
Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

AN EVALUATION OF AUDIO FEATURE EXTRACTION TOOLBOXES

David Moffat, David Ronan, Joshua D. Reiss

Center for Digital Music
Queen Mary University of London

Mile End Road
London, E1 4NS

{d.j.moffat, d.ronan, josh.reiss}@qmul.ac.uk

ABSTRACT
Audio feature extraction underpins a massive proportion of audio
processing, music information retrieval, audio effect design and
audio synthesis. Design, analysis, synthesis and evaluation often
rely on audio features, but there are a large and diverse range of
feature extraction tools presented to the community. An evaluation
of existing audio feature extraction libraries was undertaken. Ten
libraries and toolboxes were evaluated with the Cranfield Model
for evaluation of information retrieval systems, reviewing the cov-
erage, effort, presentation and time lag of a system. Comparisons
are undertaken of these tools and example use cases are presented
as to when toolboxes are most suitable. This paper allows a soft-
ware engineer or researcher to quickly and easily select a suitable
audio feature extraction toolbox.

1. INTRODUCTION

Audio feature extraction is one of the cornerstones of current audio
signal processing research and development.

Audio features are contextual information that can be extracted
from an audio signal. Features can be broken down into groups, as
presented in the Cuidado Project [1], which includes definitions of
a range of features.

Audio features can be applied to a range of research fields in-
cluding:

• Feature extraction linked to audio effects [2]

• Statistical synthesis [3]

• Feature-based synthesis [4]

• Evaluating synthesis techniques [5]

• Similarity measures [6]

• Data classification [7]

• Data mining [8]

Although these problems are somewhat dissimilar in nature,
they lean heavily on a set of related audio features. Low level
features are computed directly from the audio signal, often in a
frame-by-frame basis’ such as zero-crossing rate, spectral centroid
or signal energy, and generally have little perceptual relevance in
comparison to higher level features, like chord or key of musical
piece, which hold greater semantic meaning. In MIR, it is common
to refer to audio features or descriptors, whereas, in psychology
distinctions are made between dimensions and features, where di-
mensions are continuous and features are a discrete. Descriptor is
often used as a general term since it can refers to either continuous
or discrete content.

Seventeen low level descriptors (LLDs) are defined in the MPEG-
7 standard, with feature categorisation, for the purpose of perform-
ing audio similarity searching with metadata contained within an
MPEG file [9, 10], and the Cuidado project takes this work further
to define 54 audio features [1]. This project provides definitions of
a range of features, grouping them and which are relevant as frame
based features. These audio features can then processed with the
aim of identifying some particular aspect of an audio signal. A
good overview of features for extraction is presented in [11]

Consequently, a range of audio feature extraction libraries and
toolboxes have been constructed. Some are built as workflow tools,
with pre-processing and batch operations, some are written for al-
gorithmic efficiency or parallelisation, some for specific program-
ming environments or platforms. Despite significant growth and
research in the field of audio signal processing and feature extrac-
tion, there has been little research on evaluating and identifying
suitable feature extraction tools and their appropriate applications.

It has been identified that within music information retrieval
(MIR) primarily focuses on precision and recall, which may be
considered a limitation [12, 13]. Cleverdon et. al. developed a
six point scale for measuring and evaluating information retrieval
systems. This model is widely known as the Cranfield model of
information retrieval evaluation [14]. The Cranfield model prop-
erties are: Coverage; Time Lag; Effort; Presentation; Precision;
Recall. This model is an appropriate platform for evaluation and
benchmarking of MIR systems.

This paper reviews and evaluates existing feature extraction li-
braries based on the Cranfield model. The properties of the model
can be suitably related to the MIR feature extraction tool evalua-
tion [15] and presents an evaluation based on the following criteria:

Coverage - The range of audio descriptor features presented by
a toolkit, along with additional preprocessing or post pro-
cessing functionality.

Effort - User Interface, how easily one can create a new specific
query or modify queries, and appropriate documentation.

Presentation - File Output format options and consistency.

Time Lag - Computational Efficiency of each tool.

Precision and recall are both included as part of the Cranfield
Model. However, within the case of evaluating feature extraction
toolboxes, precision and recall are not considered applicable to the
task, and as such are not used. Existing work discusses the merits
of using precision and recall within MIR application [16].

