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ABSTRACT

In note separation of polyphonic music, how to separate the over-
lapping partials is an important and difficult problem. Fifths and
octaves, as the most challenging ones, are, however, usually seen
in many cases. Non-negative matrix factorization (NMF) employs
the constraints of energy and harmonic ratio to tackle this prob-
lem. Recently, complex matrix factorization (CMF) is proposed
by combining the phase information in source separation problem.
However, temporal magnitude modulation is still serious in the sit-
uation of fifths and octaves, when CMF is applied. In this work,
we investigate the temporal smoothness model based on CMF ap-
proach. The temporal ac-tivation coefficient of a preceding note is
constrained when the succeeding notes appear. Compare to the un-
constraint CMF, the magnitude modulation are greatly reduced in
our computer simulation. Performance indices including source-
to-interference ratio (SIR), source-to-artifacts ratio (SAR), source-
to-distortion ratio (SDR), as well as modulation error ratio (MER)
are given.

1. INTRODUCTION

Musical note separation (MNS) is the extension of musical source
separation (MSS). MNS means to extract every note from a mix-
ture source (e.g., the fuzzy interference [1],and the regular regres-
sion [2–4]). The fuzzy interference [1] separates the notes by
estimating the harmonic rate of each partial; the regular regres-
sion [2–4] separates recursively and time-varyingly. On the other
hand, MSS means to separate several sources from a mixture (e.g.,
the statistics [5], the sparse de-composition [6, 7], non-negative
matrix factorization (NMF) [8–14], and the complex matrix factor-
ization (CMF) [15–18]). In music, fifths and octaves may co-exist.
Both cases produce the severe overlapping partial problems; there-
fore, how to separate the notes becomes an important and difficult
issue. Some separation methods (e.g., NMF) focus on analysing
the temporal activation coefficient of each note, but without con-
sidering the phase information. Recently, the CMF is proposed
to separate the source by investigating the phase information [15],
where each note could be analysed with the corresponding source.
Usually, the CMF-separated magnitude parts of over-lapping par-
tials are affected by their corresponding phases [15–18]. CMF
also estimates most of the likely variations and dis-continuities of
phases [18]. Hence, CMF is found more appropriate to separate
the notes from different instruments. However, in practice, when
fifths and octaves are played in a interleaving (i.e. notes appear-
ing one after another) way, there exists a serious effect of tempo-
ral magnitude modulation in the separated notes. Such modula-

tion is fairly audible in the sustain part of a note, where a listener
can easily heard the preceding note is played one more time. The
more overlapping partials there are, the more serious the modula-
tion there is, as we will see in Figure 2 in the later section. Even
the temporal sparsity and phase evolution constraints have been
proposed in [18], the problems of overlapping partials still exist.
Virtanen [13] investigates the temporal continuity to constrain the
NMF on separation and achieve good results. Applying this con-
straint is valid when the temporal activation coefficients of each
note would not change frequently in a short time. In order to mit-
igate the effect of temporal magnitude modulation in CMF-based
note separation, the temporal smoothness constraint is investigated
in this work. The constraint is applied to the preceding note before
the succeeding notes come in for keeping the variation of the ac-
tivation coefficient better, if the succeeding notes are fifths and/or
octaves. The modulation is reduced dramatically and the phase
continuity is kept, although the performance of the overall separa-
tion is still unsatisfactory. In addition to SIR, SAR, and SDR [19],
MER proposed in [20] are used to evaluate the performance. All
the test files are clipped from the RWC database [21]. The paper is
organized as follows. Section 2 describes the CMF algorithm with
phase constraint, and section 3 incorporate the temporal smooth-
ness constrains into the CMF for reduction of temporal magnitude
modulation. In section 4, the experiment results are shown and
compared to the prior method [18]. Finally, conclusions and fu-
ture works are given in section 5.

2. BACKGROUND

In this paper, the phase constraint of CMF is investigated for im-
proving the note separation. The methodology of CMF [15] and
its phase constraint [18] are introduced in this section.

