Stress dependent dynamic anisotropy in shales

Larsen, I., Stenebråten, J.F., Bakk, A. SINTEF Petroleum Research

The 9th Euroconference on Rock Physics and Geomechanics October 20th, 2011, Trondheim

Introduction

- Rocks typically exhibits elastic anisotropic behaviour:
 - Intrinsic anisotropy (layering, grain orientation etc.)
 - Induced anisotropy (stress)
- Layered materials, like shales, are often assumed to have an isotropic behaviour in the bedding plane (Transverse Isotropy)
- Elastic properties of the rock is closely linked to wave velocities
- Importance
 - Seismic interpretation (exploration and time-lapse) and modelling
 - Borehole sonic logging

Introduction

Measurement of the measurements

The TI anisotropy can be described by the Thomsen parameters:

$$\varepsilon \equiv \frac{C_{11} - C_{33}}{2C_{33}}$$

$$\gamma \equiv \frac{C_{66} - C_{44}}{2C_{44}}$$

$$\delta = \frac{1}{2C_{33}^2} \left[2(C_{13} + C_{44})^2 - (C_{33} - C_{44})(C_{11} + C_{33} - 2C_{44}) \right]$$

Introduction

- Assumptions
 - Transverse Isotropy
 - Homogeneous
 - Cylinder axis is parallel to the bedding plane normal
- The elastic (dynamic) moduli:

$$C_{11} = \rho V_{p,horizontal}^{2}$$

$$C_{33} = \rho V_{p,axial}^{2}$$

$$C_{44} = \rho V_{s,vertical(hor.)}^{2}$$

$$C_{66} = \rho V_{s,horizontal(hor.)}^{2}$$

$$C_{13} = ?$$

P-wave measurements

- Setup of 8 P-wave transducers:
 - Measurements in both principal directions
 - Four measurements in oblique directions
- Sleeve transducer specifications:
 - 3.5 mm outside diameter
 - Curved front
 - 1.3 MHz resonant frequency
 - Crystal diameter 2 mm
- P-wave velocities at the following inclinations: 0° (vertical), 18°, 37°, 47, 69° and 90° (horizontal)

Validation

- Group or phase velocities for oblique waves?
 - FD simulations
 - Synthetic materials
 - measurements at ambient conditions
 - measurement under stress on cylindrical samples

FD model

- Model with realistic geometries:
 - Transducers in the sleeve
 - 3.5 mm diameter
 - The source is simulated as a disk with 2 mm diameter and 0.075 mm thickness
 - ~0.4 mm titanium front piece
 - Oblique transducers in the piston
 - The source is a disk with 3.5 mm diameter and 0.075 mm thickness
 - ~0.4 mm steel front piece
- Spatial resolution is 0.075 mm
- Source signal is a Ricker wavelet with centre frequency of 1 MHz.

FD model simulations

- Material with TI properties:
 - Non-spherical wavefront
 - Wavefront normal oblique to transducer normal

Cross section of density model

Simulation results

- Velocities picked from wavefront arrival for two materials:
 - Weak TI (ε=0.14, δ=0.04, γ =0.28)
 - Strong TI (ε=0.3, δ=0.3, γ =0.07)

 Both simulations showed that the picked velocities fall on the line for the theoretical group velocity for the material

Thomsen parameters from strong TI model 10-20 m/s uncertainty in velocities 0-2 degrees uncertainty in angle

Materials

- Peek (used for calibration)
 - Isotropic
 - VP0 = 2564m/s
 - VS0 = 1129 m/s
 - Density = 1.305 g/cm^3
- Bakelite (strong TI)
 - Anisotropic (quasi-TI)
- Pierre shale (weak TI)
 - Anisotropic (quasi-TI)

Bench setup for radial P wave measurements

- Sample characterization prior to triaxial testing
- Measurements done on both vertical and horizontal samples

Strong TI material

- Bakelite Cotton Phenolic (Etronax MF)
 - Density of 1371 kg/m³
 - VP (axial) = 2843 m/s
 - VS (axial) = 1533 m/s
 - Layered media
 - Weak anisotropy observed in horizontal plane
 - Homogeneous sample (repeatable measurements)
 - Measurement along the fastest horizontal plane direction gives:
 - Thomsen $\varepsilon = 0.30$
 - Thomsen δ = 0.30
 - Thomsen γ ≈ 0.075 (not perfect TImedia)

Weak TI material

- Pierre shale
 - Density of 2360 kg/m³
 - VP (axial) = 2325 m/s
 - VS (axial) = 878 m/s
 - Layered media
 - Weak anisotropy observed in horizontal plane
 - Homogeneous sample (repeatable measurements)
 - Measurement along the fastest horizontal plane direction gives:
 - Thomsen $\varepsilon = 0.14$
 - Thomsen δ = 0.04
 - Thomsen γ ≈ 0.28 (not perfect TImedia)

Bakelite triaxial experiment

- Hydrostatic cycling of cylindrical sample with bedding plane normal parallel to cylinder axis
- Measure five P-wave velocities
 - Vertical and horizontal
 - Three oblique directions

Bakelite triaxial experiment

- Oblique velocities fits well with theoretical line for group velocities
- Lower δ in triaxial setup than measured at ambient conditions
- No change in ϵ nor δ when increasing hydrostatic pressure

Pierre shale triaxial experiment

- Hydrostatic cycling of cylindrical sample
- Uniaxial undrained loading
- Measure five P-wave velocities
 - Vertical and horizontal
 - Three oblique directions

Pierre shale triaxial experiment

- Bedding plane normal was found to be slightly off cylinder axis (~10 degrees).
- Oblique velocities fits well with theoretical line for group velocities
- Higher δ in triaxial setup than measured at ambient conditions
- Increase in δ when increasing mean stress (small shear stress)

Summary

- An ultrasonic experimental setup has been developed which allows for measuring 4 oblique P-wave velocities in a triaxial setup
- FD simulations shows that these velocities corresponds to group velocities
- Triaxial experiments were performed to verify the setup
- Stress dependency of the Thomsen parameters ϵ and δ on Pierre shale.

Acknowledgements

 The Shale Rock Physics Consortium is funded by BP, ConocoPhillips, Det Norske, DONG Energy, Shell and Total