This paper presents ten audio feature extraction toolboxes, eval-
uated based on the Cranfield model, as proposed in [12]. Section 3
compares the functionality of the tools with respect to the range

DAFX-1

mailto:d.j.moffat@qmul.ac.uk

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

of audio features that can be extracted and any further pre or post
processing that the tool implements. The interface options of each
toolboxes is presented and discussed in Section 4. The output for-
mat of data of each toolbox is presented in Section 5 and the com-
putational time is presented in Section 6.

2. EXISTING FEATURE EXTRACTION TOOLBOXES

There are a large number of audio feature extraction toolboxes
available, delivered to the community in differing formats, but usu-
ally as at least one of the following formats:

• stand alone applications
• plug-ins for a host application
• software function library
To allow for delivery of tools, some APIs have been constructed

to allow for feature extraction plug-ins to be developed. Vamp [17]
is a C++ API specification which functions with the standalone ap-
plications such as Sonic Visualiser, a content and feature visualiser
with Graphical User Interface (GUI) and its command line inter-
face (CLI) counterpart Sonic Annotator [18]. The Vamp Plugin
API is an independent plugin development framework and as a re-
sult plugin libraries have been developed by numerous research
labs and academic institutions. However due to the nature of the
framework, it is not possible to create plug-ins that depend on pre-
existing plug-ins. This results in multiple implementations and in-
stances of certain features being calculated, which causes potential
system inefficiencies. Feature Extraction API (FEAPI) is another
plugin framework API in C and C++ [19], though it less com-
monly used than the VAMP plugin format. There are also feature
extraction libraries that provide their own plugin API for extending
their stand alone system [20], though this is less common. There
has been a rise in MIR web services, such as the web based audio
feature extraction API produced by Echo Nest1, where users sub-
mit files online and receive XML descriptions. These tools have
resulted in large music feature datasets, such as the Million Song
Dataset [21].

The feature extraction tools that are evaluated in this paper are:

Aubio A high level feature extraction library that extracts features
such as onset detection, beat tracking, tempo, melody [22].

Essentia Full function workflow environment for high and low
level features, facilitating audio input, preprocessing and statisti-
cal analysis of output. Written in C++, with Python binding and
export data in YAML or JSON format. [23].

jAudio Java based stand alone application with Graphic User In-
terface (GUI) and CLI. Designed for batch processing to output
in XML format or ARFF for loading into Weka [20].

Librosa API for feature extraction, for processing data in Python [24]
LibXtract Low level feature extraction tool written with the aim

of efficient realtime feature extraction, originally in C but now
ported to Max-MSP, Pure Data, Super Collider and Vamp for-
mats [25].

Marsyas Full real time audio processing standalone framework
for dataflow audio processing with GUI and CLI. This programme
includes a low level feature extraction tool built in C++, with abil-
ity to perform machine learning and synthesis within the frame-
work.The feature extraction aspects have also been translated to
Vamp plugin format [26].

1http://developer.echonest.com/

Meyda Web Audio API based low level feature extraction tool,
written in Javascript. Designed for web browser based efficient
real time processing [27].

MIR Toolbox Audio processing API for offline extraction of high
and low level audio features in Matlab. Includes preprocessing,
classification and clustering functionality along with audio sim-
ilarity and distance metrics as part of the toolbox functionality.
Algorithms are fragmented allowing detailed control with simple
syntax, but often suffers from standard Matlab memory manage-
ment limitations [28].

Timbre Toolbox A Matlab toolbox for offline high and low level
feature extraction. A toolbox that provides different set of fea-
tures to the MIR Toolbox, specifically made efficient for identi-
fying timbre and to fulfil the Cuidado standards [29].

YAAFE Low level feature extraction library designed for com-
putational efficiency and batch processing by utilising data flow
graphs, written in C++ with a CLI and bindings for Python and
Matlab [30].

This list is not exhaustive, as there are many other feature ex-
traction tools out there [31, 32, 33, 34]. However the list of tools
was designed with popularity, programming environment range
and how recently it has been updated all being taken into consid-
eration.

