# Status and Plans for catalysis for sustainable energy

Prof. De Chen, Department of Chemical Engineering, Norwegian University of Science and Technology, Norway
Prof. Wen-De Xiao, Department of Chemical

Engineering, Shanghai Jiao Tong University, China

### Renewed interests on olefin production by Fischer Tropsch



 Possible to produce olefin via synthesis gas from natural gas, coal and biomass

## **Objectives of the project**

- The ultimate goal of the project is to identify the principles for rational design of the catalysts to maximize the C<sub>2</sub>-C<sub>4</sub> olefin formation and minimize the methane formation from synthesis gas with different hydrogen to CO ratios, by combining competences from NTNU and SJTU
- 1) Preparation of Fe and Co and their alloys with well controlled sizes and surface compositions.
- 2) Correlate chain growth or termination probability to the catalyst properties.
- 3) Apply the gained scientific insights to optimize the catalysts to maximize C<sub>2</sub>-C<sub>4</sub> olefin yield.
- 4) Enhance the cooperation between NTNU and SJTU by joint the projects and personal exchanges
- More than 10 joint publications

## Status of the project

- Three partner-network has been established for cooperation in the project
- Competences in both groups have been mapped

NTNU

DFT, Kinetics and experiments 2 professor, 1 researcher, 1 PhD

ECUST

SJTU

experiments

DFT, Kinetics and

Coordinator, DFT, Kinetics and

1 PhD, 1 postdoc associated

experiments

1 professor, 1 PhD

## Status of the project

- One student has been placed in each group.
  - 2015 January at SJTU (Yu Wang)
  - 2015 September at NTNU (Yalan Wang)
  - 2014 at ECUST (Di Wang, currently visiting NTNU for one year)
- Student exchange
  - The PhD student (Di Wang) from ECUST supported by Chinese scholar council (09.2015-08.2016), 3 months for professor, research stay at NTNU
- The joint project makes it possible to establish a relatively large research groups to combine different competences to carry on cutting-edge research

## **Status of the project : NTNU**

- Microkinetic analysis: predictive modeling
- Catalyst design by microkinetic analysis
- Scaling relationship for adsorption heat and activation energy on different metals

#### Status of the project (Yu Wang, SJTU)

 Catalyst development of Fe catalysts on Mg-Al spinel support for FTO



## Status of the project (ECUST)

- Design and Engineering of Iron-based Composite Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins
- Mechanistic study of F-T synthesis by SSITKA

| Catalysts           | FeK-OX | FeK-OX+1K | FeK-OX+2K | FeK-OX+5K |
|---------------------|--------|-----------|-----------|-----------|
| CO conversion (%)   | 28.8   | 37.6      | 46.1      | 60.4      |
| CH selectivity (%C) | 70.4   | 72.2      | 77        | 79.5      |
| CH distribution (%C | C)     |           |           |           |
| CH <sub>4</sub>     | 19.5   | 17        | 16.3      | 12.9      |
| $C_2^{=}-C_4^{=}$   | 42.2   | 43        | 40.1      | 35.8      |
| $C_2^{0}-C_4^{0}$   | 11.4   | 12.1      | 10.9      | 10.2      |
| C <sub>5+</sub>     | 26.9   | 27.9      | 32.7      | 41.1      |
| Olefin/Paraffin     | 3.7    | 3.6       | 3.7       | 3.5       |

#### **Joint publications**

- 1. D. Wang, X. Zhou, J. Ji, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, *Modified* carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins, Journal of Materials Chemistry A 3 (2015) 4560-4567.
- 2. D. Wang,, J. Ji, X. Duan, G. Qian, X. Zhou, X. Zhou, D. Chen, *NanoFe catalysts on CNTs for the direct conversion of syngas to lower olefins*, Journal of Energy Chemistry, invited, submitted.
- 3. Yu Wang, Jiachi Chen, Wende Xiao, De Chen, A catalyst for Fischer–Tropsch olefin reaction with MgO modified Al2O3 support. Submitted to The 11<sup>th</sup> Natural gas conversion symposium, Tomosø, Norway
- 4. Xianzhi Tang, Yu Wang, Wende Xiao, De Chen, *Macroporous* α-Al2O3 support preparation and application in the CO oxidative coupling carbonylation for dimethyl oxalate synthesis, Submitted to The 11th Natural gas conversion symposium, Tomosø, Norway
- 5. Y. Wang, Y. Zhu, Wende Xiao, D. Chen, Mechanism research of of light olefin formation in Fischer-Tropsch synthesis by combination of DFT calculations and microkinetic analysis, Submitted to The 11th Natural gas conversion symposium, Tomosø, Norway
- 6. Xun Huang, Hu Li, De Chen, Wen-De Xiao, Kinetic modeling of the side reactions in methanol-to-olefin process over HZSM-5: an extended study of the previous model, Chem. Eng. J. accepted.

### **Education**

Two departments have agreed to cooperate on the joint education of master students on chemical engineering

- Master students to international master program at NTNU, exchange master students to SJTU
- Master (NTNU) +PhD (SJTU)
- Double degree of master student
- Plan to sign the agreement at kick-off meeting at Beijing

## Founding

• Chinese-Norwegian scholarship

Application though Chinese side, and paid by Norwegian Research Council

- Chinese Scholar Council
  - Supporting different scholars: Bachler, master and PhD students, postdoc, researchers and professors (0.5-3 years)