

Multiscale viscoplastic behaviour of halite:

micromechanical approaches by full field measurements

M. Bourcier¹, A. Dimanov¹, M. Bornert², E. Héripré¹, B. Charrier¹, W. Ludwig³ J. Raphanel¹

¹ Laboratoire de Mécanique des Solides, CNRS - Ecole Polytechnique, Palaiseau, ² Laboratoire Navier, CNRS - ENPC, Marne la Vallée, ³ Mateis, CNRS - Insa, Lyon

Geotechnical applications:

temporary storage of hydrocarbons, compressed air (halite deep caverns). long term storage of nuclear wastes (halite mines).

ADELE (Adiabatic CAES) : heat-storage during air compression (70% higher efficiency).

RWE Power project started in 2010 Possibly pilot power plant in Stassfurt (Germany)

Storage capacity : 90 MW electric output. Substitute for 50 wind turbines (4 hours).

Synthetic (unrealistic) versus natural (unreadable) materials

Natural Halite samples :

Heterogeneous, second phases, pre-strained, pre-damaged...

How representative (REV)?

Synthetic Halite samples :

Homogeneous, equilibrated/controlled μ-structures, strain/damage-free...

Best candidates for µ-mechanical testing.

Sample synthesis (from 99.9% NaCl powder)

Multi-scale micro mechanical testing:

Micro-extensometry, or Full (mechanical) Field Measurements (FFM)

Dewetting of thin gold film at 550°C: Gold spheres (1-2 µm)

« In-situ » OM - FFM - DIC

Sample: flattened cylinder (h=24mm, D=22 mm) Measurement basis: L = 250 μm

15mm

Macro field is heterogeneous:

1) Imperfect uniaxial loading: fretting effects.

2) Structure effects.

(final macro strain ~5%)

« In-situ » SEM - FFM - DIC Coarse grains (200 - 500 μ m) Strain rate = ~ 10⁻⁴s⁻¹

50µm

« In-situ » SEM - FFM - DIC

Large grains (200 - 500 μ m) Strain rate = ~ 10⁻⁴s⁻¹

10 % strain locallizes at interfaces.

Interfacial locallization, CSP - GBS interactions and damage

Conclusions Micromechanical testing coupled with FFM-DIC allowed:

- Identification of 2 mechanisms of viscoplastic deformation
 -CSP: Crystal slip plasticity (dislocation glide): main mechanism.
 -GBS: Grain boundary sliding : secondary (but necessary) mechanism, accommodating for local incompatibilities of CSP.
- Quantification of their respective contributions to total strain, which depend on grain size and its distribution.
- Identification of the active slip systems, which are not only the easiest ones: local stress states deviate from the macroscopic stress state.
- Stress and strain heterogeneities relate to microstructure, viscoplastic anisotropy, interplay of co-operational mechanisms...

Next steps:

Implementation of GBS in polycrystal numerical modeling. 3D DIC: volume strain fields.

3D Full field measurement (preliminary results)

Voxel size 5 μ m, Size of the correlation domain 20³ ~ 100³ μ m

3D Full field measurement

3D Full field measurement