3. COVERAGE

The coverage of an information retrieval system can be defined
as the extent to which all relevant matters are covered by the sys-
tem. Within the context of audio feature extraction tools, the cov-
erage can be considered as the range of features a tool can extract.
This section presents the features provided by each toolbox, rela-
tive to the total number of unique features from all presented tool
boxes and the features from the MPEG-7 and Cuidado standard
sets of audio descriptors. The relative importance of audio fea-
tures is heavily context based. To provide a meaningful measure of
the relative importance of audio features within each toolbox, the
toolboxes will be compared to their compliance with the MPEG-7
and Cuidado standards. Additional functionality, including pre-
processing and post processing available with each feature extrac-
tion tool will also be discussed. The accuracy of audio features or
specific implementation detail is beyond the scope of this paper,
but is discussed in [35].

The features available within each tool is evaluated, and a list
of unique features is created. Each tool is then compared to the
total list of unique features. Each tool is also evaluated based on
the feature coverage when compared to the MPEG-7 and Cuidado
standard feature sets. The results of this can be seen in Figure 1.
It can be seen that Essentia provides the largest range of features,
and is the only toolbox to produce 100% coverage of the MPEG-7
audio descriptors. Following this the MIR Toolbox and LibXtract
both fulfill over 85% of the MPEG-7 and provide 85% and 75%
of the features contained within the Cuidado project, respectfully.
The Timbre Toolbox provides nearly 75% of the Cuidado feature
set, however this may be unsurprising as they were both written by
the same principal author. YAAFE, jAudio and Librosa provide
fairly similar features sets, presenting between 30% and 38% of
the MPEG-7 standard feature set, with YAAFE presenting some
more perceptually motivated features than the others. Meyda and
Aubio provide a relatively low number of features, however this is

DAFX-2

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 1: Graph of Percentage Coverage of Multiple Feature Sets

not without justification: Meyda is written for real time processing
in the browser, and as such is inherently limited to a set of frame
based features; Aubio is designed to focus on more high level fea-
ture extraction tools, and though providing a number of low level
features, this is only to facilitate the high level feature extraction.
Marsyas performs the worse in terms of feature range, complying
to just 25% of MPEG-7 standard and 20% of the Cuidado standard.
Marsyas is designed as an audio processing workflow, where clus-
tering, classification and synthesis can all be performed within the
entire workflow, so the range of available features may be limited,
but the tool provides functionality beyond feature extraction. It
is worth noting that only three features, spectral centroid, spectral
rolloff and signal energy, are present in all the toolboxes and just
30 features are present in more than half of the toolboxes, and so
attention must be paid if specific features are required.

Table 1 shows that LibXtract and Meyda do not provide any
high level features. jAudio provides a limited range of high level
features, such as beat histogram, and strongest beat. Aubio pro-
vides a limited range of low level features, such as spectral cen-
troid, spread, skew and kurtosis. Aubio is designed specifically as
a high level feature extraction tool, with particular focus on seg-
mentation, whereas LibXtract, Meyda and jAudio are principally
designed to extract low level features.

Additional functionality, such as preprocessing or post pro-
cessing, is provided by a range of tools. Pre processing is an im-
portant aspect of evaluating any audio processing system, as it al-
lows the user to be confident of a classification in any low quality
environment where the audio may be degraded [36]. The resample
function allows a standardisation of sample rates within a tool-
box, which can be used to ensure that expected results for spectral
comparisons are within the same range. For example, if a sample
rate of 96kHz is used, it would be possible to have a spectral cen-
troid of 30kHz, which has no perceptual meaning, compared to a
file sampled at 44.1kHz, where a 30kHz spectral centroid would
be impossible. As such standardisation of sample rates is an im-
portant factor that all feature extraction environments can provide.
The quality of the resample method is an important attribute to
consider [37], but is beyond the scope of this paper.

It can be seen from Table 1 that Essentia, jAudio, Librosa,
Marsyas and YAAFE all provide the user with some resample
function as part of the toolbox, where as Meyda, MIR Toolbox and
Timbre Toolbox all inherit a resample function from their native

environments, as Web Audio API and Matlab both have resample
functions built in. Aubio and LibXtract do not provide a resample
function, however, if used as a Vamp plugin, many Vamp hosts do
contain resample functions.

