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Aim of the study
Experimental and modelling study on the coupled hydro – chemo -
mechanical behaviour of saturated compacted bentonites

Chemically induced deformations
Caused by chemical interaction between soil particles and pore water. Cations

‘shield’ the electrical repulsion occurring between charged clay particles.

>>  In suspensions <<
DLVO theory:
Distance between particles is such that replusion forces (of

electrical nature) and attraction forces (van der Waals)

come to an equilibrium.

(Mitchell & Soga,2005)
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(Mitchell & Soga, 2005)

Increasing concentrations reduce the 
thickness of the double layer

Volume reduction - shrinkage

Other causes of shrinkage

Shrinkage can be associated to cation

exchange.

Sodium or calcium bentonites can ‘illitize’

when K+ atoms substitute other cations in the

mineralogic structure
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‘swelling pressure’ as the difference between the osmotic pressure in the

pore fluid and the osmotic pressure in the central plane between parallel

platy particles

Homoionic reconstituted clays

ρρρρd density

S specific surface

d half distance between particles

e = ρρρρd S d

(Bolt, Physico – chemical analysis of the

compressibility of pure clays, Géotechnique,

1956)
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Homoionic reconstituted clays

Mesri & Olson – Mechanisms

controlling the permeability of clays –

Clays and Clay Minerals, 1971

“..physico-chemical variables control tendency to disperse or to form aggregates.

“Aggregation � many tiny flow channels through which there is likely to be little flow

and a smaller number of relatively large channels through which the main flow occurs.

“Dispersion � channels all nearly of the same size, and thus reduces the flow”

same e – different values of K
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FEBEX Bentonite – statically compacted ρd = 1.65 Mg / m3

a) After static compaction

b) After saturation with a 0.5 M NaCl solution

c) After saturation with Distilled Water

a) b) c)

ESEM evidences of relationship between salinity and structure

wL ~ 105 % , wp ~ 53%

Ss: (750 m2/g; 35 m2/g)

CEC: 106 meq/100 g
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Aggregates
� microporosity

Interaggregate void
� macroporosity

Gens & Alonso, 1992 ; Gerke & Van Genuchten, 1993

e = eM + em = VvM / Vs + Vvm / Vs

Global void raitio ‘e’:
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Double porosity model

Transport: Barrenblatt, 1960; Warren & Root,1963; Gerke & Van Genuchten, 1993

Mechanical: Gens & Alonso,1963

Transport: 

Water and solute fluxes occur through

the macroporosity and the

microporosity domain.

Exchange can occur between the two

domains in virtue of potential

differences
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Double porosity model

Transport: Barrenblatt, 1960; Warren & Root,1963; Gerke & Van Genuchten, 1993

Mechanical: Gens & Alonso,1992

Mechanical: 

The material (overall) and the

aggregates deform upon variation of

chemical, hydraulic and mechanical

stresses.

Transport parameters evolve as well

as a consequence of fabric changes
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em = Vvm/ Vs

eM = VvM/ Vs

ππππm

ππππM

Chemo – mecanical model

dεεεε = dεεεεM + αααα∗∗∗∗ dεεεεm

dεεεεM macroporosity strain

dεεεεm  microporosity strain

iRTc=π
Constitutive variable: osmotic suction 

(Van’t Hoff)

dε ε ε ε overall strain
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Mechanical Characterization: micro and overall

MIP Analyses

Oedometer tests under constant
concentration

Micro behavior

Overall and macro behavior

PSD evolution with salinity

Peak around d ≈ 900 nm: gradually 
reduces

Peak around d ≈ 1 104 nm 
appears and increases  
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A ‘razor’ for separating 
micro from macro

Threshold at d = 900 nm

micro macro

Della Vecchia, 2009
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Relationship em – π (π, osmotic suction)

( )expm
vol m md dε α βπ π= −

dε = dεM
vol + α∗ dεεεεm

vol

Model: dotted line
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Relationship e – π
Swelling under load,σv = 500 kPa

