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ABSTRACT

Nonstationary oscillations are ubiquitous in music and speech, rang-
ing from the fast transients in the attack of musical instruments and
consonants to amplitude and frequency modulations in expressive
variations present in vibrato and prosodic contours. Modeling non-
stationary oscillations with sinusoids remains one of the most chal-
lenging problems in signal processing because the fit also depends
on the nature of the underlying sinusoidal model. For example,
frequency modulated sinusoids are more appropriate to model vi-
brato than fast transitions. In this paper, we propose to model non-
stationary oscillations with adaptive sinusoids from the extended
adaptive quasi-harmonic model (eaQHM). We generated synthetic
nonstationary sinusoids with different amplitude and frequency
modulations and compared the modeling performance of adaptive
sinusoids estimated with eaQHM, exponentially damped sinusoids
estimated with ESPRIT, and log-linear-amplitude quadratic-phase
sinusoids estimated with frequency reassignment. The adaptive
sinusoids from eaQHM outperformed frequency reassignment for
all nonstationary sinusoids tested and presented performance com-
parable to exponentially damped sinusoids.

1. INTRODUCTION

Music and speech contain different types of nonstationary oscil-
lations. The attack of many musical instruments presents tran-
sients due to nonstationarities [1]. Percussive sounds feature very
sharp onsets with highly nonstationary oscillations [2]. Expres-
siveness in performance such as tremolo, vibrato, glissando, and
portamento generally results in amplitude and frequency modu-
lations [3, 4]. Similarly, speech sounds such as consonants con-
tain transients [5]. Consonants known as plosives feature a sharp
onset [6]. Expressivity in speech used to convey emotions, for
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example, results in prosodic contours [5] or modulations in fre-
quency and amplitude, while vibrato can be said to characterize
singing [7].

Sinusoidal modeling is a popular parametric representation for
speech and music. Sinusoidal models are widely used in speech
and music processing for coding [8, 9, 10], analysis and synthe-
sis [11, 12, 13, 14, 15, 16, 17], enhancement [18, 19, 20, 21], mod-
ifications and transformations [12, 15, 22, 23, 24, 25, 26].

The general problem of fitting a sum of sinusoids to a signal is
of great interest in many scientific areas. Thus, many algorithms
have been developed for accurate estimation of the sinusoidal pa-
rameters. For speech and musical sounds, the algorithms can be
separated into four categories, namely spectral peak-picking [11,
12], analysis-by-synthesis [15, 27, 28, 29], least squares [30, 31,
32], and subspace methods [33, 34, 35].

Polynomial phase signals [36] have been used to model non-
stationary oscillations. McAulay and Quatieri [11] were possibly
the first to propose to interpolate the phase values estimated at the
center of the analysis window with cubic polynomials. Quadratic
polynomials [37] were proposed as an alternative. Girin et al. [38]
investigated the impact of the order of the polynomial used to rep-
resent the phase. They concluded that a polynomial of order 5 does
not improve the modeling performance considerably to justify the
increased complexity.

The time-frequency reassigned spectrogram [39] was devel-
oped to better represent nonstationary oscillations with the short-
time Fourier transform. Reassignment is widely used [40, 41, 42]
to estimate the parameters of the sinusoidal model. The derivative
analysis method [43, 44] was later shown [45] to be theoretically
equivalent to the reassignment method.

More recently, adaptive sinusoidal models [31, 32, 46] have
gained attention due to their ability to adapt to the local character-
istics of the signal via an iterative parameter re-estimation process.
Previous works have modeled speech [16, 32] and monophonic
musical instrument sounds [17, 47] as a sum of adaptive sinusoids.
These studies focused on modeling speech and musical instrument
sounds recorded under controlled conditions instead of expressive
conversations or music performances. Consequently, the sounds
do not feature the prosodic contours or embelishements that result
in challenging nonstationary modulations.
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In this work, we investigate the ability of adaptive sinusoids
from eaQHM [46] to model nonstationary oscillations. We gen-
erated synthetic nonstationary sinusoids with different amplitude
and frequency modulations and compared the modeling perfor-
mance of adaptive sinusoids estimated with eaQHM, exponentially
damped sinusoids estimated with ESPRIT, and log-linear ampli-
tude quadratic-phase sinusoids estimated with time-frequency re-
assignment. We designed nonstationary sinusoids with controlled
amplitude and frequency modulations that mimic specific features
of nonstationary oscillations found in expressive music and speech,
such as tremolo and vibrato. In this article, we focus on model-
ing monocomponent signals composed of one of these nonstation-
ary sinusoids to compare the ability of each model to capture that
specific feature. We measure the modeling accuracy in the time
domain with the signal-to-reconstruction-error ratio (SRER). The
SRER is the ratio in dB between the energy in the original signal
and in the modeling residual.