2.1. Complex Non-Negative Matrix Factorization

CMF is involved the phase information to the matrix decompo-
sition. This factorization supports the analysis of audio signal.
Given an N × M complex-valued short-time Fourier transform
(STFT) matrix X ∈ CN×M . X could be decomposed into a basis
matrix W ∈ CN×K satisfying

∑
nWn,k = 1, ∀k = 1, ...,K,an

activation matrix H ∈ RK×M
≥0 , and a tensor with phase informa-

tion which can be represented as Phi ∈ RK×M . The objective
function of CMF is written as follows:

DX =
∑
n,m

|Xn,m − X̂n,m| (1)
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DTSparsity =
∑
k,m

|Hk,m|g (2)

Minimize :DCMF =
1

2
DX + λDsparsity (3)

where X̂n,m = Wn,kHk,mexp(iΦn,k,m).Here X is the spectro-
gram of the audio signal, W consists of the K spectra of K notes,
H is the K temporal activation coefficients correspond to the each
spectrum in different time, λ is the temporal sparsity parameter to
penalize the objective function, and g is a parameter for descript-
ing the shape of the sparse distribution. The only one constraint,
here, is the temporal sparse constraint.

2.2. CMF under Phase Evolution constraints

Phase is a physical quantity which evolves regularly for most mu-
sical signals. Therefore, J. Bronson et al. [18] proposed an ad-
ditional constraint of phase evolution in CMF to separate over-
lapping partials. This constraint is based on several assumptions:
first, the pitches of each source should be known; second, there
is no spreading energy of each partial bin; third, all the notes are
played by the same instrument; and finally, each source can be
represented by the combination of sinusoidal functions as eq. (4):

Xk =

Pk∑
p=1

Ak,pexp[(πf0kpT + φ0k , p)] (4)

The cost function is based on these assumptions, written as fol-
lows:

DPhase =
∑

n,k,p,m

1lNk,p|exp(iΦn,k,m)

−exp(iΦn,k,m−1)exp(i2πf0kpLT )|2
(5)

where L is the frame shift in samples, T is the sampling period,
and the 1lNk,p is the set of the membership function between the
bins of the kth fundamental frequency and partial frequency. The
cost function constrains each phase of the cur-rent frame should
approximate to the estimated value from the earlier phase infor-
mation. The objective function is shown as below:

Minimize :DCMFp =
1

2
DX + λDsparsity + σDPhase (6)

where σ is the phase continuity parameter for increase the rate of
convergence. The optimization formula is derived in [18].

3. TEMPORAL SMOOTHNESS CONSTRAINT

In addition to the phase evolution constraint, the proposed tempo-
ral smoothness constraint is based on two assumptions: first, the
temporal activation coefficients vary slowly unless encountering
an onset. Second, the pitch f0 and onset timing m0 of each note
are known before processing.

3.1. Temporal Smoothness Cost Function

The temporal smoothness cost function [2, 4, 13] is stated as fol-
lows:

DTSmoothness =
∑
k,m

|Hk,m −Hk,m−1|2 (7)

Eq. (7) implies that for the musical signal under analysis, Hk,m
should be close to Hk,m−1. This constraint forces the temporal
activation coefficients vary slow with time, thereby mitigate the
temporal magnitude modulation effect of the separated notes.

3.2. CMF under Phase Evolution and Temporal Smoothness
Constraints

Combining the CMF algorithm with both the phase evolution con-
straint and the temporal smoothness constraint, the objective func-
tion is given as below:

Minimize :DCMFpt =
1

2
DX + λDsparsity

+σDPhase + γDTSmoothness

(8)

where γ is the parameter regularizing temporal smoothness. We
modify the basic cost function of CMF, the phase evolution and
temporal smoothness constraints. The temporal activation coef-
ficients are limited with the onset-timing of each note. The phase
evolution constraint is necessary for keeping continuity of the phase.
For each note, the temporal smoothness constraint is applied from
100 ms before the note onset the instance of note offset. In our
preliminary study we found 100 ms gives satisfactory result in
general. Figure 1 shows the constraint is applied to the frames
within the dash line. The CMF with Phase Evolution and temporal
smoothness constraints is described in Algorithm 1.

Figure 1: The temporal constraint is applied locally and only on
the preceding note starting from 100 ms before the on-set of the
succeeding note till the end of signal.

