Stress dependent dynamic anisotropy in shales

Larsen, I., Stenebråten, J.F., Bakk, A.

SINTEF Petroleum Research

The 9th Euroconference on Rock Physics and Geomechanics
October 20th, 2011, Trondheim
Introduction

• Rocks typically exhibit elastic anisotropic behaviour:
 – Intrinsic anisotropy (layering, grain orientation etc.)
 – Induced anisotropy (stress)
• Layered materials, like shales, are often assumed to have an isotropic behaviour in the bedding plane (Transverse Isotropy)
• Elastic properties of the rock is closely linked to wave velocities
• Importance
 – Seismic interpretation (exploration and time-lapse) and modelling
 – Borehole sonic logging
Introduction

• Measurement of the dynamic properties on a cylindrical core with TI properties requires 5 independent measurements

\[
\begin{pmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z \\
\tau_{yz} \\
\tau_{xz} \\
\tau_{xy}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{11} - 2C_{66} & C_{13} & 0 & 0 & 0 \\
C_{11} - 2C_{66} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{pmatrix}
\begin{pmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
2\Gamma_{yz} \\
2\Gamma_{xz} \\
2\Gamma_{xy}
\end{pmatrix}
\]

• The TI anisotropy can be described by the Thomsen parameters:

\[
\varepsilon \equiv \frac{C_{11} - C_{33}}{2C_{33}}
\]

\[
\gamma \equiv \frac{C_{66} - C_{44}}{2C_{44}}
\]

\[
\delta \equiv \frac{1}{2C_{33}^2} \left[2\left(C_{13} + C_{44} \right)^2 - \left(C_{33} - C_{44} \right) \left(C_{11} + C_{33} - 2C_{44} \right) \right]
\]

Thomsen, 1986
Introduction

• Assumptions
 – Transverse Isotropy
 – Homogeneous
 – Cylinder axis is parallel to the bedding plane normal

• The elastic (dynamic) moduli:

\[
 C_{11} = \rho V_{p,\text{horizontal}}^2 \\
 C_{33} = \rho V_{p,\text{axial}}^2 \\
 C_{44} = \rho V_{s,\text{vertical\,(hor.)}}^2 \\
 C_{66} = \rho V_{s,\text{horizontal\,(hor.)}}^2 \\
 C_{13} = ?
\]

• Estimate \(C_{13} \) from Thomsen theory and oblique measurements of P-wave velocities
P-wave measurements

• Setup of 8 P-wave transducers:
 – Measurements in both principal directions
 – Four measurements in oblique directions

• Sleeve transducer specifications:
 – 3.5 mm outside diameter
 – Curved front
 – 1.3 MHz resonant frequency
 – Crystal diameter 2 mm

• P-wave velocities at the following inclinations: 0° (vertical), 18°, 37°, 47, 69° and 90° (horizontal)
Validation

• Group or phase velocities for oblique waves?
 – FD simulations
 – Synthetic materials
 • measurements at ambient conditions
 • measurement under stress on cylindrical samples
FD model

- Model with realistic geometries:
 - Transducers in the sleeve
 - 3.5 mm diameter
 - The source is simulated as a disk with 2 mm diameter and 0.075 mm thickness
 - ~0.4 mm titanium front piece
 - Oblique transducers in the piston
 - The source is a disk with 3.5 mm diameter and 0.075 mm thickness
 - ~0.4 mm steel front piece
- Spatial resolution is 0.075 mm
- Source signal is a Ricker wavelet with centre frequency of 1 MHz.
FD model simulations

• Material with TI properties:
 – Non-spherical wavefront
 – Wavefront normal oblique to transducer normal

Cross section of density model
Simulation results

- Velocities picked from wavefront arrival for two materials:
 - Weak TI ($\varepsilon=0.14$, $\delta=0.04$, $\gamma=0.28$)
 - Strong TI ($\varepsilon=0.3$, $\delta=0.3$, $\gamma=0.07$)

- Both simulations showed that the picked velocities fall on the line for the theoretical group velocity for the material.

10-20 m/s uncertainty in velocities
0-2 degrees uncertainty in angle
Materials

• Peek (used for calibration)
 – Isotropic
 – $V_P = 2564 \text{ m/s}$
 – $V_S = 1129 \text{ m/s}$
 – Density = 1.305 g/cm^3

• Bakelite (strong TI)
 – Anisotropic (quasi-TI)

• Pierre shale (weak TI)
 – Anisotropic (quasi-TI)
Bench setup for radial P wave measurements

- Sample characterization prior to triaxial testing
- Measurements done on both vertical and horizontal samples
Strong TI material

- Bakelite Cotton Phenolic (Etronax MF)
 - Density of 1371 kg/m³
 - VP (axial) = 2843 m/s
 - VS (axial) = 1533 m/s
 - Layered media
 - Weak anisotropy observed in horizontal plane
 - Homogeneous sample (repeatable measurements)
 - Measurement along the fastest horizontal plane direction gives:
 - Thomsen $\varepsilon = 0.30$
 - Thomsen $\delta = 0.30$
 - Thomsen $\gamma \approx 0.075$ (not perfect TI-media)
Weak TI material

- Pierre shale
 - Density of 2360 kg/m³
 - VP (axial) = 2325 m/s
 - VS (axial) = 878 m/s
 - Layered media
 - Weak anisotropy observed in horizontal plane
 - Homogeneous sample (repeatable measurements)
 - Measurement along the fastest horizontal plane direction gives:
 - Thomsen $\varepsilon = 0.14$
 - Thomsen $\delta = 0.04$
 - Thomsen $\gamma \approx 0.28$ (not perfect TI-media)
Bakelite triaxial experiment

- Hydrostatic cycling of cylindrical sample with bedding plane normal parallel to cylinder axis
- Measure five P-wave velocities
 - Vertical and horizontal
 - Three oblique directions
Bakelite triaxial experiment

- Oblique velocities fits well with theoretical line for group velocities
- Lower δ in triaxial setup than measured at ambient conditions
- No change in ε nor δ when increasing hydrostatic pressure
Pierre shale triaxial experiment

- Hydrostatic cycling of cylindrical sample
- Uniaxial undrained loading
- Measure five P-wave velocities
 - Vertical and horizontal
 - Three oblique directions
Pierre shale triaxial experiment

- Bedding plane normal was found to be slightly off cylinder axis (~10 degrees).
- Oblique velocities fits well with theoretical line for group velocities.
- Higher δ in triaxial setup than measured at ambient conditions.
- Increase in δ when increasing mean stress (small shear stress).

\[\varepsilon = 0.14 \]
\[\delta = 0.14 \]

\[\varepsilon = 0.16 \]
\[\delta = 0.18 \]
Summary

- An ultrasonic experimental setup has been developed which allows for measuring 4 oblique P-wave velocities in a triaxial setup.
- FD simulations show that these velocities correspond to group velocities.
- Triaxial experiments were performed to verify the setup.
- Stress dependency of the Thomsen parameters ε and δ on Pierre shale.
Acknowledgements

• The Shale Rock Physics Consortium is funded by BP, ConocoPhillips, Det Norske, DONG Energy, Shell and Total