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Introduction 
• Rocks typically exhibits elastic anisotropic behaviour: 

– Intrinsic anisotropy (layering, grain orientation etc.) 
– Induced anisotropy (stress) 

• Layered materials, like shales, are often assumed to 
have an isotropic behaviour in the bedding plane 
(Transverse Isotropy) 

• Elastic properties of the rock is closely linked to wave 
velocities 

• Importance 
– Seismic interpretation (exploration and time-lapse) and 

modelling 
– Borehole sonic logging  

 
 



Introduction 
• Measurement of the  

dynamic properties on  
a cylindrical core with TI  
properties requires  
5 independent  
measurements 
 

• The TI anisotropy can be described by the Thomsen parameters: 
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Introduction 
• Assumptions  

– Transverse Isotropy 
– Homogeneous 
– Cylinder axis is parallel to the bedding plane normal 

• The elastic (dynamic) moduli: 
 
 
 
 
 

• Estimate C13 from Thomsen theory and oblique 
measurements of P-wave velocities 
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P-wave measurements 
• Setup of 8 P-wave transducers: 

– Measurements in both principal 
directions 

– Four measurements in oblique 
directions 

 
• Sleeve transducer specifications: 

– 3.5 mm outside diameter 
– Curved front  
– 1.3 MHz resonant frequency 
– Crystal diameter 2 mm 

 
• P-wave velocities at the following 

inclinations:  0° (vertical), 18°, 37°, 47, 
69° and 90° (horizontal)  
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Validation 

• Group or phase velocities for oblique waves? 
– FD simulations 
– Synthetic materials 

• measurements at ambient conditions 
• measurement under stress on cylindrical samples 



• Model with realistic geometries: 
– Transducers in the sleeve  

• 3.5 mm diameter 
• The source is simulated as a disk with 2 mm  

diameter and 0.075 mm thickness  
• ~0.4 mm titanium front piece 

– Oblique transducers in the piston 
• The source is a disk with 3.5 mm diameter 

and 0.075 mm thickness 
• ~0.4 mm steel front piece 

• Spatial resolution is 0.075 mm 
• Source signal is a Ricker wavelet with  

centre frequency of 1 MHz. 

FD model 
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FD model simulations 
• Material with TI properties: 

– Non-spherical wavefront 
– Wavefront normal oblique to  

transducer normal 
 
 
 
 
 

     Cross section of density model 



Simulation results 

Thomsen parameters from strong TI model 
10-20 m/s uncertainty in velocities 
0-2 degrees uncertainty in angle 

• Velocities picked from 
wavefront arrival for two 
materials: 
– Weak TI (ε=0.14, δ=0.04, γ=0.28) 
– Strong TI (ε=0.3, δ=0.3, γ=0.07) 

 
 

• Both simulations showed that 
the picked velocities fall on  
the line for the theoretical  
group velocity for the material 

 



Materials 
• Peek (used for calibration) 

– Isotropic 
– VP0 = 2564m/s 
– VS0 = 1129 m/s 
– Density = 1.305 g/cm3 

 

• Bakelite (strong TI) 
– Anisotropic (quasi-TI) 

 
• Pierre shale (weak TI) 

– Anisotropic (quasi-TI) 



Bench setup for radial P wave measurements 

• Sample characterization prior to 
triaxial testing 

• Measurements done on both 
vertical and horizontal samples 
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Strong TI material 
• Bakelite Cotton Phenolic (Etronax 

MF) 
– Density of 1371 kg/m3 
– VP (axial) = 2843 m/s 
– VS (axial) = 1533 m/s 
– Layered media 
– Weak anisotropy observed in 

horizontal plane 
– Homogeneous sample (repeatable 

measurements) 
– Measurement along the fastest 

horizontal plane direction gives: 
• Thomsen ε = 0.30 
• Thomsen δ = 0.30 
• Thomsen γ ≈ 0.075 (not perfect TI-

media) 



Weak TI material 
• Pierre shale 

– Density of 2360 kg/m3 
– VP (axial) = 2325 m/s 
– VS (axial) = 878 m/s 
– Layered media 
– Weak anisotropy observed in 

horizontal plane 
– Homogeneous sample 

(repeatable measurements) 
– Measurement along the fastest 

horizontal plane direction 
gives: 
• Thomsen ε = 0.14 
• Thomsen δ = 0.04 
• Thomsen γ ≈ 0.28 (not perfect TI-

media) 



Bakelite triaxial experiment 
• Hydrostatic cycling 

of cylindrical sample 
with bedding plane 
normal parallel to 
cylinder axis  

• Measure five P-wave 
velocities 
– Vertical and 

horizontal 
– Three oblique 

directions 

δ 



Bakelite triaxial experiment 
• Oblique velocities fits 

well with theoretical 
line for group 
velocities  

• Lower δ in triaxial 
setup than measured 
at ambient conditions 

• No change in ε nor δ 
when increasing 
hydrostatic pressure 

ε = 0.28 
δ = 0.20 
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Pierre shale triaxial experiment 
• Hydrostatic cycling 

of cylindrical sample 
• Uniaxial undrained 

loading  
• Measure five P-wave 

velocities 
– Vertical and 

horizontal 
– Three oblique 

directions 



Pierre shale triaxial experiment 
• Bedding plane normal was 

found to be slightly off 
cylinder axis (~10 
degrees). 

• Oblique velocities fits well 
with theoretical line for 
group velocities  

• Higher δ in triaxial setup 
than measured at ambient 
conditions 

• Increase in δ when 
increasing mean stress 
(small shear stress) 

ε = 0.16 
δ = 0.18 
 

ε = 0.14 
δ = 0.14  
 



Summary 

• An ultrasonic experimental setup has been 
developed which allows for measuring 4 
oblique P-wave velocities in a triaxial setup 

• FD simulations shows that these velocities 
corresponds to group velocities 

• Triaxial experiments were performed to verify 
the setup 

• Stress dependency of the Thomsen 
parameters ε and δ on Pierre shale. 
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