

Thermal Rock Physics of Shales: Laboratory Experiments under Undrained Conditions

Andreas Bauer, Arjan van der Linden, Frans Korndorffer

Shell Global Solutions International, Rijswijk. Netherlands a.bauer@shell.com

Motivation: Caprock Integrity

Thermal EOR

- ⇒ Heat diffusion into caprock
- ⇒ Thermally induced porepressure and stress changes may result in caprock failure
- ⇒ Possible risks: fault reactivation, leakage, interface slip

CO₂ sequestration (CCS)

- ⇒ Temperature difference between injected CO₂ and surrounding formation
- ⇒ Thermally induced pore-pressure and stress changes around injector wells may result in rock failure and leakage of CO₂
- ⇒ License-to-operate issue

Drained versus Undrained Rock Properties

Shales have very low permeabilities (nD range), which may result in pore pressure changes due to depletion-induced stress changes or heating during thermal EOR.

Business impact:

- (Thermally induced) poroelastic effects affect caprock integrity
- Interpretation of 4D seismic

	<u>drained</u>	vs. <u>undrained</u>
Bulk modulus	low	high
Poisson's ratio	low	≈ 0.5
Pore pressure	constant	varies with stress/temperature

Thermo-hydro-mechanical coupling in shales

Heating of low-permeability shales results in increase of pore pressure

Thermo-poroelasticity (undrained conditions)

$$c' = \frac{dp_{p}}{dT} = \frac{2GB^{2}(1+v_{u})^{2}(1-v)}{9(1-v_{u})(v_{u}-v)} \left[\frac{2\alpha_{m}(v_{u}-v)}{B(1+v_{u})(1-v)} + \phi(\alpha_{f}-\alpha_{m}) \right]$$

Chen and Ewy (2005)

c': coupling coefficient

P_D: pore pressure

T: temperature

Input parameters

G: Shear modulus (drained)

B: Skempton parameter

φ: Porosity

v: drained Poisson's ratio

ν_{...}: undrained Poisson's ratio

 α_f : th. expansion coeff. of fluid

 $\alpha_{\text{m}}\!\!:$ th. expansion coeff. of

matrix

Experimental issues:

- G and v obtained from drained measurements ⇒ superposition of inelastic effects, time consuming test
- What is the effect of bound water on α_f ?
- How good is the porosity known?
- Anisotropies are often ignored

Thermo-hydro-mechanical coupling in shales

Experimental determination of c' based on undrained measurements only:

$$c' = \frac{\partial p_{p}}{\partial T} \bigg|_{p=const} + \frac{\partial p_{p}}{\partial p} \cdot \frac{\partial p}{\partial T} = \frac{\partial p_{p}}{\partial T} \bigg|_{p=const} + B \cdot \left[\frac{2E_{u}\alpha_{u}}{9(1-\nu_{u})} \right]$$

directly measured: change of mean total stress:

 $\approx 0.1 \text{ MPa/}^{\circ}\text{C}$

 $\approx 0.1-0.2 \text{ MPa/}^{\circ}\text{C}$

c': coupling coefficient

P_p: pore pressure

p: mean total stress

T: temperature

Input parameters:

B: Skempton parameter

E_{II}: undrained Young's modulus

 v_{ij} : undrained Poisson's ratio

 α_{u} : undrained volumetric thermal expansion coefficient

⇒ Input parameters can readily be obtained from core-plug tests under undrained conditions

⇒ Undrained measurements can be performed quickly (for

Test protocol

Test equipment: Triaxial compaction cell

Experimental challenges:

- Small dead volume (pore pressures and strains have to be corrected for dead volume effects)
- Pore-pressure reduction due to **swelling of sleeve**

