9th Euroconference on Rock Physics and Geomechanics Trondheim Norway 17-21 October 2011

The application of fibre optic sensors in laboratory experiments.

Guido Blöcher¹, Thomas Reinsch¹, Harald Milsch¹, Alireza Hassanzadegan¹ & Günter Zimmermann¹

¹Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany

thermal water loop

Thermo-elastics

binary cycle

Motivation

- during geothermal power production the temperature and pressure conditions will change
- maximum temperature change ΔT = 70° C
- maximum pressure change $\Delta p = 10 MPa$
- → Impact of **poro-elastics** and **thermo-elastics** on geothermal power production

Motivation

- Validating parts of the theory of poroelasticity
- Optimisation of **undrained compression** experiments
- Using the techniques of fibre optic sensors

Application

- Determination of poro-elastic response of porous media by fibre optic sensors
- Effective pressure dependency of Porosity φ; Biot coefficient a & Skempton coefficient B within mechanical testing system MTS

Porosity

Porosity

Direct method

Indirect method

drained hydrostatic compression jacketed specimen

undrained hydrostatic compression jacketed specimen hydrostatic compression unjacketed specimen or mixture rule*

*Voigt-Reuss-Hill or Hashin-Shtrikman

 α = Biot Coefficient

B = Skempton Coefficient

 K_h = Bulk Modulus of the Framework

 K_s = Bulk Modulus of Solid Grains

 K_f = Bulk Modulus of Pore Fluid

 $\beta_h = 1/K_h$ Bulk Compressibility of the Framework

 β_s = 1/ K_s Bulk Compressibility of Solid Grains

 $\beta_f = 1/K_f$ Bulk Compressibility of Pore Fluid

 V_p = Bulk Volume

 V_p = Pore Volume

 ϵ_v = Volumetric Strain

 ϵ_a = Axial Strain

 ϵ_c = Circumferential Strain

 p_p = Pore Pressure

 p_c = Confining Pressure

 φ = Porosity

Biot Coefficient

Direct method

Indirect method

 $\alpha = 1 - K_b$

Biot & Willis, 1957 Nur & Byerlee, 1971

drained hydrostatic compression jacketed specimen undrained hydrostatic compression jacketed specimen hydrostatic compression unjacketed specimen or mixture rule*

*Voigt-Reuss-Hill or Hashin-Shtrikman

Thermo-elastics

 α = Biot Coefficient

B = Skempton Coefficient

 K_h = Bulk Modulus of the Framework

 K_s = Bulk Modulus of Solid Grains

 K_f = Bulk Modulus of Pore Fluid

 $\beta_h = 1/K_h$ Bulk Compressibility of the Framework

 $\beta_s = 1/K_s$ Bulk Compressibility of Solid Grains

 $\beta_f = 1/K_f$ Bulk Compressibility of Pore Fluid

 V_p = Bulk Volume

 V_p = Pore Volume

 ϵ_v = Volumetric Strain

 ϵ_a = Axial Strain

 ϵ_c = Circumferential Strain

 p_p = Pore Pressure

 p_c = Confining Pressure

 φ = Porosity

Skempton Coefficient

Direct method

Indirect method

Mesri, Adachi, Ullrich, 1976 Jaeger, Cook, Zimmerman, 2007

drained hydrostatic compression jacketed specimen undrained hydrostatic compression jacketed specimen hydrostatic compression unjacketed specimen or mixture rule*

*Voigt-Reuss-Hill or Hashin-Shtrikman

 α = Biot Coefficient

B = Skempton Coefficient

 K_h = Bulk Modulus of the Framework

 K_s = Bulk Modulus of Solid Grains

 K_f = Bulk Modulus of Pore Fluid

 $\beta_h = 1/K_h$ Bulk Compressibility of the Framework

 $\beta_s = 1/K_s$ Bulk Compressibility of Solid Grains

 $\beta_f = 1/K_f$ Bulk Compressibility of Pore Fluid

 V_p = Bulk Volume

 V_p = Pore Volume

 ϵ_n = Volumetric Strain

 ϵ_a = Axial Strain

 ϵ_c = Circumferential Strain

 p_p = Pore Pressure

 p_c = Confining Pressure

 φ = Porosity

Sensor

Fibre Optic Sensor - Calibration

Fibre Optic Sensor - Calibration

- •Pressure 0-70 MPa +/- 0.5 bar
- •Temperature Accuracy approx. 0.1° C
- •Multiple sensors per sample

POTSDAM

Potential leakage & test assembly

Results Comparison

compressibility βb

porosity **\phi**

Biot coefficient α

Skempton coefficient B

40

effective pressure peff = pc-pp [MPA]

50

60

Thermo-elastics

Results Comparison

10

0

20

70

Results Comparison

compressibility βb Total Description of the Conference of the Co

Skempton coefficient B

Results Comparison

Results Thermo-elastics

Conclusions

- The poro-elastic behaviour of two different sandstones
 Bentheimer SS & Flechtinger SS were investigated by means of fibre optic technique
- Direct and indirect methods for porosity, Biot coefficient and Skempton coefficient measurements were compared
 - Porosity: good agreement
 - Biot coefficient: good agreement at higher effective pressure
 - Skempton coefficient: excellent agreement for Flechtinger SS and poor agreement for Bentheimer SS
- Fibre optic technique improves undrained measurement although effective pressure can not be adjusted
- **Temperature effect** are more pronounced at high effective pressure dpp/dT=-0.017EXP(0.56peff)

Future Work

- Improvement of fibre optic technique, e.g. test assembly, data processing, quantity of sensors
- New applications:
 - Pressure distribution along fractures
 - Pressure propagation in shales
- Further investigation of thermo-elastic effects by measuring T and p simultaneously at the same point

Thanks for your Attention

