefficient - estimated Hoerner’s curve [52]

B.1.3. Purpose of the Supply Vessel Simulation Model

The presented model is a maneuvering model for speeds higher than 3 [knots] [130]. In
this thesis, the linear damping matrix of Section B.1.2 is used in control plant models,
while the nonlinear damping of Section B.1.1 is used in process plant models to assess
robustness of the designed control systems.
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B.2. The Cybership II Simulation Model

In this thesis the 3-DOF simulation model of the Cybership II vessel from [24] and [93]
is used. The Cybership II is a 1:70 scale model of a fully actuated supply vessel.

Figure B.2.: Cybership II in the pool at the MCLab.

The dynamic model of the vessel in terms of relative velocities (see Chapter 2) is:

Mν̇r +C(νr)νr +Dνr = Bf , (B.10)

where νr = [ur, vr, r]
T , f = [Tu, Tv, Tr]

T and:

M =


25.8 0 0

0 33.8 −11.748

0 −11.748 6.813

 , (B.11)

C(νr) =


0 0 −33.8vr + 11.748r

0 0 25.8ur

33.8vr − 11.748r −25.8ur 0

 , (B.12)

D =


2.0 0 0

0 7.0 −2.5425

0 −2.5425 1.422

 . (B.13)

The control inputs are the surge thrust Tu, the sway thrust Tv and the yaw moment Tr.
The model (B.10) is defined along the centerline of the vessel, in the point laying 25 [cm]

aft of the bow, or 33.5 [cm] fore of the center of gravity [23]. It is assumed that in this
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point the configuration of the actuators is such that the matrix B is:

B =


1 0 0

0 1 −1.7244

0 −0.3476 1

 , (B.14)

and hence M−1Bf = [k1Tu, k2Tv, k3Tr]
T for some constant coefficients k1, k2, k3.

B.2.1. Purpose of the Cybership II Simulation Model

The presented model is a low-speed maneuvering model for speeds lower than 2 [m/s]
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B.3. The LAUV Simulation Model

In this dissertation the 5-DOF simulation model of the LAUV underwater vehicle from
[40] and [85] is used. The LAUV is a torpedo-shaped light autonomous underwater
vehicle developed and designed by the Laboratório de Sistemas e Tecnologia Subaquática
(LSTS) from the University of Porto in cooperation with OceanScan-MST Lda.

Figure B.3.: The LAUV vehicle during underwater operations.

The dynamic model of the AUV in terms of relative velocities (see Chapter 2) is:

Mν̇r +C(νr)νr +Dνr + g(η) = Bf , (B.15)

where νr = [ur, vr, wr, q, r]
T , η = [x, y, z, θ, ψ]T , f = [Tu, δD, δS]T and:

M =



19.0 0 0 0 0

0 34.0 0 0 0

0 0 34.0 0 0

0 0 0 2.1 0

0 0 0 0 2.1


, (B.16)

D =



2.4 0 0 0 0

0 23.0 0 0 −11.5

0 0 23.0 11.5 0

0 0 −3.1 9.7 0

0 3.1 0 0 9.7


, (B.17)
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g(η) =
[
0 0 0 BGzW sin(θ) 0

]T
, (B.18)

B =



1.0 0 0

0 0 −39.8783

0 39.8783 0

0 18.1446 0

0 0 18.1446


. (B.19)

Here, BGz = 0.017 [m] is the vertical distance between the center of gravity (CG) and
the center of buoyancy (CB). The term W = mg is the weight of the vehicle in air, where
m = 18 [kg] is the mass and g = 9.81 [m/s2] is the acceleration of gravity. The control
inputs are the propeller thrust Tu, the yaw rudder angle δD and the pitch rudder angle
δS.

B.3.1. Purpose of the LAUV Simulation Model

The presented model is a maneuvering model for speeds lower than 2 [m/s].
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B.4. The HUGIN AUV Simulation Model

In this dissertation the 5-DOF simulation model of the HUGIN AUV is used. The
HUGIN is a torpedo-shaped survey AUV developed and designed by the Norwegian
Defense Research Establishment (FFI) and Kongsberg Maritime AS.

Figure B.4.: The HUGIN AUV. Courtesy of Kongsberg Maritime AS.