ππππ (MPa) ππππ (MPa)
0.24

0.73
2.43

4.87
26.81

0.24

0.97
3.90

7.56

40.46

Castellanos et al, 2008

NaCl solutions CaCl 2 solutions
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Relationship e – π

Swelling upon soaking, load σv = 500 kPa
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By observing that differential

microscopic strains tend to

disappear at high suctions

macroporosity changes

osmotic suction, ππππ (kPa)
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Relationship e – π
dε = dεM

vol + αααα∗∗∗∗ dεm
vol

αααα∗∗∗∗ dεm
vol

αααα∗∗∗∗:::: function of stress and history

0.25 < αααα* < 0.70

macroscopic strain

overall strain
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Upper reservoir
C = C(t)

Lower reservoir
constant concentration

c=c0

Salt transport test under oedometer conditions

1. - statically compacted sample;

2. - saturation with saline water (NaCl 5.5 m) placed in both r eservoirs;

3. - distilled water in the lower reservoir;

4. - monitoring vertical displacements and concentration i n the ‘free’
reservoir



9 th E.R.P.G. TRONDHEIM         17-21 October 2011

Shales and Clay

0

50

100

150

200

250

300

350

0,7

0,74

0,78

0,82

0,86

0,9

0 50 100 150 200 250 300 350 400 450

vo
id

 ra
tio

, e
 (-

)

Time elapsed from exposure to distilled water (days )

e NaCl upper reservoir

M
ol

ar
 c

on
ce

nt
ra

tio
n 

c 
(m

ol
 l

-1
)

Upper reservoir
C=C (t)

Lower reservoir
c=c0

Distilled water
in the lower 
reservoir

Salt transport test under
oedometer conditions

Saline water
in the lower
reservoir



9 th E.R.P.G. TRONDHEIM         17-21 October 2011

Shales and Clay

FE simulation with a commercial software (Comsol):

Mechanical strains: as introduced (…    d εεεεM = kππππ/π/π/π/πM ⋅⋅⋅⋅dππππΜΜΜΜ - kp/σσσσ ⋅⋅⋅⋅ dpM)

Transport model (water phase):

( )
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Transport model (salt mass):
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Coupled transport, 
satisfies Onsager 
reciprocity

ω : Bresler (1972)

Exchange term:   qs = χχχχ (cM – cm) ���� χχχχ =  f(em)
non linear, similarly to Gerke & van Genuchten (1993)
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Model geometry:

Soil sample

Water reservoir

Constant water volume

C = C (t)

C = constant
(5.5 m or 0 m)

Model Parameters
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Calibration of the osmotic efficiency parameter ω : Bresler (1972)

function of the half distance between
platelets and of concentration

(eM instead of e)

ω : Bresler (1972)
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According to Gerke & van Genuchten
(1993)

Km: permeability micro

χ = χ * ⋅Km

dx
x

e
xK

x

m ∂
∂⋅−∝ ∫

lim

0

2

Exchange term reduces with
osmotic suction

Exchange term χχχχ
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Macro porosity strains

Contribution of 
microstructural swelling

Trasporto Macro

Micro exchanges

Comparison of experimental results – FE simulation

Displacements Concentrations



9 th E.R.P.G. TRONDHEIM         17-21 October 2011

Shales and Clay

Conclusions

1. Double structure and its evolution documented through MIP and ESEM

2. Characterization: 
micro through MIP results
macro through oedometer tests ( swelling + mech loading)

3. Consistent reproduction of a salinisation – desalinisation test
(coupled transport within the macro)

4. Non linear exchange term:
deformations with ‘jumps’ upon swelling, continuous upon compression

differences in swelling and compression times
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Comparison of models: concentration
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Comparison of models: displacements
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Distilled water 1 m Na Cl

Calvello et al., 2005, campioni ricostituiti di Argilla di Bisaccia

Reconstituted materials, permeability