Clustering, as a post processing tool, is also a useful function-
ality for many MIR processes. The post processing tools allow
the user to directly analyse the output results as part of a single
process. Essentia, Marsyas and MIR Toolbox all provide some
from of clustering algorithm within them, and jAudio, Marsyas
and MIR Toolbox can export files directly to ARFF format for
loading directly into Weka, a data mining and clustering tool [38].

Essentia, MIR Toolbox and LibXtract produce a strong range
of feature coverage, and the Timbre Toolbox covers the Cuidado
feature set well. In terms of feature range these tools seem to
perform better than many other existing tools. Essentia and MIR
Toolbox both provide a powerful range of additional pre and post
processing tools to benefit the user.

4. EFFORT

Effort is used to define how challenging a user finds a system to
use, and whether any user experience considerations have been
made while developing a system. Within this section, effort is
evaluated relative to the user interface that is provided, whether
it is a Graphical User Interface (GUI), Command Line Interface
(CLI) or an Application Program Interface (API). The existence
and quality of documentation and suitable examples is evaluated.
The purpose is to identify how intuitively a tool’s interface is pre-
sented to a user.

Table 1 outlines the user interfaces presented by each of the
feature extraction tools. It can be seen that jAudio is the only
tool that comes with its own GUI, though Aubio, LibXtract and
Marsyas all have GUI capabilities through virtue of being Vamp
plug-ins, when paired with a visualisation tool such as Sonic Vi-
sualiser. CLI’s are more common, as Aubio, Marsyas, jAudio and
YAAFE come with complete command line interfaces and Essen-
tia comes with a series of precompiled C++ examples that can be
run from the command line. However, this limits control function-
ality, as all the control is included in the software implementation.
LibXtract can also be controlled via command line, through the use
of its Vamp plugin format and a Vamp CLI tool such as Sonic An-
notator. All tools come with APIs, which means Librosa, Meyda,
MIR Toolbox and Timbre Toolbox are all only presented as soft-
ware APIs, and as such all require software implementation before
feature extraction is possible.

There are five different APIs written for both C and Python.
Four APIs are available for Matlab, including the Essentia Matlab
project2. Java has three APIs and only a single API for Javascript,
Pure Data, Max-MSP, Supercollider, Lua and R are provided. Al-
though Python and C are common programming languages, it is
believed that Matlab is one of the most common frameworks used
within MIR [39]. Environments such as web audio, in Javascript,
Pure Data and Max-MSP are much less common in the MIR and
audio research field, but are advantageous as they are real time au-
dio environments where features are calculated in realtime and as
such are excellent for prototyping.

Most toolboxes have clear documentation with examples, but
there is limited documentation for LibXtract, Meyda and the Tim-
bre toolbox. Though the documentation is not unclear, all the other
tools provide a lot more information regarding basic access and
software applications. Similarly, all toolboxes supply basic ex-

DAFX-3

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Table 1: Overview of Feature Extraction Tools

Aubio Essentia jAudio Librosa LibXtract Marsyas Meyda MIR Timbre YAAFE
High level Features Y Y N‡ Y N Y N Y Y Y
Low Level Features N* Y Y Y Y Y Y Y Y Y
Resample N Y Y Y N Y Y† Y† Y† Y
Filter N Y N N N N Y† Y† Y† N
Clustering N Y N§ N N Y§ N Y§ N N
Similarity N N N N N N N Y N N
Real Time Y Y Y
Vamp Plugin Y N N N Y Y N N N N
GUI Y+ N Y N Y+ Y+ N N N N
CLI Y YE Y N Y+ Y N N N Y
APIs C/C++ C/C++ Java Python C/C++ C/C++ JS Matlab Matlab Matlab

Python Python Supercollider Python Python
R MatlabO PD/Max-MSP Java C/C++

PD/Max-MSP Java Lua
Output Vamp YAML XML CSV Vamp Vamp TSV TSV CSV

JSON ARFF XML CSV ARFF HDF5
ARFF

* = Except MFCC and FFT Statistics,
‡ = Some Mid-high level features but very limited,

† = As part of environment, not toolbox,
+ = As result of being Vamp plugin,

§ = Can produce ARFF files, designed for being read directly into Weka.
E = CLI is produced through C ’Extractor’ files, with some examples provided.