The dynamic model of the AUV in terms of relative velocities (see Chapter 2) is:

Mν̇r +C(νr)νr +Dνr + g(η) = Bf , (B.20)

where νr = [ur, vr, wr, q, r]
T , η = [x, y, z, θ, ψ]T , f = [Tu, δD, δS]T and:

M =



m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0

0 0 m34 m44 0

0 m25 0 0 m55


, (B.21)

D =



d11 0 0 0 0

0 d22 0 0 d25

0 0 d33 d34 0

0 0 d43 d44 0

0 d52 0 0 d55


, (B.22)
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g(η) =
[
0 0 0 BGzW sin(θ) 0

]T
, (B.23)

B =



1 0 0

0 0 Yδ

0 Zδ 0

0 Mδ 0

0 0 Nδ


. (B.24)

Here, BGz is the vertical distance between the center of gravity (CG) and the center of
buoyancy (CB). The term W = mg is the weight of the vehicle in air, where m is the
mass and g is the acceleration of gravity. The control inputs are the propeller thrust Tu,
the yaw rudder angle δD and the pitch rudder angle δS. The parameters of the HUGIN
simulation model are confidential and cannot be given in this thesis.

The surge thrust Tu is generated by a propeller and is given by the following expression
(see [116] and [52]):

Tu = Tnnn|n| − Tunurn, (B.25)

where n is the angular speed of the propeller and Tnn > 0 and Tun > 0 are some
coefficients given by the propeller characteristics.

B.4.1. Purpose of the HUGIN Simulation Model

The presented model is a maneuvering model for speeds lower than 2 [m/s].
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Semi-empirical functions for wind
loads on ships

In Chapter 8 wind disturbances on surface vessels are taken into account where the
semi-empirical functions from [15] are used to describe wind loads on a platform supply
vessel. Following extensive wind tunnel tests, [15] presents the following parametrical
wind load coefficients in surge (CX), sway (CY ) and yaw (CN):

CX(γe) = −CDl,AF (γe)
cos(γe)

1− δ
2

(
1− CDl(γe)

CDt

)
sin2(2γe)

, (C.1)

CY (γe) = CDt
cos(γe)

1− δ
2

(
1− CDl(γe)

CDt

)
sin2(2γe)

, (C.2)

CN(γe) =

[
sL
LOA

− 0.18 π trg

(
γe
π

+
1

2

)]
, (C.3)

where:

CDl,AF (γe) =
CDl,AF ,bow + CDl,AF ,stern

2

+ (CDl,AF ,bow − CDl,AF ,stern) sqr

(
γe
π
− 1

2

)
,

(C.4)

CDl(γe) =
AF
AL

CDl,AF (γe), (C.5)

and γe is the angle of attack of the wind with respect to the bow. The functions trg(·)
and sqr(·) are the standard triangular and square odd wave functions limited between
[−1, 1] with period 2. The parameters to calculate (C.1-C.3) for the case of platform
supply vessels are taken from [15] and are given in Table C.1.
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Semi-empirical functions for wind loads on ships

If needed, the functions π trg
(
γe
π

+ 1
2

)
and sqr(γe

π
− 1

2
) can be smoothened with the

following differentiable smooth functions:

trgπ,smooth = cos−1
(

(1− η) cos(γe)
)
− π

2
, (C.6)

sqrsmooth =
1

π
tan−1

(
cos(γe)

η

)
, (C.7)

where η is an approximation parameter and can be set for instance to 0.01.

symbol value
AF 137.50 [m2]

AL 336.80 [m2]

sL 7.95 [m]

LOA 62.00 [m]

CDt 0.90

CDl,AF ,bow 0.55

CDl,AF ,stern 0.80

δ 0.55

Table C.1.: Parameters from [15] used to calculate (C.1-C.3) for supply vessels.

250



251



252



Bibliography

[1] A. P. Aguiar and J. P. Hespanha. Trajectory-tracking and path-following of
underactuated autonomous vehicles with parametric modeling uncertainty. IEEE
Transactions on Automatic Control, 52(8):1362–1379, 2007.

[2] A. P. Aguiar and A. M. Pascoal. Modeling and control of an autonomous underwater
shuttle for the transport of benthic laboratories. In Proc. of MTS/IEEE Conference
OCEANS ’97, pages 888–895, 1997.

[3] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino. Closed loop steering of
unicycle like vehicles via lyapunov techniques. IEEE Robotics & Automation
Magazine, 2(1):27–35, 1995.

[4] M. Aicardi, G. Casalino, and G. Indiveri. On a closed loop time invariant position
control solution for an underactuated 3d underwater vehicle: implementation,
stability and robustness considerations. In Proc. of IEEE International Symposium
on Underwater Technology., pages 485–490, 2000.

[5] M. Aicardi, G. Casalino, and G. Indiveri. Closed loop time invariant control of 3D
underactuated underwater vehicles. In Proc. of IEEE International Conference on
Robotics and Automation, pages 903–908, 2001.

[6] G. Antonelli. On the use of adaptive/integral actions for six-degrees-of-freedom
control of autonomous underwater vehicles. IEEE Journal of Oceanic Engineering,
32(2):300–312, April 2007.

