#### Exploration & Production Technology

delivering breakthrough solutions



Overburden shear wave splitting due to reservoir compaction above a rigid basement

Pamela Tempone, BP, and Erling Fjær, SINTEF

# Predicting shear wave splitting

#### **OBJECTIVE:**

- 1. Predict SWS using simple tool
- 2. Include **heterogeneity** in the form of rigid basement

#### **RESULT:**

Larger effect at shallow depth

- Splitting of shear wave due to anisotropy
  - o bedding
  - o in-situ stress
  - o orientation of cracks or fractures
- Compacting reservoir
  - o Volume decrease of reservoir
  - o Rock deformation
  - o Stress and strain changes





# 4D seismic and Geomech modelling





## 4D feasibility studies

- Can predicted compaction change 4D signal?
- Can shear wave splitting be detected in the overburden?
- Survey planning?
- Processing planning?
- Well positioning effected?
- Well stability and safe drilling?

# Geomechanical model: Rigid Basement

# bp

#### Geomechanical modelling

- Analytical solution (Geertsma's)
- Numerical solution (FEM)
- Why rigid basement
- Stiffness increase vs Depth
- Minimum input parameters
- Break symmetry

#### Assumptions

- Linear elasticity
- Isotropy
- Homogeneity



### **Displacement field**



5



### Stress field



- Overburden stretches vertically
- Underburden stretches vertically close to the reservoir
- Vertical strain decreases more rapidly in the underburden



Vertical stress [MPa]

#### Rock physics model

#### Link between stress/strain and velocity changes

#### Rock physics model

- Stress-sensitive framework of cracks ٠
- Seismic velocities depend on crack density and porosity ٠
- Crack density is stress and strain dependent ٠
- Porosity depends on volumetric strain ٠

#### Parameters

- Overburden velocity model ٠
- Initial porosity ٠
- Crack density and shape ٠
- Stress and strain •





Rock physics model

### Shear wave splitting





## Conclusions



- The presence of the rigid bottom enhances the change in shear wave splitting
- A stiffer layer below a compacting reservoir may have significant impact on 4D seismic data
- At **interpretation stage**, this effect has to be taken into consideration
- RB and Geertsma's models as **boundaries** of real geology
- Useful tool to assess probability of occurrence of SWS due to reservoir compaction
  - 4D survey and processing planning
  - Drilling risk estimation
  - Well positioning

## Acknowledgments







#### **NTNU – Trondheim** Norwegian University of Science and Technology