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Understanding how rocks and other geo-materials deform under stress is central 
to the discipline of geomechanics.

Stress and Deformation

Failure Processes

Salt Flow

Mantle Modeling



  

Stress though, is not a single number (scalar), it's six numbers (symmetric tensor).
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A failure criterion (or envelope) is the particular case of a yield surface for a brittle 
material. A yield surface can be interpreted as the deviatoric stress state that 
governs failure/yield/flow (neglecting dependence on hydrostatic stress).

Brittle Failure

Plastic Yield

Viscoplastic Flow

Failure and Yield Surfaces



  

There are 2 main yield or failure criteria:-

Maximum Shear Stress (Tresca)

Mohr-Coulomb failure envelope

-

Maximum Distortion Energy (Maxwell, von Mises, Hencky)

Mogi-Coulomb failure enevelope

However, most of the time, it's impossible for us to tell the difference.

Failure and Yield Surfaces

σ1−σ3 = C

[(σ1−σ2)
2+(σ2−σ3)

2+(σ1−σ3)
2]

1
2 = C



  

When we measure how materials respond to stress in the laboratory, we keep it 
cheap and simple, we make two of the principal stresses equal.

Laboratory Measurements

“pill”
σ2 = σ3



  

When we measure how materials respond to stress in the laboratory, we keep it 
cheap and simple, we make two of the principal stresses equal.

...or

“pill”

“rugby ball”

Now the shear stress magnitude can be defined by a single number, but the two 
shear stress measures are now functionally equivalent and can't be differentiated.

σ1 = σ2

Laboratory Measurements



  

This makes it straightforward to perform deformation experiments and express 
their results in terms of a single shear stress 'measure'.
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This makes it straightforward to perform deformation experiments and express 
their results in terms of a single shear stress 'measure'.
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Crack!
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Sadly, real life is more complex, all three principal stresses are usually different.

σ1

σ2

σ3

In these cases the shear stress magnitude requires two independent numbers to 
define it and the two shear stress measures of interest, diverge.

In fact, when all three principal stresses are unequal, the number of valid but 
functionally unique shear stress measures becomes infinite!

∣{τm is a valid shear stress measure , τm is functionally unique}∣→∞

Multiaxial Conditions



  

Stable 
Pressure

Mohr-Coulomb

Does the choice of shear stress measure / failure criterion make much of a 
difference?

Multiaxial Conditions



  

Stable 
Pressure

Mohr-Coulomb

Does the choice of shear stress measure / failure criterion make much of a 
difference?

Multiaxial Conditions



  

Stable 
Pressure

Mohr-Coulomb

So yes, it can really make a difference for a number of high risk and costly 
operations in geomechanics, but safety means we have to be conservative – i.e. 
Mohr-Coulomb, unless we can be sure that Mogi-Coulomb is justified.

Mogi-Coulomb

Does the choice of shear stress measure / failure criterion make much of a 
difference?

Multiaxial Conditions



  

Multiaxial Conditions

...and wellbore stability is of particular interest.

Wellbore stability is a matter of HSE 
concern as well as raw economics. 
Well failure can, in the most extreme 
situations, endanger lives. 

Drilling wells is one of the most 
expensive things we do as a 
company, the costliest easily exceed 
$100 mln.

Understanding and modeling the 
mechanics of wellbore stability has 
significant impact on our operations.



  

Multiaxial Conditions

But we haven't known how to generalise our 'laboratory triaxial' derived failure 
relationships to true multiaxial stress states. To properly characterise the 
multiaxial stress response has required squaring the number of data points.

20 points ~$100,000 400 points ~$2,000,000

The high costs mean that very few materials have been properly characterised 
for multiaxial behaviour, and that's true for all continuum mechanics disciplines 
(even mild steel).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

σ 1
 (M

P
a)

σ 3
 ( M P a )

0

2 0 0

4 0 0

6 0 0

01 0 02 0 03 0 04 0 05 0 06 0 0

0

1 0

2 0

3 0

4 0

σ 1
 ( M P a )

σ 2
 ( M P a )

σ 3 (M
P

a)



  

There are many references in the literature that state that a distortion energy / 
principle of least action derived yield surface is only satisfied by a von Mises 
shear stress measure (octahedral, J2, …), equivalent to a Mogi-Coulomb failure 
criterion. Hence, by inference, other criteria are not distortion energy based.     

