Deformation mechanisms in crystalline magma

J.E. Kendrick1, Y. Lavallee1, Mariani, E.2, M.J. Heap3, K.U. Hess1, A. Flaws1, H.E. Gaunt4, and D.B. Dingwell1

1Department of Earth and Environmental Sciences, LMU Munich, Germany
2Department of Earth and Ocean Sciences, University of Liverpool, UK
3Laboratoire de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg, France
4Department of Earth and Environmental Sciences, University College London

Kendrick@min.uni-muenchen.de
Why do we care?

Effusive

Explosive

Mount Etna, Jan 2011
(dailymail)
DUCTILE to BRITTLE

Modified from Tuffen et al. 2008

Kendrick@min.uni-muenchen.de
The glass transition: pure silicate melt

Relaxed, equilibrium

Unrelaxed, disequilibrium
In nature: pure silicate melt is rare

- Addition of pores and *crystals*

COMPLEX RHEOLOGY
The stress effect

Increasing applied stress
- Instantaneous
 - Decreases viscosity

Constant stress
- Gradual
 - Decreases viscosity

Cordonnier et al. 2009

Kendrick@min.uni-muenchen.de
The ductile-brittle transition

Cordonnier et al. 2009

Kendrick@min.uni-muenchen.de
Experimental procedure

Uniaxial press:
• Constant stress
• 940-950 °C

➢ To study in situ the rheology of multi-phase melts.
Material Properties

MAKE-UP (excluding porosity)

Glass ~ 40 %
Crystals ~ 35 %
Microlites ~ 20 %
Temperature effect

\[\sigma = \frac{48155}{(T-885)} \dot{\gamma}^{0.5} \]

Lavallee et al. (2011)
Strain Effects

Time Dependent

Constant Stress

7 % 14 % 21 % 28 % 35 %

Kendrick@min.uni-muenchen.de
Strain Effects

- Time Dependent
- Strain Dependent

- Constant Stress
- Strain Dependent

7 % 14 % 21 % 28 % 35 %

Kendrick@min.uni-muenchen.de
Strain Effects

Constant Stress

Time Dependent

Strain Dependent

Kendrick@min.uni-muenchen.de
Stress Effects

Lavallee et al. (in prep.)

Kendrick@min.uni-muenchen.de
Stress Effects

Seismic b-values decrease

Localised macroscopic crack growth across ductile-brittle transition
Stress Effects

Strain at failure:
- 28.5 MPa: 20%
- 46 MPa: 12%
- 76 MPa: 5.5%

Stress Effects - inc. Stress dec. Strain to failure
Strain-rate Effects

\[\log \eta_b = -0.993 + \frac{8974}{T} - 0.543 \log \gamma \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Log viscosity (Pa s) vs. Strain rate (s^{-1}).}
\end{figure}

Validity: 50-80% crystals <25% vesicles

Lavallee et al. (2007)
Measuring deformation

- Porosity
- Ultrasonic velocity waves for dynamic:
 - Young’s modulus and
 - Poisson’s ratio

<table>
<thead>
<tr>
<th>Sample</th>
<th>Porosity (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starting</td>
<td>12 MPa</td>
<td>24 MPa</td>
</tr>
<tr>
<td></td>
<td>20% strain</td>
<td>30% strain</td>
<td>20% strain</td>
</tr>
<tr>
<td>B2</td>
<td>9.5</td>
<td>10.9</td>
<td>11.9</td>
</tr>
<tr>
<td>LAH4</td>
<td>27.2</td>
<td>23.8</td>
<td>30.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Young’s Modulus (GPa)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starting</td>
<td>12 MPa</td>
<td>24 MPa</td>
</tr>
<tr>
<td></td>
<td>20% strain</td>
<td>30% strain</td>
<td>20% strain</td>
</tr>
<tr>
<td>B2</td>
<td>16.3</td>
<td>19.5</td>
<td>15.7</td>
</tr>
<tr>
<td>LAH4</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Poisson’s ratio</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starting</td>
<td>12 MPa</td>
<td>24 MPa</td>
</tr>
<tr>
<td></td>
<td>20% strain</td>
<td>30% strain</td>
<td>20% strain</td>
</tr>
<tr>
<td>B2</td>
<td>0.24</td>
<td>0.10</td>
<td>0.24</td>
</tr>
<tr>
<td>LAH4</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Neutron Computed Tomography

Low-load deformation

High-load deformation
Summary

- Dense magmas are more susceptible to dilation.
- Dilation is initiated at lower strain with higher stresses.
- Higher temperature results in higher strain rates.
- Higher stress results in higher strain rates.
- We observe a strain-dependent decrease in viscosity at constant stress and instantaneous decrease with increasing stress.
- Higher applied stresses form more AE, lower b-values and decrease the total strain required for failure.
- Dynamic elastic properties show a complex evolution of initial strengthening and subsequent weakening of the material with increasing strain.
- Strain has a larger effect on crystallographic alignment.
- Stress has a larger effect on crystal size reduction.
Outcomes

- Chemically similar lava types have different mechanical properties, displaying a significant range of measured strain rates at a given temperature and applied stress.
- Crystallinity increases the range of the ductile-brittle transition and failure of magma becomes dependent upon total strain.
- Dynamic Young’s modulus and Poisson’s ratio do not change significantly, thus (for magma) do not represent the true characteristics of the samples and should not be used as a proxy to strain (or damage).
- Thus crystallinity has a significant effect on magma rheology with the implication that viscous models may not encompass the full complexity of crystal-bearing magma.

➢ We need a better mechanical understanding to improve our models!!
Reading

Kendrick@min.uni-muenchen.de