The next section briefly describes the underlying sinusoidal
model for the exponentially damped sinusoidal model (EDSM),
reassigned sinusoidal model (RSM), and extended adaptive quasi-
harmonic model (eaQHM). Then we describe the synthetic nonsta-
tionary sinusoids used in this work. Next, we present the modeling
performance of EDSM, RSM, and eaQHM for the nonstationary
signals designed, followed by a discussion of the results. Finally,
the conclusions and perspectives are presented.

2. SINUSOIDAL MODELS

Sinusoidal models implicitly assume that each partial (e.g., oscil-
latory mode) can be described by a time-varying sinusoid s (t) as

s (t) = A (t) cos [Φ (t)] , (1)

where A (t) is the time-varying amplitude and Φ (t) is the
time-varying phase, jointly called the instantaneous components
of the signal. A (t) and Φ (t) describe respectively the long-term
amplitude and frequency modulations of each partial along the
total duration of the sound. Usually, these long-term variations
are approximated by piece-wise functions inside short-term signal
frames x (t) typically lasting miliseconds obtained as

xk (t) = s (t)w (t− kτ) , 0 ≤ k ≤ N − 1, (2)

where k is the frame number, τ is the time shift (hop size), and
w (t) is a window function with length L that is zero outside the
support L. Typically, τ < L so that the frames overlap and s (t)
is modeled as N frames xk (t) viewed through a sliding window
w (t− kτ) centered at τ as follows

s (t) =

N−1∑
k=0

xk (t) =

N−1∑
k=0

s (t)w (t− kτ) . (3)

Eq. (3) holds for windows w (t) that satisfy the constant overlap-
add (COLA) [48] constraint

∑N
k=0 w (t− kτ) = 1, valid only for

specific values of τ .
When s (t) is assumed to be locally stationary, x (t) becomes

x (t) = A cos (ωt+ θ) (4)

modeled as a sinusoid with constant amplitude A, constant
frequency ω = 2πf0 and constant phase shift θ. In this case, the
long-term model for the partial s (t) is composed of piece-wise
stationary oscillations only capable of capturing relatively stable

amplitude and frequency modulations. However, nonstationary
oscillations commonly vary enough inside the frame to require
a dedicated short-term model. In what follows, we describe the
underlying short-term signal model x (t) for the nonstationary si-
nusoidal models used in this work, namely exponentially damped
sinusoidal model (EDSM), reassigned sinusoidal model (RSM),
and extended adaptive quasi-harmonic model (eaQHM).

2.1. Exponentially Damped Sinusoidal Model (EDSM)

EDSM assumes that x (t) can be approximated by the underlying
signal model

x (t) = exp (λ+ µt) cos (ωt+ θ) , (5)

whereA (t) = exp (λ+ µt) is the temporal envelope and Φ (t) =
ωt + θ is the time-varying phase. The short-term frame x (t) in
EDSM is simply modeled as a stationary sinusoid with constant
frequency ω modulated in amplitude by an exponential envelope
controlled by λ and µ. A (t) grows exponentially when µ > 0,
decays when µ < 0, and is constant if µ = 0.

The literature has shown [33, 34, 35, 49] that subspace meth-
ods render accurate parameter estimation for EDSM. This work
uses ESPRIT to fit the parameters of EDSM [35].

2.2. Reassigned Sinusoidal Model (RSM)

RSM can be shown to render good modeling performance [45]
when x (t) can be approximated by the underlying signal model

x (t) = exp (λ+ µt) cos
(
ψt2 + ωt+ θ

)
, (6)

whereA (t) = exp (λ+ µt) is the temporal envelope and Φ (t) =
ψt2 + ωt + θ is the time-varying phase. The short-term frame
x (t) in RSM is approximated as a sinusoid with quadratic phase
(quadratic frequency ψ, linear frequency ω, and phase shift θ)
modulated in amplitude by an exponential envelope controlled by
λ and µ similarly to EDSM.

The parameters of the model are estimated using the time-
frequency reassignment method [40, 41, 42, 45]. This work uses
the DESAM [50] toolbox to fit the parameters of RSM.

2.3. The extended adaptive Quasi-Harmonic Model (eaQHM)

The assumption behind eaQHM is that speech and musical sounds
can be approximated by a sum of M quasi-harmonic, highly non-
stationary, AM-FM modulated partials sm (t). Each partial is fur-
ther modeled inside the analysis frame as a short-term x (t) which
can be approximated by the underlying signal model

x (t) = (λ+ µt) cos
(
ψt2 + ωt+ θ

)
, (7)

where A (t) = (λ+ µt) is the temporal envelope and Φ (t) =
ψt2 + ωt + θ is the time-varying phase. The short-term frame
x (t) in eaQHM is implicitly modeled as a sinusoid with quadratic
phase (quadratic frequency ψ, linear frequency ω, and phase shift
θ) modulated in amplitude by a linear envelope controlled by λ
and µ. A (t) grows linearly when µ > 0, decays when µ < 0, and
is constant if µ = 0.