[7] G. Antonelli, F. Caccavale, S. Chiaverini, and G. Fusco. A novel adaptive control
law for underwater vehicles. IEEE Transactions on Control Systems Technology,
11(2):221–232, March 2003.

[8] F. Arrichiello, G. Antonelli, A. P. Aguiar, and A. M. Pascoal. An observability
metric for underwater vehicle localization using range measurements. Sensors,
13(12):16191–16215, 2013.

253



BIBLIOGRAPHY

[9] H. Ashrafiuon, K. R. Muske, and L. C. McNinch. Review of nonlinear tracking
and setpoint control approaches for autonomous underactuated marine vehicles. In
Proc. of American Control Conference, pages 5203–5211, 2010.

[10] V. Bakarić, Z. Vukić, and R. Antonić. Improved basic planar algorithm of vehicle
guidance through waypoints by the line of sight. In Proc. of the First International
Symposium on Control, Communications and Signal Processing, pages 541–544,
2004.

[11] P. Batista, C. Silvestre, and P. Oliveira. Optimal position and velocity navigation
filters for autonomous vehicles. Automatica, 46(4):767–774, 2010.

[12] M. Bibuli, G. Bruzzone, M. Caccia, G. Indiveri, and A. A. Zizzari. Line following
guidance control: Application to the charlie unmanned surface vehicle. In Proc.
of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3641–3646, 2008.

[13] M. Bibuli, M. Caccia, L. Lapierre, and G. Bruzzone. Guidance of unmanned surface
vehicles: Experiments in vehicle following. IEEE Robotics & Automation Magazine,
19(3):92–102, 2012.

[14] M. Bibuli, W. Caharija, K. Y. Pettersen, G. Bruzzone, M. Caccia, and E. Zereik.
ILOS guidance - experiments and tuning. In Proc. of the 19th IFAC World Congress,
pages 4209–4214, 2014.

[15] W. Blendermann. Parameter identification of wind loads on ships. Journal of Wind
Engineering and Industrial Aerodynamics, 51(3):339–351, 1994.

[16] M. Breivik. Topics in Guided Motion Control of Marine Vehicles. PhD thesis,
NTNU, Trondheim, Norway, 2010. NTNU thesis 2010: 63.

[17] M. Breivik and T. I. Fossen. Path following of straight lines and circles for marine
surface vessels. In Proc. of the 6th IFAC Conference on Control Applications in
Marine Systems, pages 65–70, 2004.

[18] M. Breivik and T. I. Fossen. Principles of guidance-based path following in 2D and
3D. In Proc. of the 44th IEEE Conference on Decision and Control, pages 627 –
634, 2005.

[19] M. Breivik and T. I. Fossen. Guidance laws for planar motion control. In Proc. of
the 47th IEEE Conference on Decision and Control, pages 570–577, 2008.

254



BIBLIOGRAPHY

[20] M. Breivik and T. I. Fossen. Guidance Laws for Autonomous Underwater Vehicles,
chapter 4, pages 51–76. A. V. Inzartsev, IN-TECH Education and Publishing,
2009.

[21] M. Breivik and T.I. Fossen. Guidance-based path following for autonomous under-
water vehicles. In Proc. of MTS/IEEE Conference OCEANS ’05, pages 2807–2814,
2005.

[22] G. Bruzzone, M. Bibuli, M. Caccia, and E. Zereik. Cooperative robotic maneuvers
for emergency ship towing operations. In Proc. of MTS/IEEE Conference OCEANS
’13 - Bergen, pages 1–7, 2013.

[23] E. Børhaug. Nonlinear Control and Synchronization of Mechanical Systems. PhD
thesis, NTNU, Trondheim, Norway, 2008. NTNU thesis 2008: 298.

[24] E. Børhaug, A. Pavlov, E. Panteley, and K. Y. Pettersen. Straight line path following
for formations of underactuated marine surface vessels. IEEE Transactions on
Control Systems Technology, 19(3):493–506, May 2011.

[25] E. Børhaug, A. Pavlov, and K. Y. Pettersen. Straight line path following for
formations of underactuated underwater vehicles. In Proc. of the 46th IEEE
Conference on Decision and Control, pages 2905–2912, 2007.

[26] E. Børhaug, A. Pavlov, and K. Y. Pettersen. Integral LOS control for path following
of underactuated marine surface vessels in the presence of constant ocean currents.
In Proc. of the 47th IEEE Conference on Decision and Control, pages 4984–4991,
2008.

[27] E. Børhaug and K. Y. Pettersen. LOS path following for underactuated underwater
vehicle. In Proc. of the 7th IFAC Conference on Manoeuvring and Control of
Marine Craft, 2006.

[28] W. Caharija, M. Candeloro, K. Y. Pettersen, and A. J. Sørensen. Relative velocity
control and integral LOS for path following of underactuated surface vessels. In
Proc. of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft,
pages 380–385, 2012.

