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Aim of the study

Experimental and modelling study on the coupled hydro — chemo -

mechanical behaviour of saturated compacted bentonites

Chemically induced deformations

Caused by chemical interaction between soil particles and pore water. Cations

‘shield’ the electrical repulsion occurring between charged clay particles.

>> |n suspensions <<
DLVO theory:

Distance between particles is such that replusion forces (of
electrical nature) and attraction forces (van der Waals)

come to an equilibrium.

(Mitchell & Soga,2005)
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Midplane concentration (M)

10-8 -

cations

—— 104 M NacCl
“““ 102 M NacCl

Nanions

100 200 300 (A)
1 1 1 i 1

1X 106 2 X 10-¢ 3X10-6 (cm)

Half distance between plates

(Mitchell & Soga, 2005)

Increasing concentrations reduce the
thickness of the double layer

.

Volume reduction - shrinkage

Other causes of shrinkage

Shrinkage can be associated to cation

exchange.

Sodium or calcium bentonites can ‘illitize’
when K* atoms substitute other cations in the

mineralogic structure
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Homoionic reconstituted clays

‘swelling pressure’ as the difference between the osmotic pressure in the

pore fluid and the osmotic pressure in the central plane between parallel
platy particles

. T |
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Homoionic reconstituted clays

© 0.00I N Ca Cl,
4 ION Co Cl, same € — different values of K

Void Rotio

Mesri & Olson - Mechanisms

controlling the permeability of clays —

Clays and Clay Minerals, 1971

Permeability, cm /sec.

“..physico-chemical variables control tendency to disperse or to form aggregates.

“Aggregation -> many tiny flow channels through which there is likely to be little flow

and a smaller number of relatively large channels through which the main flow occurs.

“Dispersion -> channels all nearly of the same size, and thus reduces the flow”
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ESEM evidences of relationship between salinity and structure

FEBEX Bentonite — statically compacted p, = 1.65 Mg / m3

a) After static compaction w, ~ 105 % , w, ~ 53%
b) After saturation with a 0.5 M NaCl solution

c) After saturation with Distilled Water

Ss: (750 m?/g; 35 m?/qg)

CEC: 106 meq/100g
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- Aggregates
—> microporosity

— Interaggregate void
—> macroporosity

Global void raitio ‘e’:

e=eyte,=Vyu/Vs+V,, !V,

R
PR

G

Gens & Alonso, 1992 : Gerke & Van Genuchten, 1993
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Double porosity model

Transport: Barrenblatt, 1960; Warren & Root,1963; Gerke & Van Genuchten, 1993

Mechanical: Gens & Alons0,1963

Transport:

Water and solute fluxes occur through
the macroporosity and the

microporosity domain.

Exchange can occur between the two

domains in virtue of potential

differences ' I
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Double porosity model
Transport: Barrenblatt, 1960; Warren & Root,1963; Gerke & Van Genuchten, 1993

Mechanical: Gens & Alonso0,1992
Mechanical: |

The material (overall) and the
aggregates deform upon variation of
chemical, hydraulic and mechanical

stresses.

Transport parameters evolve as well

as a consequence of fabric changes
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Constitutive variable: osmotic suction

n=IRTc (vant Hoff)

Chemo — mecanical model

Mo d€ = dg,, + a0dE,.

d€&,, macroporosity strain

d&., microporosity strain

de overall strain
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Mechanical Characterization: micro and overall

Micro behavior MIP Analyses
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Ascompacted €dOMeter tests under constant

Distilled water .
L i yncentration

—&— NaCl2.0M
—+— NaCl3.5M

NaCl 5.5 M Peak around d = 900 nm: gradually
reduces

Peak around d =1 104 nm
appears and increases
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1 10 100 1000 10000 100000 1000000 PSD evolution with salinity

Entrance pore diameter (nm)



Pore size density function (---)

o
o0
|

9th E.R.P.G. TRONDHEIM 17-21 October 2011

Shales and Clay

micro

10 100 10
Entrance pore deameter (nm)

As compacted
-=--- NaCl0.5M E
—®— NaCl2.0M :
—=— NaCI3.5M :

NaCl5.5M :

macro

Ci: 10000 100000 1000000

A ‘razor’ for separating
micro from macro

Threshold at d = 900 nm

Della Vecchia, 2009



Microscopic void ratio, e, (-)
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Relationship e, — 1 (1T, osmotic suction)
0.6 —
® Experimental data NaCl de = deM, , + atdem
- O  Experimental data CaCl,
@ ----- Model
0.4 Model: dotted line
i m _
o deyy, = aexp(-pm,)dm,
0.2 - N *
O - - - e e e e e - oo
O
] O
0 L L L
0 10000 20000 30000 40000 50000

Osmotic suction, rt (kPa)
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Relationship e — 1t

Swelling under loadg;, = 500 kPa

NaCl solutions

-25 Wetting with NaCl salt solution TT (M Pa)
J| ———8—— Distilled water
o 0.24
-20 4| —e— 10M
—_—20M
J|—=—35M |
—_———55M g
. 0.73 :
2.43 ©
| »
-10 §
4.87 o)
>
26.81
-5 -
0 #

