Stress sensitivity of non-elastic processes in a weak sandstone

Erling Fjær^{1,2,3} Anna M. Stroisz²

¹Pontifical Catholic University of Rio de Janeiro ²Norwegian University of Science and Technology ³SINTEF Petroleum Research

Wave velocities of soft rocks depend on stress.

Why?

Wave velocities of soft rocks depend on stress.

Why?

Static and dynamic moduli of soft rocks are different - also for dry rocks.

The difference changes along the stress path.

Why?

Potential processes causing non-linear elastic and non-elastic behavior

Closing/opening of cracks

Elastic process

Potential processes causing non-linear elastic and non-elastic behavior

Potential processes causing non-linear elastic and non-elastic behavior

Laboratory tests:

Standard triaxial set-up + acoustics

Axial stress Confining stress

Axial wave propagation

- P-waves
- S-waves

Here:

- Dry outcrop sandstone \rightarrow No fluid effects
- Castlegate sandstone \rightarrow No clay effects
- KO path \rightarrow Both static and dynamic C_{33}
- Unloading \rightarrow Exclude crushing of contacts

Static vs dynamic:

Non-elastic compliance:

Non-linear acoustic tests (Stroisz and Fjær, 2011):

<u>Stress dependent velocities</u>: Non-elastic part of stiffness gradient

 $rac{\Delta C^{ne}_{33}}{\Delta \sigma_z}$

<u>Static vs dynamic</u>: Non-elastic compliance

$$S_{H} = \frac{1}{C_{33}^{st}} - \frac{1}{C_{33}^{el}}$$

<u>Stress dependent velocities</u>: Non-elastic part of stiffness gradient

 $rac{\Delta C^{ne}_{33}}{\Delta \sigma_{_Z}}$

<u>Static vs dynamic</u>: Non-elastic compliance

$$S_H = \frac{1}{C_{33}^{st}} - \frac{1}{C_{33}^{el}}$$

		-25		Non-	elastic co	mpliance	[1/GPa]
		-	0	0.05	0.1	0.15	0.2
		0				dynamic com	
	-	25	-		Diff	erence betwee	en static and
	Non-elastic part of stiffness gradient [GPa]	50	-				
	lastic	75	-				
	part o	100	-				
	f stiff	125	-				
	ness (150					
	gradie	175	Stress (
	nt [GI	200	Stress dependence of ocities (non-elastic pa				
	oa]	225	Stress dependence of velocities (non-elastic part				
ns		250	▲				

<u>Stress dependent velocities</u>: Non-elastic part of stiffness gradient

 $rac{\Delta C_{33}^{ne}}{\Delta \sigma_{_{z}}}$

<u>Static vs dynamic</u>: Non-elastic compliance

$$S_{H} = \frac{1}{C_{33}^{st}} - \frac{1}{C_{33}^{el}}$$

<u>Stress dependent velocities</u>: Non-elastic part of stiffness gradient

 $rac{\Delta C^{ne}_{33}}{\Delta \sigma_z}$

<u>Static vs dynamic</u>: Non-elastic compliance

 $S_{H} = \frac{1}{C_{33}^{st}} - \frac{1}{C_{33}^{el}}$

Very clear correlation between the non-elastic part of the stiffness gradient and the non-elastic compliance

Suggests that the same process controls both parameters during unloading

Shear sliding of closed cracks

During **loading**, also crushing of small particles or grain contacts will occur

K0 unloading of a dry, clay-free sandstone:

Wave velocities of soft rocks depend on stress - because:

K0 unloading of a dry, clay-free sandstone:

Static and dynamic moduli of soft rocks are different - because:

Summary:

- During KO unloading of a dry, clay-free sandstone, the stress dependence of elastic waves is mainly caused by an elastic process, but a non-elastic process causing opening/closure of cracks become increasingly important
- The same non-elastic process appears to be the cause for the difference between static and dynamic moduli under these conditions
- This non-elastic process may be associated with shear sliding of closed cracks

Acknowledgements

This work has been supported financially by

- The Norwegian Research Council, through "Identification of rock and material properties with new 2-frequency ultrasound technique"
- Petrobras, through Rede de Technologia de Poços (CENPES)