[29] W. Caharija, K. Y. Pettersen, M. Bibuli, E. Zereik, J. T. Gravdahl, A. J. Sørensen,
and G. Bruzzone. Integral los for path following control of underactuated surface
vessels: Theory, simulations and experiments. IEEE Transactions on Control
System Technology, 2014. submitted.

255



BIBLIOGRAPHY

[30] W. Caharija, K. Y. Pettersen, P. Calado, J. Braga, M. Milovanović, and J. B.
Sousa. Path following control of underactuated AUVs in the presence of ocean
currents: Theory, simulations and experiments. IEEE Transactions on Control
System Technology, 2014. to be submitted.

[31] W. Caharija, K. Y. Pettersen, and J. T. Gravdahl. Path following of marine
surface vessels with saturated transverse actuators. In Proc. of American Control
Conference, pages 546–553, 2013.

[32] W. Caharija, K. Y. Pettersen, and J. T. Gravdahl. Path following of underactuated
surface vessels in presence of uknown constant environmental forces: Preliminary
results. In Proc. of the 9th IFAC Conference on Control Applications in Marine
Systems, pages 85–90, 2013.

[33] W. Caharija, K. Y. Pettersen, J. T. Gravdahl, and E. Børhaug. Integral LOS
guidance for horizontal path following of underactuated autonomous underwater
vehicles in the presence of vertical ocean currents. In Proc. of American Control
Conference, pages 5427–5434, 2012.

[34] W. Caharija, K. Y. Pettersen, J. T. Gravdahl, and E. Børhaug. Path following of
underactuated autonomous underwater vehicles in the presence of ocean currents.
In Proc. of the 51st IEEE Conference on Decision and Control, pages 528–535,
2012.

[35] W. Caharija, K. Y. Pettersen, J. T. Gravdahl, and A. J. Sørensen. Topics on
current compensation for path following applications of underactuated underwater
vehicles. In Proc. of the 3rd IFAC Workshop on Navigation, Guidance and Control
of Underwater Vehicles, pages 184–191, 2012.

[36] W. Caharija, K. Y. Pettersen, A. J. Sørensen, M. Candeloro, and J. T. Gravdahl.
Relative velocity control and integral LOS for path following of ASVs: Merging
intuition with theory. Proc. of the Institution of Mechanical Engineers, Part
M: Journal of Engineering for the Maritime Environment, 228(2):180–191, 2014.
DOI:10.1177/1475090213512293.

[37] A. Chaillet and A. Loría. Necessary and sufficient conditions for uniform semiglobal
practical asymptotic stability: Application to cascaded systems. Automatica,
42(11):1899–1906, 2006.

256



BIBLIOGRAPHY

[38] A. Chaillet and A. Loría. Uniform semiglobal practical asymptotic stability for
non-autonomous cascaded systems and applications. Automatica, 44(2):337–347,
2008.

[39] J. E. Da Silva and J. B. Sousa. A dynamic programming approach for the motion
control of autonomous vehicles. In Proc. of the 49th IEEE Conference on Decision
and Control, pages 6660–6665, 2010.

[40] J. E. Da Silva, B. Terra, R. Martins, and J. B. Sousa. Modeling and simulation
of the LAUV autonomous underwater vehicle. In Proc. of the 13th IEEE IFAC
International Conference on Methods and Models in Automation and Robotics,
2007.

[41] K. D. Do, Z. P. Jiang, and J. Pan. Universal controllers for stabilization and
tracking of underactuated ships. Systems & Control Letters, 47(4):299 – 317, 2002.

[42] K. D. Do and J. Pan. Global tracking control of underactuated ships with off-
diagonal terms. In Proc. of the 42nd IEEE Conference on Decision and Control,
volume 2, pages 1250–1255, 2003.

[43] K. D. Do, J. Pan, and Z. P. Jiang. Robust and adaptive path following for
underactuated autonomous underwater vehicles. Ocean Engineering, 31:1967–1997,
2004.

[44] K.D. Do, Z. P Jiang, and J. Pan. Underactuated ship global tracking under relaxed
conditions. IEEE Transactions on Automatic Control, 47(9):1529–1536, 2002.

[45] K.D. Do and J. Pan. Underactuated ships follow smooth paths with integral actions
and without velocity measurements for feedback: theory and experiments. IEEE
Transactions on Control Systems Technology, 14(2):308–322, 2006.

[46] P. Encarnação and A. M. Pascoal. 3D path following for autonomous underwater
vehicle. In Proc. of the 39th IEEE Conference on Decision and Control, pages
2977–2982, 2000.

