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Introduction

Rocks typically exhibits elastic anisotropic behaviour:
— Intrinsic anisotropy (layering, grain orientation etc.)

— Induced anisotropy (stress)

Layered materials, like shales, are often assumed to

have an isotropic behaviour in the bedding plane
(Transverse Isotropy)

Elastic properties of the rock is closely linked to wave
velocities
Importance

— Seismic interpretation (exploration and time-lapse) and
modelling

— Borehole sonic logging
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Introduction

Assumptions

— Transverse Isotropy
— Homogeneous

— Cylinder axis is parallel to the bedding plane normal
The elastic (dynamic) moduli:
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Estimate C,; from Thomsen theory and oblique
measurements of P-wave velocities




P-wave measurements

Setup of 8 P-wave transducers:

— Measurements in both principal
directions

— Four measurements in oblique
directions

Sleeve transducer specifications:
— 3.5 mm outside diameter
— Curved front
— 1.3 MHz resonant frequency
— Crystal diameter 2 mm

P-wave velocities at the following
inclinations: 0° (vertical), 18°, 37°, 47, ,
69° and 90° (horizontal)




Validation

* Group or phase velocities for oblique waves?
— FD simulations
— Synthetic materials

* measurements at ambient conditions
* measurement under stress on cylindrical samples



FD model

* Model with realistic geometries:
— Transducers in the sleeve

* 3.5 mm diameter

* The source is simulated as a disk with 2 mm
diameter and 0.075 mm thickness

e ~0.4 mm titanium front piece

— Oblique transducers in the piston

* The source is a disk with 3.5 mm diameter
and 0.075 mm thickness

* ~0.4 mm steel front piece

e Spatial resolution is 0.075 mm

* Source signal is a Ricker wavelet with
centre frequency of 1 MHz.
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FD model simulations

* Material with Tl properties:

— Non-spherical wavefront ”

— Wavefront normal oblique to 5
transducer normal
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Simulation results

* Velocities picked from
wavefront arrival for two B
materials:

3300 A

3200 A

— Weak Tl (e=0.14, 6=0.04, y=0.28)
— Strong Tl (e=0.3, 6=0.3, y=0.07)
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Materials

* Peek (used for calibration)
— lIsotropic
— VPO = 2564m/s
— VS0=1129m/s
— Density = 1.305 g/cm?3

* Bakelite (strong Tl)
— Anisotropic (quasi-TI)

* Pierre shale (weak TI)
— Anisotropic (quasi-TI)




Bench setup for radial P wave measurements

Sample characterization prior to
triaxial testing

Measurements done on both
vertical and horizontal samples
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Strong Tl material

e Bakelite Cotton Phenolic (Etronax
MF)

Density of 1371 kg/m?3
VP (axial) = 2843 m/s
VS (axial) = 1533 m/s
Layered media

Weak anisotropy observed in
horizontal plane

Homogeneous sample (repeatable
measurements)

Measurement along the fastest
horizontal plane direction gives:

e Thomsen £ =0.30
* Thomsen 6 =0.30

* Thomsen y = 0.075 (not perfect TI-
media)
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Weak Tl material

Pierre shale

— Density of 2360 kg/m?3
— VP (axial) = 2325 m/s
— VS (axial) = 878 m/s

— Layered media

— Weak anisotropy observed in
horizontal plane

— Homogeneous sample
(repeatable measurements)

— Measurement along the fastest
horizontal plane direction
gives:

e Thomsene=0.14
* Thomsen 0 =0.04

 Thomseny = 0.28 (not perfect TI-
media)
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Bakelite triaxial experiment

e Hydrostatic cycling
of cylindrical sample
with bedding plane
normal parallel to a
cylinder axis o
 Measure five P-wave T e
velocities T T T T
— Vertical and -
horizontal 5t R S
— Three oblique .
directions e B




Bakelite triaxial experiment

Oblique velocities fits
well with theoretical
line for group
velocities

Lower 0 in triaxial
setup than measured
at ambient conditions
No change in € nor o
when increasing
hydrostatic pressure
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Pierre shale triaxial experiment

* Hydrostatic cycling . M

of cylindrical sample S -
 Uniaxial undrained o // =

|Oading 2; ]
 Measure five P-wave K e O D T

velocities

— Vertical and

horizontal

— Three oblique
directions




Pierre shale triaxial experiment

Bedding plane normal was
found to be slightly off
cylinder axis (~10
degrees).

Oblique velocities fits well
with theoretical line for
group velocities

Higher o in triaxial setup
than measured at ambient
conditions

Increase in 0 when
increasing mean stress
(small shear stress)
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Summary

An ultrasonic experimental setup has been
developed which allows for measuring 4
obligue P-wave velocities in a triaxial setup

FD simulations shows that these velocities
corresponds to group velocities

Triaxial experiments were performed to verify
the setup

Stress dependency of the Thomsen
parameters € and o on Pierre shale.
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