4. EXPERIMENTS AND RESULTS

In the following experiments, the proposed note separation method
is evaluated on a set of mixture samples with two notes constitut-
ing intervals of perfect fifth, octave, and tritave (e.g., an octave
plus a perfect fifth). Every mixture sample is made by adding the
signals of the two notes together where the higher note is lagged
by 0.5 second. For example, a mixture "A3+A4" contains a note
A3 whose onset is at 0 second and a note A4 whose onset is at 0.5
second. In this way we can observe the temporal modulation ef-
fect of the lower note when the higher note joins in at 0.5 second.
The notes are played with the same musical instrument for every
sample. All sources are obtained from the part of piano, violin and
guitar in the RWC database [21]. The sampling rate is 44.1 kHz.
In computing the short-time Fourier transform (STFT) representa-
tion, we use a window with length of 4,096 samples and the hop
size is 256 samples. The constraints of sparsity and phase have
been discuss in the prior works [15,18], we simply set the sparsity
parameter λ = 0.001, and the phase continuity parameter σ = 0.1
according to the previous result. To show the temporal modulation

DAFX-2



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Algorithm 1: CMF with Phase Evolution and temporal
smoothness constraints

Input: X ∈ CN×M , K ∈ N, f0k (k = 1, ...,K) and
m0k (k = 1, ...K)

Output: W , H , and Φ s.t.
Xn,m ≈

∑K
k=1 Wn,kHk,mexp(iΦn,k,m)

W ∈ CN×M , H ∈ RN×M
≥0 , Φ ∈ RN×K×M

Initialized;
while stopping criteria not met do

Compute β
βn,k,m =

Wn,kHk,m∑
kWn,kHk,m

Compute X̂
X̂n,k,m = Wn,kHk,mexp(iΦn,k,m) +

βn,k,m(Xn,m −
∑
k X̂n,k,m)

Compute Ĥ
Ĥk,m = Hk,m
Compute Φ

Φn,k,m = Arg{ X̂n,k,m
βn,k,m

Wn,kHk,m +

σ
∑
p 1lNk,p[exp(iΦn,k,m−1)exp(i2πf0krLT ) +

exp(iΦn,k,m+1)exp(−i2πf0krLT )]}
Compute W

Wn,k =

∑
mHk,mR[( X̂n,k,m

βn,k,m
)exp(−iΦn,k,m)]

∑
m

H2
k,m

βn,k,m

Compute H
if m0k+1 + 100 < m ≤ mk then

Hk,m =

∑
mWn,kR[( X̂n,k,m

βn,k,m
)exp(−iΦn,k,m)]

∑
m

W2
n,k

βn,k,m
+λg(Ĥk,m)g−2

else if m < m0k+1 + 100 then
Hk,m =
γHk,m−1+

∑
mWn,kR[( X̂n,k,m

βn,k,m
)exp(−iΦn,k,m)]

∑
m

W2
n,k

βn,k,m
+λg(Ĥk,m)g−2+γ

else
Hk,m = 0

end
Project H onto non-negative orthant
iter=iter+1

end

effect and the separation performance using the smoothness con-
straint, the activation coefficient of each separated note with the
lower pitch is displayed from 0.4 to 0.8 second. The magnitude of
the higher pitch is not shown because it does not undergo the tem-
poral magnitude modulation effect. We also compute and show
dB-scaled SIR, SAR, SDR, and MER, where the first three are
usually used to evaluate the separated sources in the audio source
separation [19], and the last one is used to evaluate digital signal
transmitter or receiver in a communications system, as formulated
by [20]

MER := 10log10(
Psignal

Perror

) (9)

where Psignal is the RMS power of original signal and Perror is
the RMS power of the error signal (e.g., the RMS power of the
difference between the original and the separated signal). Here,
we use MER to compare the temporal activation coefficients of the
original and separated notes.

Figure 2: An example (piano A3+A4) of the temporal envelopes
of the preceding note (A3) with and without temporal smoothness
constraint. The onset of the succeeding note (A4) is at about 0.5
second.

