Effects of loading rate and saturating fluid on chalk mechanical behavior

Ø. Johnsen, F. Cuisiat, and L. Grande

9th Euroconference on Rock Physics and Geomechanics Trondheim Norway 17-21 October 2011

Motivation

- Many oil and gas fields in the North Sea are found in very porous overpressured chalk formations which compact significantly during the lifetime of the field
- → contributes significantly to the recovery mechanism, in some areas of the Valhall field up to 50-60 %
- \rightarrow sea bed settlement (ref Valhall and Ekofisk)
- \rightarrow Implications for foundation, and well casing failure
- Reservoir compaction: 1) result of changes in effective stresses, 2) water weakening of the chalk during massive seawater injection.
- Chalk mechanical behavior is susceptible to changes in several parameters: Pore fluid composition, porosity, strain/load rate
- Chalk exhibit pronounced creep deformations under constant load at high stresses or near the strain rate dependent elastic-plastic limit

Background for current tests

Conducted tests

In situ conditions		Pore fluid			
Stress / Pore pressure	(MPa)	Salt	Concentration (g/l)		
Total vertical stress σ_V	22.5	NaCl	58		
Initial total horizontal stress $\sigma_{\!_H}$	18.0	KCI	-		
Initial octahedral stress σ_{oct}	19.5	$CaCl_2$, 6 H_2O	55.6		
Initial Reservoir Pressure Po	13.5	$MgCl_2, 6 H_2O$	8.5		
Initial Effective vertical stress σ'_V	9.0				
Initial Effective horizontal stress σ_{H}	4.5	Gas and brine (~	30%) saturated		
Initial Effective octahedral stress σ'_{oct}	6.0	× ×	<i>,</i>		

Uniaxial strain, depletion (CAUST) -vertically drilled plugs

Depth	Porosity	Fluid		
(m)	(%)	type		
1131.45	39.9	brine		
1133.55	34.6	brine		
1309.56	30.6	dry		
1309.56	31	brine		
1309.56	31	brine		

Isotropic, drained -horizontally drilled plugs

Depth	Porosity	Fluid		
(m)	(%)	type		
1128.55	36.85	30% brine		
1131.00	30.6	brine		
1132.90	37.83	30% brine		
1134.10	36.3	brine		
1134.20	36.2	brine		
1134.20	33.8	brine		

Experimental approach

0% brine saturation 100% brine saturated -30% brine saturation

0% brine saturation \rightarrow directly built into triax for test

100% brine saturated \rightarrow built directly into triax and saturated in the cell

30% brine saturation \rightarrow saturated in vacuum chamber w/diluted solution, evaporation to target weight/saturation level,

Homogeneous fluid distribution along the core axis verified with X-ray CT

Pore fluid composition has a pronounced effect on the behavior of chalk:

- Alters stiffness, elastic-plastic transition (pore collapse), creep rate. Water weakening effect upon flooding:

- Instantaneous permanent deformation and increase of creep rate
- Radical increase up to 15% water saturation in initially oil saturated chalk
- Not as well documented for water flooding in initially gas saturated samples

Joint Chalk Research (JCR) database

Trend line $K = 83596e^{-11.3n}$

Trend line $\lambda = 0.032 e^{4.1n}$

(after JCR database and Hickman 2004)

Failure envelope largely depend on saturating fluid and porosity

ULG (Collin 2002, Schroeder 2009) and NGI 2010 data

Results – rate sensitivity

PASACHALK 2004

Hickmann 2004

Results – rate sensitivity (load phase)

Results – rate sensitivity (0.01MPa/h)

0^E

Volumetric strain, ε_{oct} (mS)

mean (MPa)

Mean effective stress,σ'

36.9%

Measured

Elastic, 1.00MPa/h, y = 1.93*x - 0.26 Plastic, 1.00MPa/h, y = 0.21*x + 15.87

Plastic, 10.00MPa/h, y = 0.17*x + 19.11

Plastic, 1.00MPa/h, y = 0.50*x - 10.68

Measured

Volumetric strain, soct (mS)

Elastic, 1.00MPa/h, y = 1.80*x - 1.03

Plastic, 1.00MPa/h, y = 0.24*x + 16.17

Plastic, 10.00MPa/h, y = 0.19*x + 20.08 Plastic, 1.00MPa/h, y = 0.50*x - 7.47

Porosity
$$\uparrow = E_t \psi$$

Results – rate sensitivity (0.10MPa/h)

Results – rate sensitivity (1.0MPa/h)

Results – rate sensitivity (10.0MPa/h)

Results – rate sensitivity (load phase)

			Mean stress (MPa)		Mean stress rate (MPa/h)		
Test type	Fluid type	Porosity (%)	p_1	p_2	\dot{p}_1	\dot{p}_2	b
Isotropic	brine	36.2	14.1	16.1	0.01	0.1	0.057
			20.61	24.18	0.1	1	0.069
			34.6	43.7	0.01	1	0.050
Isotropic	brine	30.6	31.1	41.77	0.01	0.1	0.12
			50.64	57.27	0.1	1	0.053
Isotropic	brine	33.8	22	28	0.01	1	0.052
			42	45.77	0.1	1	0.037
Isotropic	30% brine	36.9	23.5	25.9	1	10	0.042
Isotropic	30% brine	37.83	21.37	23.66	1	10	0.044

Visco-plastic rate dependent compaction model (de Waal)

Results – rate sensitivity (creep phase)

0.045 (dry) to 0.108 (fully water-saturated)

Priol (2006), Lixhe outcrop chalk

 $b = 0.17e^{-3.1n} \rightarrow 0.054 - 0.065$

Kristiansen & Plischke (2010), Valhall field

Relating laboratory data to field

Porosity

35 % porosity

30 % porosity

25 % porosity

140

140

36

Summary

- Demonstrated porosity, rate and saturating fluid effects on mechanical behavior:
- Chalk exhibit rate dependent stiffness: 0.01MPa/h > 0.10 MPa/h > 1.00 MPa/h > 10.00 MPa/h
- Only subtle difference between mech. response at 30% brine saturation as vs100% saturation (*Pc* and *Et* slightly higher, *b* slightly lower)
- The elastic and plastic compression properties of the chalk have been compared to available data from open literature: fit within the general scatter observed for chalk and proposed porosity-dependent correlations.
- Laboratory experiments have been analyzed within the frame work proposed by de Waal (1986) to characterize the time and rate dependent behavior: agreement with other chalk data from the open literature.
- A simple model is developed, and based on the defined material correlations it estimates the volumetric strain due to depletion.