

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones

Andreas Bauer, Christian Lehr, Frans Korndorffer,

Arjan van der Linden

Shell Global Solutions International, Rijswijk. Netherlands a.bauer@shell.com

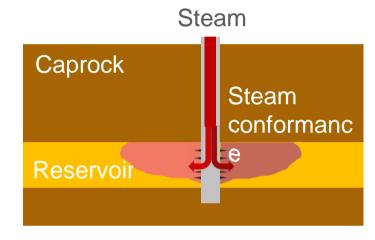
Copyright of Shell Global Solutions International B.V.

1

Motivation

Monitoring of steam conformance

Temperature dependence of seismic velocities enables


inversion of time-lapse (cross-well)

seismic data for temperature

changes in thermal EOR

• What is the temperature dependence of fluid and gas saturated rocks?

- Is the Gassmann model applicable?
- What is the effect of velocity dispersion?

Temperature dependence of ultrasonic velocities

Velocities:
$$V_p = \sqrt{\frac{K_{sat} + \frac{4}{3}\mu_{sat}}{\rho(T)}}$$
; $V_s = \sqrt{\frac{\mu_{sat}}{\rho(T)}}$
Gassmann theory: $K_{sat} = K_{dry} + \frac{\left(1 - \frac{K_{dry}}{K_{gr}}\right)^2}{\frac{\phi}{K_{fl}(T)} + \frac{(1 - \phi)}{K_{gr}} - \frac{K_{dry}}{K_{gr}^2}}$
 $\mu_{sat} = \mu_{dry}$

2.6

2.5 2.5 2.4

2.3

2.2

2

0 20 40 60 80

1.0

crear S+1

Velocity

MASSILLON LIGHT SANDSTONE

PE = 15 MPA

WITH PAROWAX

WITH WATER

Temperature (Degree C) Fig. $4-\nu_s$ in Massillon sandstone with air, water, and Parowax.

100 120 140

 K_{sat} : Bulk modulus of saturated rock K_{dry} : Bulk modulus of rock frame K_{gr} : Bulk modulus of grains K_{fi} : Fluid modulus μ_{sat} : Shear modulus of saturated rock μ_{dry} : Shear modulus of rock frame ϕ : Porosity ρ: Density of saturated rock

Measured temperature dependences of V_p and V_s are stronger than expected from Gassmann theory if we assume that the dry-rock stiffness is temperature independent:

• V_s should be nearly temperature. independent (except for some density effects)

• For (partially) gas-saturated rock, K_{fl} is small and little temperature dependence would be expected.

120 140

MASSILLON LIGHT SANDSTONE

 $P_F = 15 MPA$

WITH PAROWAX

WITH AIR

Temperature (Degree

Fig. $3-v_{p}$ in Massillon sandstone with air, water, and

WITH WATER

100

(Km/sec.)

ocity

10/ 3.4

3.8

3.6

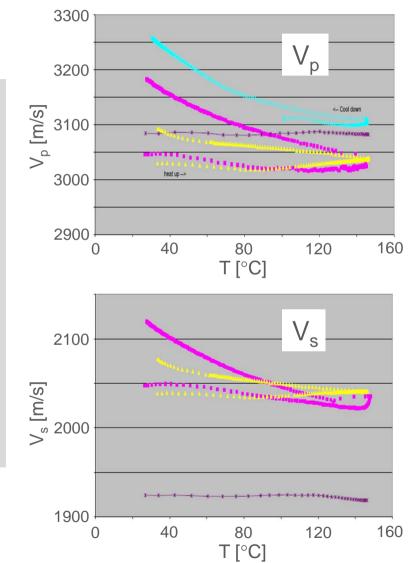
Compress o

з

2.8

Parowax.

0 20 40 60 80


Dry-rock temperature dependence of V_D and V_s

What is "dry"?

