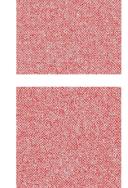

Two-phase flow in porous media: Multifractality in flow distribution

Santanu Sinha and Alex Hansen

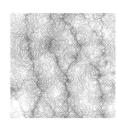
Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Two-phase flow in porous media shows highly complex characteristics due to the system disorder, wettability and fluid instabilities. Here we investigate steady-state two-phase flow characteristics in terms of Multifractal analysis.

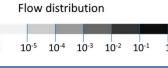
Transport network of disordered tubes


$$p_c = \frac{2\gamma}{r} \left(1 - \cos \frac{2\pi x}{\ell} \right)$$

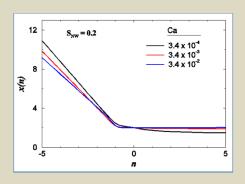
Steady-state flow patterns

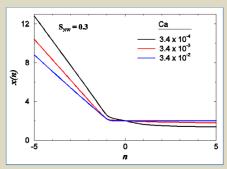

 3.4×10^{-4}


 $Ca = 3.4 \times 10^{-3}$

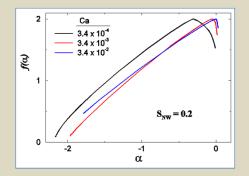


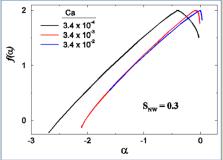
Fluid distribution Non-wetting fluid Wetting fluid





Multifractality


$$M(n,L) \sim L^{-x(n)}, \qquad M(n,L) = \sum_{i} |q_i|^n$$


$$M(n,L) = \sum_{i} |q_i|^n$$

$$\alpha(n) = -\frac{\mathrm{d} x(n)}{\mathrm{d} n}, \quad f(\alpha) = x(n) + n\alpha(n)$$

Moments of flow distibution show anomalous behaviour at low capillary number, resulting a spectrum of fractal dimensions as shown by the $f(\alpha)$ curve.