4.1. Temporal Smoothness Parameter γ

We firstly investigate a case of A3+A4 in piano to observe the be-
haviors of the temporal magnitude modulation effect on the sepa-
rated notes under different temporal smoothness parameters γ = 0
(no temporal smoothness constraint; the same case as in [18]), 0.1,
0.5 and 1. Figure 2 shows the temporal magnitudes of the mixture
(A3+A4) before separation, and of the lower note (A3) before and
after separation under different γ. Obviously, the magnitude of the
separated A3 note without the temporal constraint (e.g., γ = 0)
undergoes serious modulation after 0.5 second. For γ > 0, the
temporal smoothness constraint suppresses the unwanted modula-
tion. When γ increases, suppression becomes better while sacrific-
ing overall note energy at the same time; the power of the separated
A3 is by from 5 to 10 dB smaller than the original A3. In the fol-
lowing experiments on three different classes of instruments (i.e.,
piano, guitar and violin), we will compare only the case γ = 0.5
to the case γ = 0.

4.2. Piano

To give a more systematic evaluation, we consider three different
note pairs (i.e., interval) and each with three distinctive pitch com-
binations: perfect fifth (i.e. A3+E4, E3+B3, and G3+D4), octave
(i.e. A3+A4, E3+E4, G3+G4) and tritave (i.e. A3+E5, E3+B5,
G3+D5), all of which are piano sounds. Figure 3 shows the tem-
poral envelopes of the separated notes under three selected cases,
and Table 1 shows the evaluation results. Similar to figure 2, from
figure 3 we observe clearly that the temporal envelope becomes
smoother after employing the temporal smoothness constraint. For
the cases of fifth and tritave, there is less difference between γ = 0
and γ = 0.5 because there are less overlapping partials for the
pairs. If there are more overlapping partials, such as the case of
the octave where all the partials of the higher note are overlapped,
the temporal smoothness constraint reduces the modulation a lot.
However, from Table 1 we found no significant improvement for
γ = 0.5 in terms of SIR, SAR, SDR and MER results, possi-
bly due to the fact that the performance of piano note separation
is intrinsically better: This can be seen from the case of perfect
fifth and tritave, where the SDR with no temporal smoothness con-
straint is 9.2 and 9.9 dB, both of which are sufficiently high. No-
tably, the SDRs of the octave are only 1.3 and 1.6 dB for γ = 0
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Figure 3: Three cases of piano. Left: perfect fifth. Middle: octave.
Right: tritave (circle: mixture, dashed line: Original A3, triangle:
γ = 0, solid line: γ = 0.5

and 0.5, respectively, showing the challenge of separating octave
notes.

Table 1: The piano cases: The evaluation

Fifth Octave Tritave
γ 0 0.5 0 0.5 0 0.5

Pr
ec

ed
in

g
no

te

SIR 14.7 14.7 4.5 5.2 17.2 17.0
SAR 11.0 11.0 6.4 6.2 11.0 10.9
SDR 9.2 9.2 1.3 1.6 9.9 9.8
MER 13.8 14.0 9.1 9.3 13.6 13.3

Su
cc

ee
di

ng
no

te

SIR 23.8 23.5 13.3 13.7 22.7 22.9
SAR 15.0 15.0 12.9 12.8 15.3 15.2
SDR 14.3 14.3 9.9 10.0 14.3 14.3
MER 8.4 8.4 8.2 8.2 7.0 7.0

4.3. Guitar

We also present the cases of guitar sounds. Similarly, three cases
with three sets of pitch combinations are considered: perfect fifth
(i.e. A3+E4, E3+B3, and G3+D4), octave (i.e. A3+A4, E3+E4,
G3+G4) and tritave (i.e. A3+E5, E3+B5, G3+D5). Figure 4 shows
the temporal envelopes of the separated notes and Table 2 show
the evaluation results. We also observe the suppression of tempo-
ral magnitude modulation, and a slightly improvement in terms of
SIR, SAR, SDR and MER, in general. For example, in the case
of perfect fifth, the SDR of preceding notes increases from 8.3 to
10.4 dB, SIR from 14.0 to 17.4 dB, and MER from 13.9 to 14.2
dB.

