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Gassmann, 1951

Gassmann assumed that the shear modulus is independent of pore fluid:

sat = drysat  dry

Provided:

There is no interaction between solid and fluid.

There is local pressure equilibrium among pores.
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Geotechnical experiments on highly porous chalk
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Andreassen & Fabricius 2010



Drying pottery
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http://pottery.about.com/od/temperatureandmaturation/ss/drypottery.htm



Mondol et al., 2007
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Elastic wave velocity vs. porosity
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Smectitic samples have higher velocities Dry samples have higher vS



Elastic moduli vs. porosity
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For decreasing porosity:
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Bulk moduli increase more than Reuss bound Shear moduli of dry and wet samples deviate



Elastic moduli vs. axial effective stress (Terzaghi)
For a given effective stress:
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Bulk modulus depends on pore fluid Shear modulus is high for dry samples



Pore radius: r = (2)/(S g (1-))
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Moduli are controlled by pore fluid, not by mineralogy



Frequency ratio: f/fc = f/((2)/(fl  r2 c))
For a given frequency ratio:
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Bulk modulus ~ -log(f/fc) Small fluid effect on shear modulus 



What breaks the rules of Gassmann, 1951?

G d h h h d l i i d d f fl idGassmann assumed that the shear modulus is independent of pore fluid:

sat = dry

Provided:

There is no interaction between solid and fluid.              ?

There is local pressure equilibrium among pores. ?
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Shear

Fluid may lag behind solidFluid may lag behind solid

Provided wave length is significantly larger than pore size 

and kinematic viscosity is high.
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Amplitude  > Pore radius?
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The effect of high kinematic viscosity of air
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Conclusion

Cl d h lk b ft i th t t t d t t d t th• Clay and chalk may be soft in the water saturated state due to the same 
mechanism.

• Maybe the anomaly is due rather to the air than to the water.

• The anomaly correlates with Biot’s frequency ratio pointing to the kinematic 
viscosity.

• Maybe the effect arises when the wave amplitude is large relative to pore radius.
– This could cause violation of Gassmann’s and Biot’s assumption of pressure 

equilibrium at low frequency. 
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