Shale #1

Shale #1

Test results

dp _p /dT @ const p	0.09 MPa/K
Skempton B	0.82
Young's modulus (undr.), E _u	5.5 GPa
Poisson's ratio (undr.), ν_u	0.45
Thermal expansion coeff. (undr.),	1.0·10 ⁻⁴ K ⁻¹
α_{u}	
Skempton A	0.43
Young's modulus (drained), E	4.9 GPa
Poisson's ratio (drained), ν_u	0.24
Shear modulus (drained), G	2.0 GPa
Therm. expan. coeff. (drained), $\alpha_{\rm m}$	1.0·10 ⁻⁴ K ⁻¹

Coupling coefficient

Coupled 1-dimensional simulations

Ultrasonic velocities

Stress dependence

$$S_{p} = \frac{\Delta V_{p}/V_{p}}{\Delta \sigma_{ax}} = 2.0 \cdot 10^{-3} MPa^{-1}$$

$$S_s = \frac{\Delta V_S / V_S}{\Delta \sigma'_{ax}} \approx 1.5 \cdot 10^{-3} MPa^{-1}$$

Temperature dependence

	undrained	drained
$rac{\Delta V_{ ho} / V_{ ho}}{\Delta T}$	-7.9 ·10 ⁻⁴ K ⁻¹	-6.8·10 ⁻⁴ K ⁻¹
$rac{\Delta V_{s}/V_{s}}{\Delta T}$	-4.8·10 ⁻⁴ K ⁻¹	-3.4 ·10 ⁻⁴ K ⁻¹

⇒ Larger velocity changes for

Ultrasonic velocities: temperature dependence

Expected changes due to thermally induced pore-pressure changes:

$$S_p \cdot \frac{dp_p}{dT} \bigg|_{p=const} = 2.0 \cdot 10^{-3} MPa^{-1} \times 0.09 MPa \cdot K^{-1} = 1.8 \cdot 10^{-4} K^{-1}$$

$$S_s \cdot \frac{dp_p}{dT} \bigg|_{p=const} \approx 1.5 \cdot 10^{-3} MPa^{-1} \times 0.09 MPa \cdot K^{-1} = 1.4 \cdot 10^{-4} K^{-1}$$

⇒ Effective-stress dependence of V_p and V_s accounts for measured differences in temperature sensitivities for undrained and

	undrained	drained
$rac{\Delta V_p/V_p}{\Delta T}$	-7.9 ·10 ⁻⁴ K ⁻¹	-6.8·10 ⁻⁴ K ⁻¹
$\frac{\Delta V_{s}/V_{s}}{\Delta T}$	-4.8·10 ⁻⁴ K ⁻¹	-3.4 ·10 ⁻⁴ K ⁻¹

Expected changes due to fluid-compressibility changes:

PVT fluid properties + Gassmann theory (heating from 50°C to 150°C)

$$\frac{\Delta V_p / V_p}{\Delta T} \bigg|_{p_p = const} \approx 1.8 \cdot 10^{-4} \, \text{K}^{-1} \quad \text{and} \quad \frac{\Delta V_s / V_s}{\Delta T} \bigg|_{p_p = const} \approx 0$$

⇒ Fluid-compressibility changes cannot explain high temperature sensitivity of V_D and

Ultrasonic velocities: temperature dependence

Decrease due to pore-pressure

increase Decrease due to fluidcompressibility

changes
Thermally-induced
reduction of frame
stiffness?

Static stiffness slightly increases with temperature

- ⇒ Apparent reduction of dynamic stiffness might be the result of velocity dispersion and its temperature dependence
- ⇒ Temperature sensitivity of V_p and V_s could be significantly smaller at seismic/sonic frequencies

Conclusions

- Thermo-poroelastic properties of shales (coupling coefficient, etc.) can readily be obtained from multi-stage triaxial compaction tests under undrainded conditions.
- Thermally-induced pore-pressure changes in shales may result in rock failure, which has to be taken into account in the assessment of caprock integrity in thermal EOR or CCS.
- The temperature sensitivity of V_p and V_s is attributed to thermally-induced fluid compressibility and pore-pressure changes as well as the temperature dependence of the rock-frame stiffness that is believed to be frequency dependent.
- Better understanding of velocity dispersion in shales is needed for a quantitative interpretation of time-lapse seismic.

Q & A