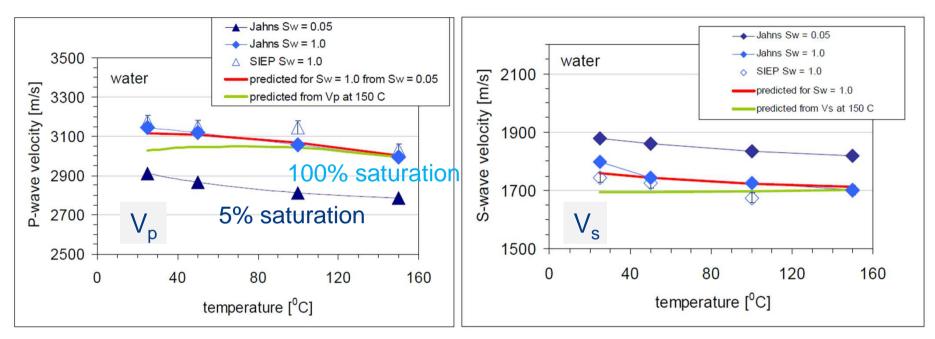
Presence of very small amount of water (e.g. condensation during cool down) results in sizable temperature dependence of V_p and V_s .

In the absence of any water (heated under vacuum), V_p and V_s are nearly temperature independent ($\Delta V_p/V_p < 10^{-4} \text{ K}^{-1} \cdot \Delta \text{T}$).

Experiments have to be carried out under well-defined conditions to yield reproducible results.

"Dry"-rock temperature dependence of V_p and V_s

Is the Gassmann model applicable if we define "dry rock" as the rock matrix in contact with a small amount of pore fluid (wetting of grain surfaces and grain contacts)


Approach:

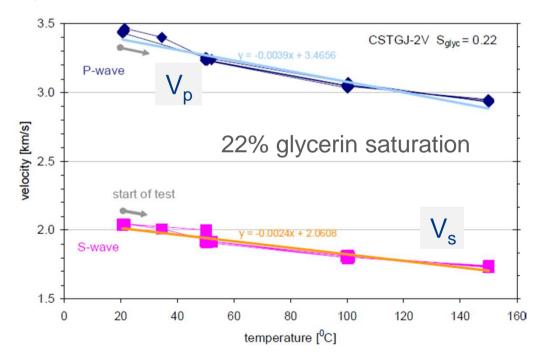
• Measure temperature dependence of "dry" rock stiffness (with well-defined fluid saturation)

 \bullet Apply Gasmann model to predict V_{p} and V_{s} of fully saturated rock

V_p and V_s of Castlegate sandstone – Temperature

dependence

Test done by Gesteinslabor Dr. Jahns, Germany (www.gesteinslabor.de)


Temperature dependence of Vp and Vs can be described by the Gassmann model by taking the temperature dependence of the "dry"-rock stiffness into account

V_p and V_s of Castlegate sandstone – Temperature

dependence

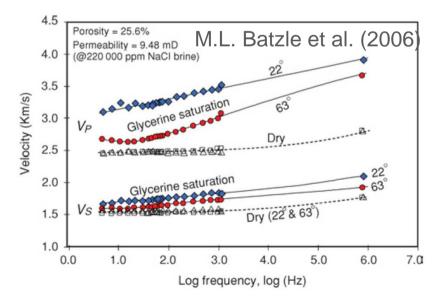
"Dry"-rock stiffness depends on pore fluid:

Higher stiffness and enhanced temperature dependence for glycerin as pore fluid

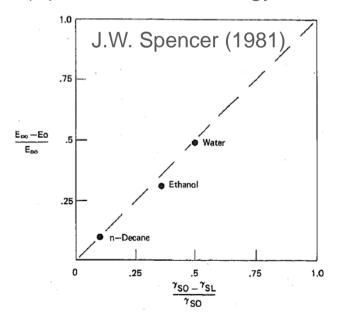
- Compressibility of glycerin is smaller than that of water at RT
- Glycerin has high viscosity at RT
- Viscosity is strongly temperature dependent