[47] P. Encarnação and A. M. Pascoal. Combined trajectory tracking and path following:
an application to the coordinated control of autonomous marine craft. In Proc. of
the 40th IEEE Conference on Decision and Control, pages 964–969, 2001.

[48] P. Encarnação, A. M. Pascoal, and M. Arcak. Path following for autonomous
marine craft. In Proc. of the 5th IFAC Conference on Manoeuvring and Control of

257



BIBLIOGRAPHY

Marine Craft, pages 117–122, 2000.

[49] P. Encarnação, A. M. Pascoal, and M. Arcak. Path following for marine vehicles
in the presence of unknown currents. In Proc. of the 6th IFAC International
Symposium on Robot Control, pages 469–474, 2000.

[50] O. M. Faltinsen. Sea Loads on Ships and Offshore Structures. Cambridge University
Press, 1990.

[51] S. Fan and C. A. Woolsey. Underwater vehicle control and estimation in nonuniform
currents. In Proc. of American Control Conference, pages 1400–1405, 2013.

[52] T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, Inc., Hoboken, NJ, 2011.

[53] T. I. Fossen and S. P. Berge. Nonlinear vectorial backstepping design for global
exponential tracking of marine vessels in the presence of actuator dynamics. In
Proc. of the 36th IEEE Conference on Decision and Control, pages 4237–4242,
1997.

[54] T. I. Fossen, M. Breivik, and R. Skjetne. Line-of-Sight path following of underac-
tuated marine craft. In Proc. of the 6th IFAC Conference on Manoeuvring and
Control of Marine Craft, pages 244–249, 2003.

[55] T. I. Fossen, A. Loría, and A. R. Teel. A theorem for ugas and ules of (pas-
sive) nonautonomous systems: robust control of mechanical systems and ships.
International Journal of Robust and Nonlinear Control, 11(2):95–108, 2001.

[56] T. I. Fossen, S. I. Sagatun, and A. J. Sørensen. Identification of dynamically
positioned ships. In Proc. of the 3rd IFAC Workshop on Control Applications in
Marine Systems, pages 362–369, 1995.

[57] T. I. Fossen and J. P. Strand. Nonlinear passive weather optimal positioning
control (WOPC) system for ships and rigs: experimental results. Automatica,
37(5):701–715, 2001.

[58] E. Fredriksen and K. Y. Pettersen. Global κ-exponential way-point manoeuvering
of ships. In Proc. of the 43rd IEEE Conference on Decision and Control, pages
5360–5367, 2004.

[59] E. Fredriksen and K. Y. Pettersen. Global κ-exponential way-point maneuvering
of ships: theory and experiments. Automatica, 42(4):677–687, 2006.

258



BIBLIOGRAPHY

[60] R. Freeman and L. Praly. Integrator backstepping for rounded controls and control
rates. IEEE Transactions on Automatic Control, 43(2):258–262, 1998.

[61] J. Godhavn. Nonlinear tracking of underactuated surface vessels. In Proc. of the
35th IEEE Conference on Decision and Control, pages 975–980, 1996.

[62] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics. Pearson Education
International inc., Upper Saddle River, NJ, USA, 3rd edition, 2002.

[63] A. Gruszka, M. Malisoff, and F. Mazenc. On tracking for the PVTOL model with
bounded feedbacks. In Proc. of American Control Conference, pages 1428–1433,
2011.

[64] E. I. Grøtli. Robust Stability and Control of Spacecraft Formations. PhD thesis,
NTNU, Trondheim, Norway, 2010. NTNU thesis 2010: 1.

[65] E. I. Grøtli, A. Chaillet, and J. T. Gravdahl. Output control of spacecraft in leader
follower formation. In Proc. of the 47th IEEE Conference on Decision and Control,
pages 1030–1035, 2008.

[66] A. J. Healey and D. Lienard. Multivariable sliding mode control for autonomous
diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic
Engineering, 18(3):327–339, July 1993.

[67] Ø. Hegrenæs. Autonomous Navigation for Underwater Vehicles. PhD thesis, NTNU,
Trondheim, Norway, 2010. NTNU thesis 2010: 101.

[68] Ø. Hegrenæs, O. Hallingstad, and B. Jalving. Comparison of mathematical models
for the HUGIN 4500 AUV based on experimental data. In Proc. of IEEE Interna-
tional Symposium on Underwater Technology and Workshop on Scientific Use of
Submarine Cables and Related Technologies, pages 558–567, 2007.

[69] E. Y. Hong, T. K. Meng, and M. Chitre. Online system identification of the
dynamics of an autonomous underwater vehicle. In Proc. of IEEE International
Symposium on Underwater Technology, pages 1–10, 2013.

[70] I.-A. F. Ihle, M. Arcak, and T. I. Fossen. Passivity-based designs for synchronized
path-following. Automatica, 43(9):1508–1518, 2007.