Time, (min)

Castellanos et al, 2008
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Relationship e —TI macroporosity changes
Swelling upon soaking, load, = 500 kPa d€ =d&M , + adem
0 FAY
= NaCl By observing that differential
-0.05
.l a CaCl2 microscopic strains tend to
-0.1 :
—~ a4 — semilog disappear at high suctions
0 -0.15 -
<
-0.2 \
-0.25 = A dgM — ﬁ adrt
vol — M
-0.3 T[M
100 1000 10000 100000

osmotic suction, Tt (kPa)

Macroporosity changes
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0.2

0.04

Relationship e — 1t

d€ = dem , + aldem

® @ O Lxperimental data NaCl
O O O Experimental data CaCl,

€, O =0.65

overall strain

O

o function of stress and history
atden,,
0.25<0* <0.70

™~ macroscopic strain

10000 20000 30000 40000 50000
osmotic suction (kPa)
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Salt transport test under oedometer conditions

1. - statically compacted sample;
2. - saturation with saline water (NaCl 5.5 m) placed in bothr  eservoirs;
3. - distilled water in the lower reservoir,

4. - monitoring vertical displacements and concentration | n the ‘free’
reservoir

Upper reservoir
o C= C(t)

Lower reservoir -
constant concentration
C=C,
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Lower reservoir Upper reservoir
C=Co — 1~ C=C (1)

Salt transport test under
oedometer conditions

Saline water
in the lower
_ reservoir
09 | /4)
] —¢ -®-NaCl upper reservoir
s PP &£ 300 ~
0,86 € —j—' .
| 1 250 =
—~ ? y4 3 £
=082 % & 200 o
. ® @ S~ =
Distilled water | ¢ %. / P S
: 8078 s 2 - 150 @
in the lower = e # =
reservoir S / o 1100 8
\ 0,74 S
[ 150 ©
~ S
(@)
0,7 0o =
0 50 100 150 200 250 300 350 400 450
Time elapsed from exposure to distilled water (days )
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FE simulation with a commercial software (Comsol):
Mechanical strains: as introduced (... d &M=k /m, [dm, - k,/op,,)

Transport model (water phase):

o (@) E =0 w: Bresler (1972)
o
a(¢M ) KM M EX
Ofp-—Y0 0 + =0 N
ot ' [E Pi 9 (P Ps 9 S

Transport model (salt mass): Coupled transport

0(Cnn) @ > satisfies. Onsager
reciprocity

ot 0
S S Dt

Exchange term: q.=X(cy—¢,) =2 X= f(e,)
non linear, similarly to Gerke & van Genuchten (1993)
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Model geometry:
Water reservoir
Constant water volume
—_— > Model Parameters
C=C(1)
k. BkPa~l) akPal) ao*
0.003 2.107% 3.2-10™ 049
Dy, (ITIQ/S) Ky (m/s)
Soil sample 9.10~"" 5-1071%

C = constant
(5.5mor0m) 111
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Calibration of the osmotic efficiency parameter w: Bresler (1972)

1 —
- ey=0.2
----- ey=0.4
0.8 N s _
- K< ~ T a0l
< - ’ - e,,=U.
3 NN . . M
306 — NN
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©
(&) — .
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Exchange term X
~ 17
According to Gerke & van Genuchten *q:': ] \‘\
(1993) 5087 &
£ '
* 8 T \‘
X=X WKn S \
8)0.6 — \
. .- . ] \
K.,: permeability micro ?2 i \
() \
5 0.4 - \
xlim S !
e 3 \
KO- j 2 22 dx 2 S\
0 aX = 0.2 — \\\
s s
g ] R
Exchange term reduces with 04—

) ) | ' | ' | ' | ' |
osmotic suction 0 10000 20000 30000 40000 50000
osmotic suction,  (kPa)



vertical displacement (mm)
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Comparison of experimental results — FE simulation
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Contribution of
microstructural swelling

T——@®&— Swelling - data |
Swelling - model t
—Ml— Shrinkage - data
Shrinkage - model

Concentrations

Micro exchanges

300
—@ — Desalinisation - data
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I
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' 400 +——— : : .
0 : 100 200 300 400
= time (days)

Trasporto Macro
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Conclusions

1. Double structure and its evolution = documented through MIP and ESEM

2. Characterization:
micro through MIP results
macro through oedometer tests ( swelling + mech loading)

3. Consistent reproduction of a salinisation — desalinisation test
(coupled transport within the macro)

4. Non linear exchange term:
deformations with ‘jumps’ upon swelling, continuous upon compression

differences in swelling and compression times
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Comparison of models: concentration
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vertical displacement (mm)
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Comparison of models: displacements

-1.2 =

200 400 600
time (days)

800
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Reconstituted materials, permeability

Calvello et al., 2005, campioni ricostituiti di Alig di Bisaccia
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