

# EFFECTS OF COMPOSITION AND TEXTURE ON STRENGTH OF ANHYDRITE CAPROCK

Implications of lateral variations for long-term CO<sub>2</sub> storage



S. Hangx<sup>1,2</sup>, C. Spiers<sup>2</sup>, A. Ten Hove<sup>2</sup>, A. Pluymakers<sup>2</sup> Work preformed at the High Pressure and Temperature Lab



<sup>&</sup>lt;sup>1</sup> Shell Global Solutions, Rijswijk, the Netherlands

<sup>&</sup>lt;sup>2</sup> High Pressure Temperature Laboratory, Utrecht University, the Netherlands

## **OUTLINE**

- CO<sub>2</sub> storage & caprock integrity
- Anhydrite caprock
- Rock properties & effect of texture
- Implications
- Conclusions

Shell Global Solutions International 9th Euroconference, Oct 2011 2

## CO<sub>2</sub> STORAGE CAPROCK INTEGRITY - NO SEAL, NO DEAL!



### Potential issues:

 Reservoir heave (poro-elastic response) or compaction (potential framework weakening through reaction)



- Caprock flexure permeability development or failure
- (Chemical) interaction with caprock mechanical weakening?

Creation of leakage pathways?

Loss of containment??

# ANHYDRITE CAPROCK THE NETHERLANDS



Anhydrite – Basal unit Zechstein Group  $CaSO_4 + CO_2 + H_2O \leftrightarrow CaCO_3 + H_2SO_4$ 

Of interest to the Netherlands, but also to the USA (Teapot Dome), Canada (Weyburn) and Middle East!



Shell Global Solutions International

# ANHYDRITE CAPROCK ZECHSTEIN FORMATION

## Acicular anhydrite



- <u>Bimodal distribution:</u>
   acicular grains (60%), d = 1000-2000 μm;
   matrix (40%), d < 50 μm</li>
- 15-25 wt% dolomite
- $\Phi = 0.1-0.3\%$
- $\kappa < 10^{-21} \text{ m}^2$

Shell Global Solutions International

## **Euhedral** anhydrite



- $d = 100 \, \mu m$
- 15-25 wt% dolomite
- $\Phi = 0.2 0.5\%$
- $\kappa$  < 10<sup>-21</sup> m<sup>2</sup>

Well locations are ~10 km apart

# EXPERIMENTAL METHODS COMPRESSION EXPERIMENTS

### **Experimental conditions:**

- $P_c^{\text{eff}} = 1.5 50 \text{ MPa}$
- $P_f = 0 15 \text{ MPa}$
- fluids: CaSO<sub>4</sub>/ CO<sub>2</sub>-saturated solution
- *T*= 80°C
- $\dot{\varepsilon} = \sim 10^{-5} \text{ s}^{-1}$





$$\sigma_2 = \sigma_3 = P_c$$

### peak stress:

differential stress at which failure/ loss of strength occurs

Hangx, Spiers, Peach [JGR, Geofluids, 2010]



# EXPERIMENTAL METHODS HYDROFRACTURING EXPERIMENTS

## **Experimental conditions:**

- $P_c = 3.0-15.0 \text{ MPa}$
- $\Delta \sigma_{\text{initial}} = \sigma_{1,\text{initial}} \sigma_{3,\text{initial}} = 13.5-93.6 \text{ MPa}$
- *T*= 80°C
- Pump rate = ~0.34 µl/ s





$$\sigma_2 = \sigma_3 = P_c$$

pore fluid pressure @ failure;  $P_p$  drop

Hangx, et al. [in prep.]



# KEY AIM: FAILURE EN VELOPES MOGI FAILURE CRITERION

## General failure envelope



### MOGI FAILURE CRITERION:

Octahedral shear stress: 
$$\sigma_{\text{oct}} = 1/3 \sqrt{[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]}$$
Mean stress:  $\sigma_{\text{m,2}} = (\sigma_1 + \sigma_2 + \sigma_3)/3$ 

## EFFECT OF TEXTURE ON STRENGTH

## **Grain size:**



Fredrich etc al. [JGR 1990]

## **Grain shape:** Interlocking grains → stronger



## **Composition:**

## Size distribution: wider range → stronger



Shell Global Solutions International



Price [JGR, 1982]

### MECHANICAL STRENGTH



## Acicular anhydrite:

Irregular grains; bimodal *d*-range;  $d = 1000 \mu m$ 

• 
$$C_0 = 124 \text{ MPa}$$

$$\mu = 0.5$$

• 
$$T_0 = 5 \text{ MPa}$$

### **Euhedral anhydrite:**

Regular grains; equigranular;

$$d = 100 \ \mu m$$

• 
$$C_0 = 55 \text{ MPa}$$

$$\mu = 0.9$$

• 
$$T_0 = 8 \text{ MPa}$$

Overall, euhedral anhydrite 15-30% weaker than acicular anhydrite

## INITIAL FLAW SIZE

## Acicular anhydrite





## **Euhedral** anhydrite



- Intragranular cracks
- E = 50 GPa
- $\sigma_T = 5 \text{ MPa}$
- $\gamma = 0.902 \text{ J/m}^2$  [*Tromans & Meech*, 2002]
- Initial flaw size,
   c = 2200 µm (~ grain size)

- Grain boundary cracks
- *E*= 41 GPa
- $\sigma_T$  = 8 MPa
- $\gamma = 0.255 \text{ J/m}^2$  [Tromans & Meech, 2002]
- Initial flaw size,
   c = 200 μm (~ 2x grain size)

# FLEXURAL BENDING OF A CAPROCK POTENTIAL FOR SHEAR FAILURE DUE TO RESERVOIR DEFORMATION

### Model assumptions:

- circular reservoir, discshaped plate of caprock
- homogeneous, isotropic, elastic, uniform in thickness, and initially flat □ying; fixed edges, uniform load
- no fluid penetration
- all stress changes → poroelastic contraction or expansion of the reservoir
- 1. **hydrostatic**, where  $\sigma_v = \sigma_1 = \sigma_2 = \sigma_3$
- 2. **compressive**, where  $\sigma_v = \sigma_3$  and  $\sigma_1 = \sigma_2 = 1.5 \sigma_3$
- 3. **extensional**, where  $\sigma_v = \sigma_1$  and  $\sigma_3 = \sigma_2 = \frac{2}{3} \sigma_1$

### **Model parameters:**

- E= 5 GPa (upscaling of measured E)
- v = 0.25
- t = 50 m
- $y = \pm 0.1$  cm
- d = 100 m 5 km

### DEPLETION



#### INJECTION



Hangx, Spiers, Peach [JGR2010]

# FLEXURAL BENDING SHEAR FAILURE



 Loss of caprock integrity though permeability development and/ or damage → unlikely

### Failure may occur only for:

- Strong doming near the wellbore (e.g. d = 100 m, y = 1m)
- Higher values for *E*(e.g. 50 GPa)

but: more complex numerical modeling needed to predict long-term behaviour!

# THERMAL COOLING POTENTIAL FOR TENSILE FAILURE DUE TO CO, INJECTION

Joule-Thomson effect: injection of HP  $CO_2$  into LP reservoir  $\rightarrow$  expansion of  $CO_2 \rightarrow$  cooling

- Cooling near wellbore and base caprock (10's °C) → shrinkage of rock
- Thermally-induced stresses → tensile failure?





# CONCLUSIONS SITE-SPECIFIC DATA IS NEEDED



Rock texture and composition affect rock strength and mechanical properties 

to properly asses caprock integrity, site-specific data is needed

Shell Global Solutions International 9th Euroconference, Oct 2011 15