4.4. Violin

Finally, for violin, we consider the following cases: perfect fifth
(i.e. A3+E4, B3+F4, and G3+D4), octave (i.e. A3+A4, B3+B4,
G3+G4) and tritave (i.e. A3+E5, B3+F5, G3+D5). The experi-
ment result is presented in Figure 5 and Table 3. In comparison to
the cases of piano and guitar, the proposed temporal smoothness
constraint is found more effective for violin. Not only can we see
the suppression of the magnitude modulation by the higher note,

Figure 4: Three cases of guitar. Left: perfect fifth. Middle: octave.
Right: tritave (circle: mixture, dashed line: Original A3, triangle:
γ = 0, solid line: γ = 0.5

but we also see general improvement of SIR, SAR, SDR and MER.
Specifically, SIR is improved the most: in the case of tritave, the
SIR of preceding notes is improved by 4.7 dB, and SDR by 4 dB.
In all, the SIRs of the three cases are improved by at least 1.5 dB
to 4.7 dB.

Table 2: The guitar cases: The evaluation

Fifth Octave Tritave
γ 0 0.5 0 0.5 0 0.5

Pr
ec

ed
in

g
no

te

SIR 14.0 17.4 12.5 13.6 16.7 18.4
SAR 12.2 12.1 11.4 11.2 13.3 12.4
SDR 8.3 10.4 7.0 7.8 9.7 10.3
MER 13.9 14.2 17.0 17.0 17.5 17.0

Su
cc

ee
di

ng
no

te

SIR 27.5 28.2 24.4 24.4 24.9 25.2
SAR 13.6 13.9 13.9 13.8 11.9 12.2
SDR 12.9 13.3 12.6 12.5 11.2 11.4
MER 4.0 4.1 4.5 4.5 2.9 2.9

4.5. Discussion

First, according to the experimental results, the proposed temporal
constraint approach greatly reduces the temporal magnitude modu-
lation when separating notes with highly overlapping partials using
CMF. In some cases we further observe improvement of the objec-
tive figures of merit. In particular, the SIR is increased by more
than 4 dB in the cases for long-sustain notes like violin. However,
for stuck-string or plucked-string instruments like piano or gui-
tar, the objective performance indices are just marginally improved
or unimproved. It is noted that the temporal constraint parameter
shouldn’t be too large and should be chosen carefully. Empiri-
cally, the parameter should be chosen between 0 and 1. Finally,
in conventional CMF algorithm [15–18], the template matrix rep-
resenting the frequency domain characteristics is fixed for all in-
put features in the whole music piece. This is certainly unreason-
able in most cases. As a fixed set of template is unsuitable for the
modeling of vibrato, which is usually seen in violin notes. Since
the objective measures such as SDR and SIR may not well reflect
whether we have properly taken care of the modulation effect, in
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Figure 5: Three cases of violin. Left: perfect fifth. Middle: octave.
Right: tritave (circle: mixture, dashed line: Original A3, triangle:
γ = 0, solid line: γ = 0.5

Table 3: The violin cases: The evaluation

Fifth Octave Tritave
γ 0 0.5 0 0.5 0 0.5

Pr
ec

ed
in

g
no

te

SIR 10.2 11.6 8.7 12.6 17.2 21.9
SAR 7.3 6.2 6.3 5.1 16.0 13.3
SDR 4.6 4.6 3.3 4.0 9.0 12.0
MER 4.0 3.2 4.4 3.3 2.4 3.8

Su
cc

ee
di

ng
no

te

SIR 10.9 9.7 18.4 17.8 -0.6 0.4
SAR 14.1 14.6 16.9 16.7 9.1 9.7
SDR 8.9 8.3 10.1 9.5 -2.6 -1.7
MER 6.4 7.6 10.3 12.0 5.8 10.5

the future we will also provide audio examples for subjective eval-
uation [22].

5. CONCLUSION AND FUTUREWORKS

Though CMF outperforms NMF in note separation applications,
severe temporal magnitude modulation is presented when the notes
have highly overlapping parts, especially in the cases of octaves.
In this paper, the conventional CMF is combined with a tempo-
ral smoothness constraint, which not only reduces the temporal
magnitude modulation but also improve the performance figures
of merit including SIR, SDR, and SAR, and MER. Although the
proposed method improves the original CMF note separation, the
overall results are still unsatisfactory. Particularly, in the case of
octave, all the objective figures of merit shown in this paper are
still poor in comparison to other cases. Moreover, when process-
ing vibrato notes, the situation is even worse, perhaps because that
the template matrix corresponding to the frequency domain char-
acteristics is fixed in the time domain during the separation pro-
cess. This suggests a future work of developing a better solution
such that the template matrix can be adaptable to the temporal of
the notes.
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