O = A project for calling Essentia from Matlab has been developed.

amples of implementation, however YAAFE, Essentia, Aubio and
MIR Toolbox all have a strong range of examples that run straight
away. Marsyas has clear documentation and a range of examples
from which to draw inspiration, but required the user to learn a
proprietary language for use as part of the system.

In conclusion, when looking for a stand alone tool which cov-
ers a user flexibility and usability with a user interface, then the
Vamp plugin route is a useful one to take. This provides a sim-
ple intuitive interface and any number of specific features can be
loaded in as required. If batch processing is required, then either
the GUI from jAudio or CLI from YAAFE are intuitive, flexible
and simple to use. If a user requires a programming API, then,
depending on their environment, there are potentially a range of
tools. C, C++ Python and Matlab APIs are provided by a range of
tools, with often multiple being offered by each toolkit, as can be
seen in Table 1.

5. PRESENTATION

An important aspect of any information retrieval system is how the
resulting information is presented back to the user. Within this sec-
tion, the output format of data is discussed and the relative merits
of each approach outlined.

Document output format is one of the most significant barriers
in fully integrated workflow solutions within MIR [40]. Output
format is important, primarily as it impacts the ease and format of
analysis someone can carry out on a dataset. Usually, a user using
a software API, stores values in a relevant data structure within
the given development language and as such, file output format
becomes irrelevant in this case.

XML, YAML and JSON are all standard structured data for-

mats, that allow the presentation of hierarchical structures of data.
HDF5 is also a hierarchical data structure specifically designed for
efficient storage and accuracy of contents - as such is well suited to
big data tasks. CSV and TSV are table structures that allow users
to view data in most spreadsheet applications, and ARFF is also
a table structure with specific metadata about each column format
and available options. ARFF is specifically designed for use with
Weka, which is a powerful data mining tool.

CSV and TSV formats are considered to be suitable output for-
mats if the resulting value can be considered as a table, however
within the feature extraction, generally there is a much more com-
plex data structure than simply two dimensions. Features carry
varying levels of complexity, as some features are global for a
signal where as some are based on windowed frames of a sig-
nal. Some features, such as MFCC’s produce 13 numerical val-
ues per frame. As such it seems suitable that the data format used
to output these results can represent these hierarchical feature for-
mats. JSON and XML file formats are well supported by almost
all programming languages, so there should not be any issues with
processing the data results. CSV is also well supported within pro-
gramming languages, but the lack of complexity or data structure
can lead to potential ambiguities or errors with data transfer. The
benefits of producing ARFF files, which can be loaded direct into
Weka allows the user a great range of data mining opportunities
and should not be underestimated.

Although it is clear that the file format is reliant on further ap-
plications, any feature extraction library should be able to present
its data output in a data structure to suitable represent the hierar-
chical nature of the data it intends to represent. YAAFE, Essentia,
jAudio and LibXtract all provide some from of suitable data struc-
ture, however only jAudio can also pass files direct into Weka [38].

DAFX-4

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 2: Graph of Computational Time of Feature Extraction
Tools

Marsays and MIR Toolbox both allow for unstructured data, but
can produce ARFF files for easy data mining, and Librosa and
Timbre Toolbox will only allow users an unstructured data in a ta-
ble format. YAAFE and jAudio are the only two applications that
allow users the choice of structured or tabular data.

6. TIME LAG

Time lag is the measure of how long a given task will take to
complete. Understanding the time necessary to perform a task,
and comparing the relative speed of systems will give users an in-
formed choice as to what system to use, particularly when they
want to analyse large data sets. This section will discuss the com-
putational complexity of the ten feature extractions tools and iden-
tify whether they are implemented in real time or if they are offline
methods. There is existing work on implementing existing feature
extraction tools in a distributed manner [41], but this is beyond the
scope of this paper.

