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Modified from Tuffen et al. 2008 
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The glass transition: pure silicate melt 

Relaxed,  
equilibrium 

Unrelaxed,  
disequilibrium 

FRAGMENTATION 
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In nature: pure silicate melt is rare 
 Addition of pores and crystals 

COMPLEX  
RHEOLOGY 
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Increasing applied stress  
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The stress effect 
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Cordonnier et al. 2009 

The ductile-brittle transition 
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 Uniaxial press:  
• Constant stress 
• 940-950 oC 

 
 To study in situ the rheology 

of multi-phase melts. 

Experimental procedure 
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Material Properties 

 
MAKE-UP 

(excluding porosity) 
 

Glass ~ 40 % 
Crystals ~35 % 

Microlites ~ 20 % 
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Lavallee et al. (2011) 

Temperature effect 
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7 % 14 % 21 % 28 % 35 % 

Strain Effects 

Constant Stress 

Time Dependent 
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7 % 14 % 21 % 28 % 35 % 

Strain Effects 

Constant Stress 

Time Dependent 

Strain Dependent 
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Stress Effects 
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Seismic  

b-values  

decrease 

 

Localised macroscopic  

crack growth across  

ductile-brittle transition 
 

Stress Effects 
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b = 0.36 b = 0.27 b = 0.24 

Strain at failure 20 % 12 % 5.5 % 

28.5 MPa 46 MPa 
 

76 MPa 
 

Stress Effects- inc. Stress dec. Strain to failure 
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Col = 8.30 – 0.52 x 

Bez = 8.58 – 0.54 x 

Kra = 8.60 – 0.55 x 

Unz = 8.73 – 0.57 x 

Col at 940 C 

Bez at 940 C 

Kra at 940 C 

Unz at 940 C 

Col at 940 C 

Col at 980 C  

Bez at 940 C 

Bez at 980 C 

Kra at 940 C 

Kra at 980 C 

Unz at 940 C 

Unz at 980 C 

Unz at 1010 C 

log ηb  = -0.993 + 8974/T - 0.543* log γ 

Strain rate (s-1) 
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Strain-rate Effects 
       Law for 

       singular          

     behaviour 

 

 

 

Validity: 
50-80% crystals 

<25% vesicles 
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Sample Porosity (%) 

Starting 12 MPa 24 MPa 

20% strain 30% strain 20% strain 30% strain 

B2 9.5 10.9 11.9 11.5 14.8 

LAH4 27.2 23.8 30.1 29.0 30.0 

Sample Poisson’s ratio 

Starting 12 MPa 24 MPa 

20% strain 30% strain 20% strain 30% strain 

B2 0.24 0.10 0.24 0.23 0.26 

LAH4 0.34 - - 0.29 0.35 

Sample Young’s Modulus (GPa) 

Starting 12 MPa 24 MPa 

20% strain 30% strain 20% strain 30% strain 

B2 16.3 19.5 15.7 18.6 15.6 

LAH4 6.3 - - 13.1 9.3 

Measuring deformation 
• Porosity 
• Ultrasonic velocity waves for dynamic: 
 - Young‘s modulus and  
 - Poisson‘s ratio 
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Low-load deformation 

Neutron Computed Tomography 

High-load deformation 



 Dense magmas are more susceptible to dilation. 

 Dilation is initiated at lower strain with higher stresses. 

 Higher temperature results in higher strain rates. 

 Higher stress results in higher strain rates. 

 We observe a strain-dependent decrease in viscosity at constant 
stress and instantaneous decrease with increasing stress. 

 Higher applied stresses form more AE, lower b-values and 
decrease the total strain required for failure. 

 Dynamic elastic properties show a complex evolution of initial 
strengthening and subsequent weakening of the material with 
increasing strain. 

 Strain has a larger effect on crystallographic alignment. 

 Stress has a larger effect on crystal size reduction. 
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Summary 



• Chemically similar lava types have different mechanical properties, 

displaying a significant range of measured strain rates at a given 

temperature and applied stress. 

• Crystallinity increases the range of the ductile-brittle transition and 

failure of magma becomes dependent upon total strain.  

• Dynamic Young’s modulus and Poisson’s ratio do not change 

significantly, thus (for magma) do not represent the true 

characteristics of the samples and should not be used as a proxy to 

strain (or damage). 

• Thus crystallinity has a significant effect on magma rheology with 

the implication that viscous models may not encompass the full 

complexity of crystal-bearing magma. 

 

 We need a better mechanical understanding to 

improve our models!! 
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Outcomes 
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