The 'Correct' Shear Stress Measure

U T = 1
2
σ :ϵ = 1

2
τmϵm = 1

6
τ̃i ϵ̃i

τm , ϵm − shear stress and strain measures
τ̃i , ϵ̃i − principal stress and strain deviators, e.g. τ̃1 = σ1−σ2

But this is not actually true, it implicitly assumes a linear relationship between 
stress and strain. A general distortion energy / principle of least action derived 
yield surface is fully satisfied by:-

τm=[(σ1−σ2)
p+(σ2−σ3)

p+(σ1−σ3)
p]

1
p

i.e. the L-p norm of the principal stress deviators.



  

For p → ∞

i.e. a Tresca or Mohr-Coulomb condition.
----
For p = 2

i.e. a von Mises or Mogi-Coulomb condition.
----

Hence, both conditions are consistent with a distortion energy based criterion, as 
are intermediate values of p.

This also provides an explanation for the seemingly inconsistent results for 
multiaxial flow in power law visco-plastic materials, where flow is observed to 
depend on σ

2
, but only weakly (salt, polymers,...). 

The 'Correct' Shear Stress Measure

τm → σ1 − σ3

τm = [(σ1−σ2)
2+(σ2−σ3)

2+(σ1−σ3)
2]

1
2



  

The 'Correct' Shear Stress Measure

The problem is more naturally expressed in terms of the principal deviators rather 
than the more usual Haigh-Westergaard invariants. It's based on finding the 
solution for power law rheologies, but the result is general for any power law 
constitutive relationship, solid or fluid.   

̇1−̇2 = s1−s2
n f 12 s , n ; ̇2−̇3 = s2−s3

n f 23s , n ; ̇1−̇3 = s1−s3
n f 13s , n

[N.B. f 12 = f 23 = f 13 = 0 if s1 = s2 , s2 = s3 , s1 = s3 , or n= 1]

As Tr ̇ = ̇1̇2̇3 = 0 , it follows that:

̇1−̇2 = [2s1−s2
ns1−s3

n−s2−s3
n2 f 12− f 23 f 13 ]/3

̇2−̇3 = [2s2−s3
ns1−s3

n−s1−s2
n2 f 23− f 12 f 13 ]/3

̇1−̇3 = [2s1−s3
ns1−s2

ns2−s3
n2 f 13 f 12 f 23 ]/3

Hence

f 12=[−s1−s2
ns1−s3

n−s2−s3
n ]/3

f 23=[−s2−s3
ns1−s3

n−s1−s2
n ]/3

f 13=[−s1−s3
ns1−s2

ns2−s3
n ]/3



  

The 'Correct' Shear Stress Measure

So that gives us the tensor form of the stress-strain relationship for power law 
rheological materials, and it can also be shown that it's true for shear strain in 
solids, (shear stress doesn't cause volume strain to first order in solids).

Now for the transformation to a scalar shear stress measure. 

Thermodynamics requires that:  ij d ij = m

∂m
∂ij

d ij

i.e. the shear stress measure and conjugate shear strain measure are essentially proxies for the
shear energy

This leads directly to: ij =
∂m

∂ ij
m or the time derivative form: ̇ij =

∂m

∂ ij
̇m

which transforms the tensor form stress-strain relationship for shear in power law materials to:

m=[s1−s2
n1s2−s3

n1s1−s3
n1 ]

1
n1
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The 'Correct' Shear Stress Measure

The 'correct' shear stress measure, depends on the constitutive properties (the 
stress-strain relationship) of the material in question.

For a material where the shear stress – shear strain relationship is power-law 'n':  
   

τm=[(σ1−σ2)
n+1+(σ2−σ3)

n+1+(σ1−σ3)
n+1 ]

1
n+1

And we can always factorise a constitutive 
relationship using power-law 
decomposition... n = 1

n = 2



  

However, the L-p norms converge very rapidly for increasing values of p, so for 
practical purposes it is simplest to apply a Mogi-Coulomb / von Mises yield 
condition to materials that exhibit linear elastic behaviour until yield / failure.       

Shear strain

S
he

ar
 s

tra
in

For materials that exhibit disproportionate shear strain with increasing shear 
stress, a Mohr-Coulomb / Tresca yield condition is more appropriate.

The 'Correct' Shear Stress Measure



  

Other Applications

Wide range of applications – some less familiar...

Biology

Glaciers

Tectonics



  

Other Applications

...some more familiar...

Tars & Heavy Oils
Salt Modeling



  

Conclusions

The correct shear stress measure, required to generalise 
laboratory 'triaxial' data to true multiaxial conditions, 
depends on the constitutive properties of the material itself.

Failure conditions should take account of the 'correct' shear 
stress measure, e.g. Mogi-Coulomb for linear brittle 
materials (… and Mohr-Coulomb otherwise).

τm=[(σ1−σ2)
n+1+(σ2−σ3)

n+1+(σ1−σ3)
n+1 ]

1
n+1
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