Meyda and the various LibXtract ports to Pure Data, Super-
collider and Max-MSP are all designed to run in realtime. Each
of these real time environments are provided with suitable feature
extraction, which provides a user with powerful visualisation and
real time interactivity but is less useful for users wishing to focus
on offline approaches.

The offline approaches were all evaluated for computational
efficiency. A dataset for evaluation is a subset of the Cambridge
Multitrack Data Set3. 32 Different songs were used. The dataset
consists of 561 tracks with an average duration of 106s is used,
which totalled over 16.5hours of audio and 8.79Gb of data. Each
toolbox is used to calculate the MFCC’s from this data set, with
a 512 sample window size and 256 sample hop size. The input
audio is at a variety of different sample rates and bit depths to
ensure that variable input file formats is allowable. This test is run
on a MacBook Pro 2.9GHz i7 processor and 8Gb of RAM. The
results are presented in Figure 2. The MFCCs were used, as they
are a computational method, that exists within nine of the ten given
tool boxes, and so should provide a good basis for comparison of
computational efficiency. MFCCs are not computed by the Timbre
Toolbox and Meyda will only run in real-time.

3http://www.cambridge-mt.com/ms-mtk.htm

As can be seen from Figure 2, Yaafe is the fastest toolbox,
processing over 16.5 hours of audio in just over 3 minutes 30s,
with Essentia coming in as a close second place at 4 minutes 12s.
LibXtract and Marsyas both completed in under 10 minutes, and
both Aubio and jAudio ran in under 15 minutes. The MIR toolbox
took over 31 minutes to run and Librosa took 1hour 53 minutes.
It is evident that tools written in C or C++ run faster than tools
written in Python or java.

7. CONCLUSION

Ten audio feature extraction toolboxes are discussed and evaluated
relative to four of the six criteria of the Cranfield Model.

Meyda and LibXtract provide excellent real time feature ex-
traction tools in various programming environments. When high
level features and segmentation is required, Aubio provides a sim-
ple and intuitive tool. It also provides a Vamp plugin format. When
visualisation is required, for annotation or basic exploration of fea-
ture, using the Vamp plugin format is very powerful, and the com-
bination of LibXtract and Marsysas as Vamp plug-ins provide ex-
cellent coverage of audio features. Research based in MATLAB
should use the MIR Toolbox combined with the Timbre Toolbox
for maximum feature coverage, or Essentia where computational
efficiency is important with little sacrifice of feature range. Essen-
tia performs the best with regards to computation, feature coverage
and output presentation, with a range of APIs.

As the suitable feature extraction toolbox is entirely applica-
tion dependent, there is no single case where a certain tool is better
or more powerful than another. However suggestions for suitable
toolboxes to use can be identified from Figure 3. When working on
real time applications, either Meyda or LibXtract will be most suit-
able for applications, where as when working in an offline fashion,
there is an option for either user interfaces or APIs. If a user inter-
face is required then Vamp plug-ins, of LibXtract and Marsyas, are
very powerful and advantageous tools, that can be hosted in either
graphic interfaces or command line interfaces. jAudio provides
a strong user interface with batch processing tool, but its range of
features is limited. Essentia provides a strong CLI with large range
of features, but low level of control, so implementation is required
for accurate control of the features. If an API is required, then a
range of example suggestions are proposed for some commonly
used programming languages. A Java API is provided by jAudio,
which is powerful and efficient, but performs on a reduced feature
set. Strong Matlab APIs are provided by either a combination of
MIR Toolbox and Timbre Toolbox or Essentia, with the ‘Running
essentia in matlab’.

8. ACKNOWLEDGMENTS

Funding for this research was provided by the Engineering and
Physical Sciences Research Council (EPSRC).

References
[1] G. Peeters, “A large set of audio features for sound descrip-

tion (similarity and classification) in the cuidado project,”
Tech. Rep., IRCAM, 2004.

[2] R. Stables, S. Enderby, B. De Man, G. Fazekas, and J. D.
Reiss, “SAFE: A system for the extraction and retrieval of

DAFX-5

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Require Real
Time Features?

Within a
Website?

Features within
programming
environment

GUI or CLI Programming
Environment?