[71] G. Indiveri. Kinematic time-invariant control of a 2D nonholonomic vehicle. In
Proc. of the 38th IEEE Conference on Decision and Control, pages 2112–2117,
1999.

259



BIBLIOGRAPHY

[72] G. Indiveri, M. Aicardi, and G. Casalino. Robust global stabilization of an
underactuated marine vehicle on a linear course by smooth time-invariant feedback.
In Proc. of the 39th IEEE Conference on Decision and Control, pages 2156–2161,
2000.

[73] G. Indiveri, S. Creti, and A. A. Zizzari. A proof of concept for the guidance of 3D
underactuated vehicles subject to constant unknow disturbances. In Proc. of the
9th IFAC Conference on Manoeuvring and Control of Marine Craft, pages 307–312,
2012.

[74] G. Indiveri, M. Pino, M. Aicardi, and G. Casalino. Nonlinear time-invariant
feedback control of an underactuated marine vehicle along a straight course. In
Proc. of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft,
pages 221–226, 2000.

[75] G. Indiveri and A. A. Zizzari. Kinematics motion control of an underactuated
vehicle: A 3D solution with bounded control effort. In Proc. of the 2nd IFAC
Workshop on Navigation, Guidance and Control of Underwater Vehicles, pages
73–78, 2008.

[76] R. M. Isherwood. Wind resistance of merchant ships. Transcripts of the Royal
Institution of Naval Architects, 115:327–338, 1972.

[77] M. V. Jakuba. Stochastic mapping for chemical plume source localization with
application to autonomous hydrothermal vent discovery. PhD thesis, MIT and
WHOI, 2007.

[78] T. A. Johansen and T. I. Fossen. Control allocation - a survey. Automatica,
49(5):1087–1103, 2013.

[79] J. Jouffroy, Q. Zhou, and O. Zielinski. Towards selective tidal-stream transport for
lagrangian profilers. In Proc. of MTS/IEEE Conference OCEANS ’11, pages 1–6,
2011.

[80] B. H. Jun, J. Y. Park, F. Y. Lee, P. M. Lee, C. M. Lee, K. Kim, Y. K. Lim, and
J. H. Oh. Development of the AUV ‘ISiMI’ and a free running test in an ocean
engineering basin. Ocean Engineering, 36(1):2–14, 2009.

[81] I. Kaminer, A. M. Pascoal, and O. Yakimenko. Nonlinear path following control of
fully actuated marine vehicles with parameter uncertainty. In Proc. of the 16th
IFAC World Congress, 2005.

260



BIBLIOGRAPHY

[82] H. Khalil. Nonlinear Systems. Pearson Education International inc., Upper Saddle
River, NJ, USA, 3rd edition, 2000.

[83] Ø. K. Kjerstad and M. Breivik. Weather optimal positioning control for marine
surface vessels. In Proc. of the 8th IFAC Conference on Control Applications in
Marine Systems, 2010.

[84] M. Kurowski and B. Lampe. AGaPaS: A new approach for search-and-
rescue-operations at sea. Proc. of the Institution of Mechanical Engi-
neers, Part M: Journal of Engineering for the Maritime Environment, 2014.
DOI:10.1177/1475090213504392 accepted.

[85] Laboratório de Sistemas e Tecnologia Subaquática (LSTS). DUNE: Unified naviga-
tion environment. http://lsts.fe.up.pt/software/dune, April 2014. University of
Porto.

[86] L. Lapierre and B. Jouvencel. Robust nonlinear path-following control of an AUV.
IEEE Journal of Oceanic Engineering, 33(2):89–102, April 2008.

[87] L. Lapierre, D. Soetanto, and A. M. Pascoal. Nonlinear path following with
applications to the control of autonomous underwater vehicles. In Proc. of the
42nd IEEE Conference on Decision and Control, pages 1256–1261, 2003.

[88] E. Lefeber. Tracking Control of Nonlinear Mechanical Systems. PhD thesis,
University of Twente, Enschede, The Netherlands, 2000.

[89] E. Lefeber, K. Y. Pettersen, and H. Nijmeijer. Tracking control of an underactuated
ship. IEEE Transactions on Control Systems Technology, 11(1):52–61, 2003.

[90] A. M. Lekkas and T. I. Fossen. A time-varying lookahead distance guidance law for
path following. In Proc. of the 9th IFAC Conference on Manoeuvring and Control
of Marine Craft, pages 398–403, 2012.

[91] A. M. Lekkas and T. I. Fossen. Integral LOS path following for curved paths
based on a monotone cubic hermite spline parametrization. IEEE Transactions on
Control Systems Technology, 2014. DOI: 10.1109/TCST.2014.2306774 accepted.

