Deformation and failure in limestone surrounding the Andra Underground Research Laboratory at Bure (East of France)

Alexandra Rolland1,2, Patrick Baud1, Michael Heap1, Marion Nicolé1, Thomas Ferrand1, Thierry Reuschlé1, Nathalie Conil2
Outline

I. Studied material

II. Experimental data: effect of water and effect of stylolites on mechanical strength

III. Micro-mechanical interpretation
Limestones surrounding the Bure URL

(Gunzburger et Cornet, 2007)
Material properties

<table>
<thead>
<tr>
<th></th>
<th>Oxfordian</th>
<th>Dogger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>159 – 310</td>
<td>719 – 748</td>
</tr>
<tr>
<td>Composition</td>
<td>>95% calcite</td>
<td></td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>7 – 18</td>
<td>2 – 6</td>
</tr>
<tr>
<td>Vp (km/s)</td>
<td>4 – 6</td>
<td>6 – 7</td>
</tr>
<tr>
<td>BET (m²/g)</td>
<td>0.8 – 1.15</td>
<td>X</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>17 – 36</td>
<td>36 – 70</td>
</tr>
<tr>
<td>ν</td>
<td>0.35</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Experimental procedure

- **Uniaxial** $\sigma_2 = \sigma_3 = 0$
- **Triaxial** $\sigma_1 > \sigma_2 = \sigma_3$
- Room temperature
- Strain rate $= 10^{-5}\, s^{-1}$
- Samples size $= 20\times40\, mm$
- Dry and wet experiments with or without (intact) stylolite
Selected data (1/3)

- Weakening effect of water
- Brittle/ductile transition between 20 and 40 MPa
Selected data (2/3)

Dogger (D1) - 729 m - \(\phi = 6\% \)

- Differential stress, \(\sigma_{1} - \sigma_{3} \) (MPa)
- Axial strain, \(\varepsilon_{ax} \) (%)

Dogger (D1) - 719 m - \(\phi = 6\% \)

- Differential stress, \(\sigma_{1} - \sigma_{3} \) (MPa)
- Differential stress change, \(\Delta \phi \) (%)

- Water = weaker + Stylo = stronger
- Brittle
- Ductile behavior not reached
Selected data (3/3)

Oxfordian - Stylolite orientation

- O2 - 20%
- O3 - 18%
- O5 - 15%
- O6 - 8%

Dogger (D1) - Stylolite orientation

- Dry
- Wet

Oxfordian = no effect
Dogger = weaker \(\Rightarrow\) porosity? Microstructure?
Dry and wet UCS: Sammis and Ashby’s pore–emanated cracking model (1986)

- Pore emanated crack (Vajdova et al., 2010)
- Elastic medium with circular pores of radius r
- Propagation of wing cracks to a distance ℓ with crack interactions

(Sammis and Ashby, 1986)
Sammis and Ashby’s pore-emanated cracking model (2/2)

- Sammis and Ashby (1986): Triaxial case
 \[K_1 = -L^{1/2}\left\{\frac{1.1(1 - 2.1\lambda)}{(1 + L)^{3.3}} - \lambda\right\}\sigma_1\sqrt{\pi a} + K_1' = \frac{\sqrt{2}}{\pi}\sigma_1\sqrt{\pi a}(L + 1)^{1/2} \left(1 - \frac{8}{\pi} f_A\lambda (L + 1)^3\right) \left(1 - \frac{2}{\pi} f_A\lambda (L + 1)^3\right)^{1/2}. \]
 where \(\lambda = \sigma_3/\sigma_1 \)

- Sammis and Ashby (1986): Uniaxial case
 external loading + crack interaction
 \[\sigma(L) = \frac{K_{IC}}{\sqrt{\pi r}} \left[\frac{1.1\sqrt{L}}{(1 + L)^{3.3}} + \frac{\sqrt{2}}{\pi} \sqrt{\Phi(1 + L)}\right]^{-1}. \]
 where \(L = \ell/r \)

- Zhu et al. (2010): \(d\sigma/dL = 0 \)
 => Analytic approximation

\[\sigma_u = \frac{1.325}{\Phi 0.414} \frac{K_{IC}}{\sqrt{\pi r}} \]
Application to limestones

- Zhu et al., 2010:
 - 2 families
 - $K_{IC}^{\text{calcite}} = 0.2 \text{ MPa.m}^{1/2}$
 - $r_M = 2 - 10 \mu\text{m}$
 - $r_A = 26 - 500 \mu\text{m}$

- This study:
 - Intermediate
 - Pore radius
 - $r = 10 - 26 \mu\text{m}$
Microstructure (1/2)

- Allochemical limestones with a wide range of grain size
- No crack porosity
Absence of macropores but microporosity at the periphery of grains and in the cement

- This study – O3 – 18%
- (Ji et al., 2011 – Indiana – 16%)
Effect of stylolites – dry tests

- Dogger = stronger
- Oxfordian = weaker
Preliminary microstructural observations

- Cracks parallel to σ_1
- Complex interaction between stylolite and induced damage
Conclusions

- Bure limestones have a mechanical strength intermediate to micritic and allochemical ones

- Weakening effect of water \Rightarrow reduction of K_{IC}

- Effect of stylolites not obvious for Dogger horizon but weakening for Oxfordian layer \Rightarrow stress concentrator?

- No effect of stylolite orientation in dry conditions \Rightarrow stylolite \neq plane of weakness