Meyda

VAMPjAudio Essentia

MIRToolbox
and

TimbreToolbox
jAudio VAMPEssentia

LibXtract
-Max MSP -
Supercollider
-PD

MatlabJava PythonC/C++

Yes
No

GUI CLI

UI
API

Figure 3: Flowchart to recommend what tool to use
N.B. Vamp = LibXtract and Marsyas Vamp Packages

semantic audio descriptors,” in 15th International Society
for Music Information Retrieval Conference (ISMIR 2014),
October 2014.

[3] J. H. McDermott and E. P. Simoncelli, “Sound texture per-
ception via statistics of the auditory periphery: evidence
from sound synthesis,” Neuron, vol. 71, no. 5, pp. 926–940,
2011.

[4] M. D. Hoffman and P. R. Cook, “Feature-based synthesis: A
tool for evaluating, designing, and interacting with music ir
systems.,” in ISMIR, 2006, pp. 361–362.

[5] S. Hendry and J. D. Reiss, “Physical modeling and synthesis
of motor noise for replication of a sound effects library,” in
Audio Engineering Society Convention 129. Audio Engineer-
ing Society, 2010.

[6] B. Gygi, G. R. Kidd, and C. S. Watson, “Similarity and
categorization of environmental sounds,” Perception & psy-
chophysics, vol. 69, no. 6, pp. 839–855, 2007.

[7] M. F. McKinney and J. Breebaart, “Features for audio and
music classification.,” in ISMIR, 2003, vol. 3, pp. 151–158.

[8] T. Li, M. Ogihara, and G. Tzanetakis, Music data mining,
CRC Press, 2011.

[9] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to
MPEG-7: multimedia content description interface, vol. 1,
John Wiley & Sons, 2002.

[10] A. T. Lindsay and J. Herre, “MPEG-7 and MPEG-7 audio –
an overview,” Journal of the Audio Engineering Society, vol.
49, no. 7/8, pp. 589–594, 2001.

[11] D. Mitrović, M. Zeppelzauer, and C. Breiteneder, “Features
for content-based audio retrieval,” Advances in computers,
vol. 78, pp. 71–150, 2010.

[12] J. D. Reiss and M. Sandler, “Beyond recall and precision: A
full framework for MIR system evaluation,” in 3rd Annual
International Symposium on Music Information Retrieval,
Paris, France, 2002.

[13] J. D. Reiss and M. Sandler, “MIR benchmarking: Lessons
learned from the multimedia community,” The MIR/MDL
Evaluation Project White Paper Collection, vol. 3, pp. 114–
120, 2003.

[14] C. W. Cleverdon and M. Keen, “Aslib cranfield research
project-factors determining the performance of indexing sys-
tems; volume 2, test results,” Tech. Rep., Cranfield Univer-
sity, 1966.

DAFX-6

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[15] J. D. Reiss and M. Sandler, “Benchmarking music informa-
tion retrieval systems,” JCDL Workshop on the Creation of
Standardized Test Collections, Tasks, and Metrics for Mu-
sic Information Retreival (MIR) and Music Digital Library
(MDL) Evaluation, pp. 37–42, July 2002.

[16] J. S. Downie, “The scientific evaluation of music information
retrieval systems: Foundations and future,” Computer Music
Journal, vol. 28, no. 2, pp. 12–23, 2004.

[17] C. Cannam, “The vamp audio analysis plugin api: A pro-
grammer’s guide,” Availble online: http://vamp-plugins.
org/guide. pdf, 2009.

[18] C. Cannam, C. Landone, and M. Sandler, “Sonic visualiser:
An open source application for viewing, analysing, and an-
notating music audio files,” in Proceedings of the ACM Mul-
timedia 2010 International Conference, Firenze, Italy, Octo-
ber 2010, pp. 1467–1468.

[19] A. Lerch, G. Eisenberg, and K. Tanghe, “FEAPI: A low
level feature extraction plugin api,” in Proceedings of the
International Conference on Digital Audio Effects, 2005.

[20] C. McKay, I. Fujinaga, and P. Depalle, “jAudio: A feature
extraction library,” in Proceedings of the International Con-
ference on Music Information Retrieval, 2005, pp. 600–3.