[92] Z. Li, J. Sun, and S. Oh. Design, analysis and experimental validation of a
robust nonlinear path following controller for marine surface vessels. Automatica,
45(7):1649–1658, 2009.

261



BIBLIOGRAPHY

[93] K.-P. Lindegaard. Acceleration Feedback in Dynamic Positioning. PhD thesis,
NTNU, Trondheim, Norway, 2003. NTNU thesis 2003: 74.

[94] A. Loría and E. Panteley. Cascaded nonlinear time-varying systems: Analysis and
design. In F. Lamnabhi-Lagarrigue, A. Loría, and E. Panteley, editors, Advanced
Topics in Control Systems Theory, volume 311 of Lecture Notes in Control and
Information Science, chapter 2, pages 23–64. Springer London, 2005.

[95] Kongsberg Maritime. Kogsberg K-Pos DP dynamic positioning system. Technical
Report 301093/B, 2006.

[96] F. Mazenc and S. Bowong. Backstepping with bounded feedbacks for time-varying
systems. In Proc. of the 44th IEEE Conference on Decision and Control, pages
4560–4565, 2005.

[97] F. Mazenc and A. Iggidr. Backstepping with bounded feedbacks. Systems & Control
Letters, 51(3-4):235–245, 2004.

[98] A. Micaelli and C. Samson. Trajectory tracking for unicycle-type and two-steering-
wheels mobile robots. Technical Report 2097, Institut National De Recherche En
Informatique Et En Automatique, Sophia Antipolis, France, 1993.

[99] M. Morgado, P. Batista, P. Oliveira, and C. Silvestre. Position USBL/DVL sensor-
based navigation filter in the presence of unknown ocean currents. Automatica,
47(12):2604–2614, 2011.

[100] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard. Vector field path
following for miniature air vehicles. IEEE Transactions on Robotics, 23(3):519–529,
2007.

[101] S. G. Nelson. AKPO: The subsea production system. In Proc. of Offshore Technology
Conference, 2010.

[102] Ø. Netland and A. Skavhaug. Two pilot experiments on the feasibility of telerobotic
inspection of offshore wind turbines. In Proc. of the 2nd Mediterranean Conference
on Embedded Computing, pages 46–49, 2013.

[103] OCIMF. Prediction of Wind and Current Loads on VLCCs. Oil Companies
International Marine Forum, London, UK, 1977.

[104] E. Panteley, E. Lefeber, A. Loría, and H. Nijmeijer. Exponential tracking control
of a mobile car using a cascaded approach. In Proc. of IFAC Workshop on Motion

262



BIBLIOGRAPHY

Control, pages 221–226, 1998.

[105] E. Panteley and A. Loría. On global uniform asymptotic stability of nonlinear
time-varying systems in cascade. Systems and Control Letters, 33(2):131–138, 1998.

[106] E. Panteley and A. Loría. Growth rate conditions for uniform asymptotic stability
of cascaded time-varying systems. Automatica, 37(3):453–460, 2001.

[107] F. A. Papoulias. Bifurcation analysis of line of sight vehicle guidance using sliding
modes. International Journal of Bifurcation and Chaos, 1(4):849–865, 1991.

[108] L. Paull, S. Saeedi, M. Seto, and H. Li. AUV navigation and localization: A review.
IEEE Journal of Oceanic Engineering, 39(1):131–149, 2014.

[109] T. Perez and T. I. Fossen. A Matlab Toolbox for Parametric Identification of
Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification
and Control, 30(1):1–15, 2009.

[110] K. Y. Pettersen and E. Lefeber. Way-point tracking control of ships. In Proc. of
the 40th IEEE Conference on Decision and Control, pages 940–945, 2001.

[111] K. Y. Pettersen and H. Nijmeijer. Tracking control of an underactuated surface
vessel. In Proc. of the 37th IEEE Conference on Decision and Control, pages
4561–4566, 1998.

[112] K. Y. Pettersen and H. Nijmeijer. Semi-global practical stabilization and disturbance
adaptation for an underactuated ship. In Proc. of the 39th IEEE Conference on
Decision and Control, pages 2144–2149, 2000.

[113] E. H. Peymani and T. I. Fossen. 2D path following for marine craft: A least-square
approach. In Proc. of the 9th IFAC Symposium on Nonlinear Control Systems,
pages 98–103, 2013.

[114] J. A. Pinkster and U. Nienhuis. Dynamic positioning of large tankers at sea. In
Proc. of the 18th Offshore Technology Conference, 1986.

[115] J. Pinto, P. S. Dias, R. Gonçalves, E. Marques, J. B. Sousa, and F. Pereira. Neptus-
A framework to support a mission life cycle. In Proc. of the 7th IFAC Conference
on Manoeuvring and Control of Marine Craft, 2006.

