Shear enhanced Compaction Band Identification at the laboratory scale

E.-M. Charalampidou¹, S.A. Hall², S.Stanchits³, G. Viggiani⁴, H.Lewis⁵

¹ GFZ, German Research Center for Geosciences
 ² Division of Solid Mechanics, Lund University
 ³ Terra Tek, Schlumberger, USA
 ⁴ Universite Joseph Fourier, Laboratoire 3SR, Grenoble, France
 ⁵ Institute of Petroleum Engineering, Heriot Watt University, Scotland

Corresponding author's e-mail: elmachar@gfz-potsdam.de

and Geomechanics Trondheim, Norway, 17-21 October, 2011

Introduction

Material

Vosges Sandstone

 □ mineralogy: 93% quartz, 5% microcline, 1% kaolinite 1% micas + oxides
 □ mean grain ~ 300 µm
 □ average porosity of 22%

 sub-angular to sub-rounded grains
 moderately sorted

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011 [Bésuelle, 1999; 2000; 2001]

grains y sorted

Very high resolution x-ray image of the laboratory undeformed sandstone (~6µm voxel size)

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011 cylindrical specimens with two flatten surfaces with & without a circumferential notch

Dry specimens

Triaxial compression

Confining pressure range: 130 MPa -190 MPa

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Full-field measurements

being used in the study of localised deformation in sandstones

point-wise measurements at the boundary do not illuminate precisely the mechanics of the system

full-field \rightarrow *field record quantities*

<u>Advantages</u>

- ✓ usually, **non-destructive** (see thin sections ...)
- ✓ different sensitivities to different physical properties

→ characterise different aspects of the mechanical processes

Acoustic Emissions (syn-deformation)

- > Ultrasonic Travel-time Tomography (pre- & post-deformation)
- X-ray tomography (pre- & post-deformation// different voxel size resolutions// porosity calculations of small deformed cores)
- 3D Digital Image Correlation (pre- & post-deformation correlation)
- Thin sections micro-structural analysis

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Pre-mortem x-ray scans

Syn-deformation AEs

Post-mortem x-ray scans

Procedure

Low resolution (~90 µm) 140 x 140 pixels

14 P- and

(glued)

4S- sensors

High resolution (~30 µm) 140 x 140 pixels

P-sensors

S-sensors

Ve7 specimen [190 MPa confining pressure]

AE hypocenter locations

2mm accuracy of the method

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Info on:

- ✓ number & 3D
 `network` of the CBs
 ✓ width of the CBs
- ✓ orientation of the CBs

and Geomechanics Trondheim, Norway, 17-21 October, 2011

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Ve7 specimen [190 MPa confining pressure]

Low standard deviation \rightarrow (reduction in grain size via grain crushing to below the voxel size \rightarrow homogenisation of the image) \rightarrow grain breakage, compaction

Raw data Density variation

Standard deviator of the x-ray grey-scale

Threshold: 0 - 2.6%

Calculations through the image volume, over sub-volumes of $300x300x300 \ \mu m^3$ (a) a spacing of 150 μm in each direction

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Ve7 specimen [190 MPa confining pressure]

X-ray CT

density variations

standard deviator

Low standard deviation → *grain breakage, compaction*

Calculations through the image volume, over sub-volumes of $300x300x300 \ \mu m^3$ @ a spacing of 150 \ \mu m in each direction

Ve7 specimen [190 MPa confining pressure]

Calculations through the image volume, over sub-volumes of $600 \times 600 \times 600 \ \mu m^3$ @ a spacing of 600 μm in each direction

Volumetric strain

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Shear strains

$$\varepsilon_{s} = \sqrt{\left(\frac{\varepsilon_{1} - \varepsilon_{2}}{2}\right)^{2} + \left(\frac{\varepsilon_{1} - \varepsilon_{3}}{2}\right)^{2} + \left(\frac{\varepsilon_{2} - \varepsilon_{3}}{2}\right)^{2}}$$

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Ve7 specimen [190 MPa confining pressure]

а

g

0.00

Standard deviation (x-ray CT) & DIC

single slices \rightarrow for further details

strains close and

far from the notch

ار که ایندا اور میرو از از از میرو اینداز ایر مور مهلا مورو ایرو ایرو

x= 13.136 mm

d x= 23.148 mm

е

b

f

С

+0.019

Summary of the mechanical results

name of specimen	notches confining pressure	confining pressure	deformation bands	measurements									
				UT		AEs	x-ray CT			3D DIC	thin sections		
				pre-	post-	syn-	pre-		post-		pre-, post-		post-
							LR	HR	LR	HR	VHR	LR	HR

Map yield surface caps with negative slopes in the p-q plane

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Summary of strain measurements

Specimen		Min volumetric strains			rains	Max volumetric strains inside				
		inside the band [%]				the band [
Γ	Ve4		0.26).87			
Ve6		0.87				1.86				
Ve5		0.91				1.89	ľ			
Ve7		0.82				1.36				
Sp	ecimen	Min	shear	strains	Max	shear	strains	Indicative	shear	strains
		inside	side the bands [%] inside the bar				nds outside the bands			
Ve	24	0.6			0.9, 1.2 (notch)			~0.3		
Ve	e6	0.8		1.9 (notch)				~0.5		
Ve7		0.8).8 1.5, 2.1 (not				l)	~0.4-0.6		•

Increasing axial strain \rightarrow increase in strain field values (DIC)

Max shear strain @ the notch; lower shear strain inside the band

Introduction

Material

Methods

Results

dip [°]

Summary of dipping angles

Minimum and maximum dip [high confining pressures, standard deviation-x-rays]

confining pressure [MPa]

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011

Introduction

Material

Methods

Results

Conclusions

9th Euroconference on Rock Physics and Geomechanics Trondheim, Norway, 17-21 October, 2011 □ Shear enhanced compaction bands → high compactant volumetric strains together with shear strains

Absence of pure compaction bands

 \Box Onset at the notch (stress concentration) \rightarrow propagation inwards

AE concentration (*breakage of grain cements and grains*)

□ Low standard deviation values (**reduction in grain size via grain crushing** to below the voxel size and thus homogenisation of the image)

Compactant volumetric strain (**porosity reduction**)

□ Shear strain (grain rearrangement and sliding)

Thank you for your attention!