[21] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere,
“The million song dataset,” in ISMIR 2011: Proceedings
of the 12th International Society for Music Information Re-
trieval Conference, October 24-28, 2011, Miami, Florida.
University of Miami, 2011, pp. 591–596.

[22] P. M. Brossier, “The aubio library at MIREX 2006,” MIREX
2006, p. 1, 2006.

[23] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera,
O. Mayor, G. Roma, J. Salamon, J. R. Zapata, and X. Serra,
“Essentia: An audio analysis library for music information
retrieval.,” in ISMIR, 2013, pp. 493–498.

[24] B. McFee, M. McVicar, C. Raffel, D. Liang, and D. Repetto,
“librosa: v0.3.1,” Nov. 2014.

[25] J. Bullock and U. Conservatoire, “Libxtract: A lightweight
library for audio feature extraction,” in Proceedings of the
International Computer Music Conference, 2007, vol. 43.

[26] G. Tzanetakis and P. Cook, “Marsyas: A framework for au-
dio analysis,” Organised sound, vol. 4, no. 03, pp. 169–175,
2000.

[27] H. Rawlinson, N. Segal, and J. Fiala, “Meyda: an audio fea-
ture extraction library for the web audio api,” in Web Audio
Conference. Web Audio Conference, 2015.

[28] O. Lartillot and P. Toiviainen, “A matlab toolbox for musical
feature extraction from audio,” in International Conference
on Digital Audio Effects, 2007, pp. 237–244.

[29] G. Peeters, B. L. Giordano, P. Susini, N. Misdariis, and
S. McAdams, “The timbre toolbox: Extracting audio de-
scriptors from musical signals,” The Journal of the Acousti-
cal Society of America, vol. 130, no. 5, pp. 2902–2916, 2011.

[30] B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard,
“YAAFE, an easy to use and efficient audio feature extraction
software.,” in ISMIR, 2010, pp. 441–446.

[31] W. Brent, A timbre analysis and classification toolkit for pure
data, Ann Arbor, MI: MPublishing, University of Michigan
Library, 2010.

[32] F. Eyben, F. Weninger, F. Groß, and B. Schuller, “Recent de-
velopments in openSMILE, the munich open-source multi-
media feature extractor,” in Proceedings of the 21st ACM in-
ternational conference on Multimedia. ACM, 2013, pp. 835–
838.

[33] D. L. Bryant, “Scalable audio feature extraction,” M.S. the-
sis, University of Colorado Colorado Springs, 2014.

[34] F. Deliege, B. Y. Chua, and T. B. Pedersen, “High-level au-
dio features: Distributed extraction and similarity search,”
in Ninth International Conference on Music Information Re-
trieval, 2008, pp. 565–570.

[35] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto,
D. Liang, and D. P. Ellis, “mir_eval: A Transparent Imple-
mentation of Common MIR Metrics,” in Proc. of the 15th
International Society for Music Information Retrieval Con-
ference, Taipei, Taiwan, 2014.

[36] M. Mauch and S. Ewert, “The audio degradation toolbox and
its application to robustness evaluation.,” in ISMIR, 2013, pp.
83–88.

[37] A. Franck, “Performance evaluation of algorithms for arbi-
trary sample rate conversion,” in Audio Engineering Society
Convention 131, Oct 2011.

[38] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an up-
date,” ACM SIGKDD explorations newsletter, vol. 11, no. 1,
pp. 10–18, 2009.

[39] K. R. Page, B. Fields, D. De Roure, T. Crawford, and J. S.
Downie, “Reuse, remix, repeat: the workflows of MIR.,” in
ISMIR, 2012, pp. 409–414.

[40] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes,
and M. Slaney, “Content-based music information retrieval:
Current directions and future challenges,” Proceedings of the
IEEE, vol. 96, no. 4, pp. 668–696, 2008.

[41] S. Bray and G. Tzanetakis, “Distributed audio feature extrac-
tion for music.,” in ISMIR, 2005, pp. 434–437.

DAFX-7

	1 Introduction
	2 Existing Feature Extraction toolboxes
	3 Coverage
	4 Effort
	5 Presentation
	6 Time Lag
	7 Conclusion
	8 Acknowledgments

