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Many oil and gas fields in the North Sea are found in very porous over-
pressured chalk formations which compact significantly during the 
lifetime of the field 

 contributes significantly to the recovery mechanism, in some areas of 
the Valhall field up to 50-60 % 

 sea bed settlement (ref Valhall and Ekofisk) 

 Implications for foundation, and well casing failure 

Reservoir compaction: 1) result of changes in effective stresses, 2) water 
weakening of the chalk during massive seawater injection.  

Chalk mechanical behavior is susceptible to changes in several 
parameters: Pore fluid composition, porosity, strain/load rate 

Chalk exhibit pronounced creep deformations under constant load at high 
stresses or near the strain rate dependent elastic-plastic limit 

 

Motivation 



Background for current tests 

Stress / Pore pressure (MPa) 
Total vertical stress σV 22.5 
Initial total horizontal stress σH 18.0 
Initial octahedral stress σoct 19.5 
Initial Reservoir Pressure Po 13.5 
Initial Effective vertical stress σ´V 9.0 
Initial Effective horizontal stress σ´H 4.5 
Initial Effective octahedral stress σ´oct 6.0 

Salt Concentration (g/l) 
NaCl 58 
KCl - 

CaCl2, 6 H2O 55.6 
MgCl2, 6 H2O 8.5 

Conducted tests 

In situ conditions Pore fluid 

Depth 
(m) 

Porosity 
(%) 

Fluid 
type 

1128.55 36.85 30% brine 
1131.00 30.6 brine 
1132.90 37.83 30% brine 
1134.10 36.3 brine 
1134.20 36.2 brine 
1134.20 33.8 brine 

Depth 
(m) 

Porosity 
(%) 

Fluid 
type 

1131.45 39.9 brine 
1133.55 34.6 brine 
1309.56 30.6 dry 
1309.56 31 brine 
1309.56 31 brine 

Uniaxial strain, depletion (CAUST) 
-vertically drilled plugs 

Isotropic, drained  
-horizontally drilled plugs 

Gas and brine (~30%) saturated 



Experimental approach 

0% brine saturation     directly built into triax for test 
100% brine saturated  built directly into triax and saturated in the cell 
30% brine saturation   saturated in vacuum chamber w/diluted solution,  
     evaporation to target weight/saturation level, 
 
Homogeneous fluid distribution along the core axis verified with X-ray CT 



Results – fluid and porosity effects 
Pore fluid composition has a pronounced effect on the behavior of chalk: 

 - Alters stiffness, elastic-plastic transition (pore collapse), creep rate. 
Water weakening effect upon flooding:  
 - Instantaneous permanent deformation and increase of creep rate  
 - Radical increase up to 15% water saturation in initially oil saturated chalk 
 - Not as well documented for water flooding in initially gas saturated samples 
 

Hickmann 2004 



Results – fluid and porosity effects 

Joint Chalk Research (JCR) database 



Results – fluid and porosity effects 
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ULG (Collin 2002, Schroeder 2009) and NGI 2010 data 

Failure envelope largely depend on saturating fluid and porosity 

Results – fluid and porosity effects 



Results – rate sensitivity 

PASACHALK 2004 Hickmann 2004 

… but also on load rate! 



Results – rate sensitivity (load phase) 
36.2% 30.6% 33.8% 

36.9% 37.8% 

Et = Δσ´oct / Δε´oct  

σ´mean = σ´oct  



Results – rate sensitivity (0.01MPa/h) 

Et=0.50 

Et=0.50 
Et=0.97 

Et=0.81 

36.2% 30.6% 33.8% 

36.9% 37.8% 

Porosity    =  Et 



Results – rate sensitivity (0.10MPa/h) 

Et=0.28 

Et=0.60 
Et=0.58 

Et=0.74 

36.2% 30.6% 33.8% 

Strain hardening 

T1612 - brine saturated

y = 0.9448x - 16.81
R2 = 0.9936

y = 0.2812x + 1.969
R2 = 0.999

y = 0.4859x - 2.804
R2 = 0.9931
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Results – rate sensitivity (1.0MPa/h) 

Et=0.26 

Et=0.21 

Et=0.59 

Et=0.55 

Et=0.24 

Et=0.50 
Et=0.50 

Et=0.75 

36.2% 30.6% 33.8% 

36.9% 37.8% 

Strain hardening  



36.9% 37.8% 

Results – rate sensitivity (10.0MPa/h) 
36.2% 30.6% 33.8% 

Et=0.17 Et=0.19 Load rate    =  Et 



Results – rate sensitivity (load phase) 

Mean stress 
(MPa)  

Mean stress 
rate (MPa/h) 

Test 
type 

Fluid 
type 

Porosity 
(%) 

  b 

Isotropic brine 36.2 14.1 16.1 0.01 0.1 0.057 
20.61 24.18 0.1 1 0.069 
34.6 43.7 0.01 1 0.050 

Isotropic brine 30.6 31.1 41.77 0.01 0.1 0.12 
50.64 57.27 0.1 1 0.053 

Isotropic brine 33.8 22 28 0.01 1 0.052 
42 45.77 0.1 1 0.037 

Isotropic 
30%  
brine 

36.9 23.5 25.9 1 10 0.042 

Isotropic 
30% 
brine 

37.83 21.37 23.66 1 10 0.044 
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Results – rate sensitivity (creep phase) 
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Offset    
(mS) 

cb,0 
(/MPa) b 

31.86 0.1986 1.3701 0.7299 0.0024 0.0651 
50.22 0.1496 0.7708 1.2973 0.0049 0.0271 

pbcC obc ,=

cC/1
cC/τ

voε

σ´mean = 32.0 MPa 

σ´mean = 50.3 MPa 
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Results – rate sensitivity (creep phase)  
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Kristiansen & Plischke (2010), 
Valhall field 

Priol (2006), Lixhe outcrop chalk 0.045 (dry) to 0.108 (fully water-saturated) 

 0.054-0.065 

b = 0.651 b = 0.271 



Relating laboratory data to field 

Leroueil 2006 
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Modelling field deformation 

Update stresses and pore pressure
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Pore collapse?

Plastic compressibility
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Demonstrated porosity, rate and saturating fluid effects on mechanical 
behavior: 

Chalk exhibit rate dependent stiffness: 0.01MPa/h > 0.10 MPa/h > 1.00 
MPa/h >10.00 MPa/h 

Only subtle difference between mech. response at 30% brine saturation as 
vs100% saturation (Pc and Et slightly higher, b slightly lower)  

The elastic and plastic compression properties of the chalk have been 
compared to available data from open literature: fit within the general 
scatter observed for chalk and proposed porosity-dependent 
correlations.  

Laboratory experiments have been analyzed within the frame work 
proposed by de Waal (1986) to characterize the time and rate 
dependent behavior: agreement with other chalk data from the open 
literature.  

A simple model is developed, and based on the defined material 
correlations it estimates the volumetric strain due to depletion.  

 

 

Summary  
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