[116] L. Pivano. Thrust Estimation and Control of Marine Propellers in Four-Quadrant
Operations. PhD thesis, NTNU, Trondheim, Norway, 2008. NTNU thesis 2008: 20.

263



BIBLIOGRAPHY

[117] J. E. Refsnes, A. J. Sørensen, and K. Y. Pettersen. Output feedback control of
slender body underwater vehicles with current estimation. International Journal
of Control, 80(7):1136–1150, 2007.

[118] K. Reichert, K. Hessner, J. C. Nieto Borge, and J. Dittmer. WaMoS II: A radar
based wave and current monitoring system. In Proc. of International Offshore and
Polar Engineering Conference, pages 139–143, 1999.

[119] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios. Girona 500
AUV: From survey to intervention. IEEE/ASME Transactions on Mechatronics,
17(1):46–53, 2012.

[120] G. Roussos and K.J. Kyriakopoulos. Towards constant velocity navigation and
collision avoidance for autonomous nonholonomic aircraft-like vehicles. In Proc. of
the 48th IEEE Conference on Decision and Control., pages 5661–5666, 2009.

[121] C. Samson. Path following and time-varying feedback stabilization of a wheeled
mobile robot. In Proc. of the 2nd International Conference on Control, Automation,
Robotics and Vision, 1992.

[122] L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators. Springer
London ltd., 2nd edition, 2002.

[123] R. Skjetne, T. I. Fossen, and P. V. Kokotović. Robust output maneuvering for a
class of nonlinear systems. Automatica, 40(3):373–383, 2004.

[124] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S. Sukhatme.
Planning and implementing trajectories for autonomous underwater vehicles to
track evolving ocean processes based on predictions from a regional ocean model.
International Journal of Robotics Research, 29(12):1475–1497, 2010.

[125] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S. Sukhatme.
Persistent ocean monitoring with underwater gliders: Adapting sampling resolution.
Journal of Field Robotics, 28(5):714–741, 2011.

[126] A. Sousa, L. Madureira, J. Coelho, J. Pinto, J. Pereira, J. B. Sousa, and P. Dias.
Lauv: The man-portable autonomous underwater vehicle. In Proc. of the 3rd IFAC
Workshop on Navigation, Guidance and Control of Underwater Vehicles, pages
268–274, 2012.

264



BIBLIOGRAPHY

[127] P. B. Sujit, S. Saripalli, and J. B. Sousa. Unmanned aerial vehicle path following:
A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE
Control Systems Magazine, 34(1):42–59, 2014.

[128] O. J. Sørdalen and C. C. De Wit. Exponential control law for a mobile robot:
extension to path following. IEEE Transactions on Robotics and Automation,
9(6):837–842, 1993.

[129] O. J. Sørdalen and O. Egeland. Exponential stabilization of nonholonomic chained
systems. IEEE Transactions on Automatic Control, 40(1):35–49, 1995.

[130] A. J. Sørensen. Structural issues in the design and operation of marine control
systems. Annual Reviews in Control, 29(1):125–149, 2005.

[131] A. J. Sørensen, S. I. Sagatun, and T. I. Fossen. Design of a dynamic positioning
system using model-based control. Control Engineering Practice, 4(3):359–368,
1996.

[132] A. J. Sørensen, Ø. N. Smogeli, and E. Pedersen. Simulation-based design and testing
of dynamically positioned marine vessels. In Proc. of International Conference on
Marine Simulation and Ship Maneuverability, 2003.

[133] A. R. Teel. Global stabilization and restricted tracking for multiple integrators
with bounded controls. Systems & Control Letters, 18(3):165–171, 1992.

[134] J. Tsinias. Input to state stability properties of nonlinear systems and applications
to bounded feedback stabilization using saturation. ESAIM: Control, Optimisation
and Calculus of Variations, 2:57–87, 1997.

[135] E. Xargay, I. Kaminer, A. M. Pascoal, N. Hovakimyan, V. Dobrokhodov, V. Cichella,
A. P. Aguiar, and R. Ghabcheloo. Time-critical cooperative path following of
multiple unmanned aerial vehicles over time-varying networks. Journal of Guidance,
Control, and Dynamics, 36(2):499–516, 2013.

[136] D. R. Yoerger, M. Jakuba, A. M. Bradley, and B. Bingham. Techniques for deep
sea near bottom survey using an autonomous underwater vehicle. The International
Journal of Robotics Research, 26(1):41–54, 2007.

[137] E. Zereik, M. Bibuli, G. Bruzzone, and M. Caccia. Jacobian task priority-based
approach for path following of unmanned surface vehicles. In Proc. of the 9th IFAC
Conference on Control Applications in Marine Systems, pages 114–119, 2013.

265