Test done by Gesteinslabor Dr. Jahns, Germany

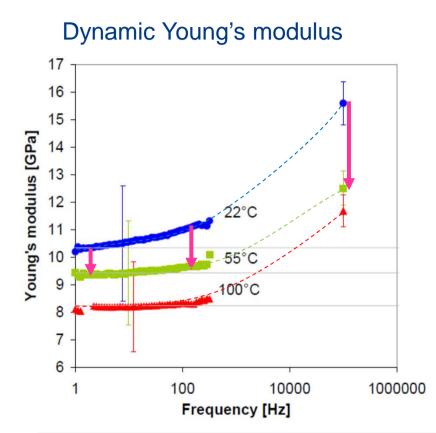
Velocity dispersion

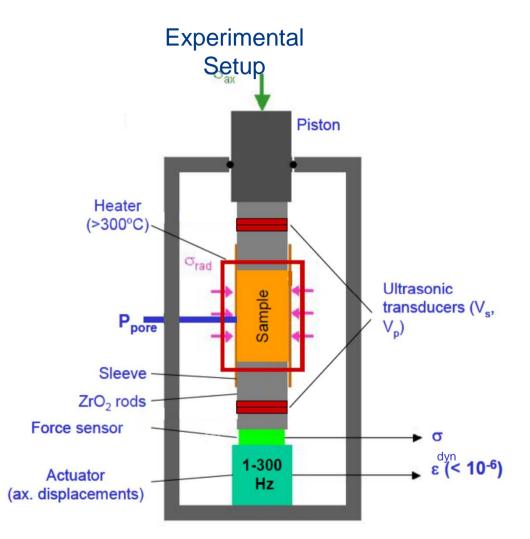

Is the temperature dependence of Vp and Vs at seismic frequencies as high as at seismic frequencies

Previous studies have shown that the "dry"-rock stiffness is frequency dependent due to time-dependent relaxation processes

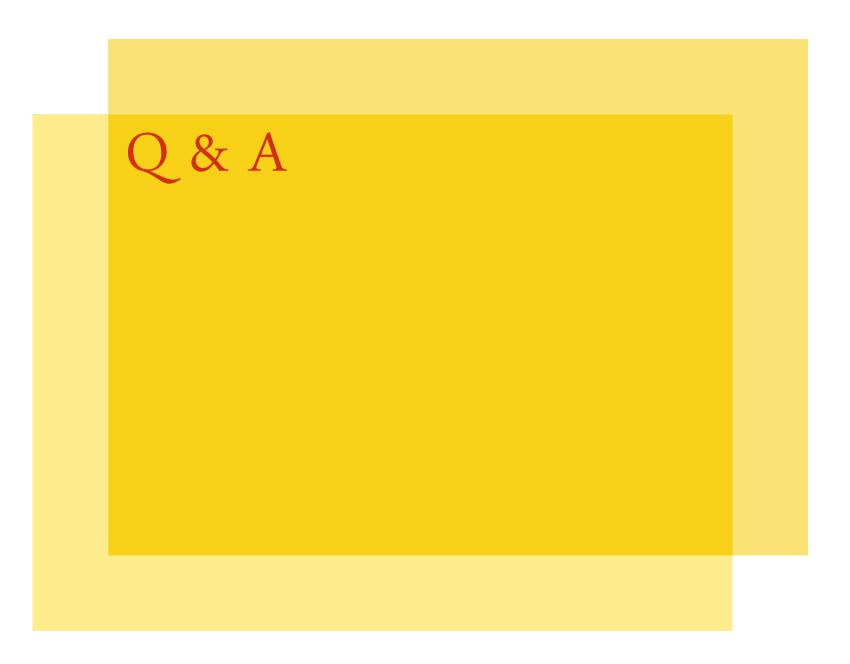

Relaxation times are temperature dependent ⇒ temperature dependence of "dry"-rock stifness

Origin of velocity dispersion:


(A) Local flow (micro cracks, etc.)


(B) rock-surface energy

Velocity dispersion in heavy oil sands



- Decrease of dispersion with temperature
- Little dispersion at seismic frequencies ⇒ Gassmann model applicable at seismic frequencies

Conclusions

- Gassmann model is applicable for describing the temperature dependence of V_p and V_s of fluid-saturated sandstones if **temperature dependence of "dry"-rock stiffness** is taken into account.
- As "dry"-rock stiffness we define the stiffness of the rock with a small but finite fluid saturation ⇒ "dry"-rock stiffness depends on pore fluid.
- Temperature dependence of V_p and V_s might be significantly smaller at seismic frequencies than at ultrasonic frequencies due to velocity dispersion effects ⇒ more studies are needed for better understanding