The parameters λ, µ, ψ, ω, and θ are iteratively adapted from
successive steps of parameter estimation using least squares [46].
Adaptation arises from a sequence of parameter re-estimation steps
based on successive refinements of the model basis functions, which
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come directly from (7). The complete parameter estimation algo-
rithm is described elsewhere [46].

3. SYNTHETIC NONSTATIONARY SINUSOIDS

The algorithms will be tested on synthetic nonstationary sinusoids
to show the properties of each model, along with their correspond-
ing advantages and disadvantages. The following parameters were
used to generate the synthetic nonstationary sinusoids, sampling
frequency Fs = 16 kHz and total length N = 1600 samples,
corresponding to 100 ms.

All the synthetic nonstationary sinusoids generated are a com-
bination of an amplitude envelope (A) and phase (P). The ampli-
tude envelopes are constant (C), exponential (E), linear (L), cubic
(C3), sinusoidal (S), and exponential-sinusoidal (ES). The phases
are linear (L), quadratic (Q), cubic (C3), or sinusoidal (S). The
synthetic nonstationary sinusoids are described next.

3.1. Constant Amplitude Linear Phase (CA-LP)

This is simply a stationary sinusoid used as reference. All the
methods are expected to perform very well for stationary sinu-
soids.

s (t) = A cos (ωt+ θ) , (8)

where A is the constant amplitude, ω = 2πf0 is the constant fre-
quency, and θ is the phase shift. The parameter values wereA = 1,
f0 = 100, and θ = −π

2
.

3.2. Exponential Amplitude Linear Phase (EA-LP)

This corresponds to the underlying model from EDSM, thus we
expect EDSM to perform very well for this particular case.

s (t) = exp (λ+ µt) cos (ωt+ θ) , (9)

where λ and µ are respectively the constant and damping factors.
Thus A (t) grows linearly when µ > 0, decays when µ < 0, and
is constant if µ = 0. For the phase, ω = 2πf0 is the constant
frequency, and θ is the phase shift. The parameter values were
λ = 0, µ = −50, f0 = 100, and θ = −π

2
.

3.3. Exponential Amplitude Quadratic Phase (EA-QP)

This is the underlying model from RSM, thus we expect RSM to
fit this signal very well.

s (t) = exp (λ+ µt) cos
(
ψt2 + ωt+ θ

)
, (10)

where λ and µ are respectively the constant and damping factors,
ψ, is the quadratic frequency ω = 2πf0 is the linear frequency,
and θ is the phase shift. The parameter values were λ = −0.5,
µ = −5, ψ = (2π)2 f1 with f1 = 100, ω = 2πf0 with f0 = 440,
and θ = −π

2
.

3.4. Constant Amplitude Cubic Phase (CA-C3P)

This is a particularly challenging signal because the cubic phase
has a large range of variation. Depending on the location of the
roots, the phase can vary slowly at first and suddenly grow very
fast. We expect the C3P to be challenging for all models mainly
because it does not match the underlying signal used by any.

s (t) = A cos
(
φt3 + ψt2 + ωt+ θ

)
, (11)

where A is the constant amplitude, φ is the cubic phase, ψ, is the
quadratic frequency ω = 2πf0 is the linear frequency, and θ is
the phase shift. The parameter values were A = 1, φ = (2π)3 f2
with f2 = 4, 597.7, ψ = (2π)2 f1 with f1 = 1, 661.1, ω = 2πf0

with f0 = 156.8, and θ =
(−π

2

)3. The phase parameters were
chosen to place the roots of C3P at respectively 100, 240, and 580
samples from a total of N = 1600 samples.

3.5. Exponential Amplitude Cubic Phase (EA-C3P)

This signal is more challenging than before because the C3 phase
is modulated in amplitude by an exponential envelope. We expect
this signal to be challenging for all models.

s (t) = exp (λ+ µt) cos
(
φt3 + ψt2 + ωt+ θ

)
. (12)

The parameter values were λ = 0 and µ = −50. The C3P
parameters are the same as used previously in 3.5.

3.6. Linear Amplitude Cubic Phase (LA-C3P)

s (t) = (λ+ µt) cos
(
φt3 + ψt2 + ωt+ θ

)
, (13)

where λ is the vertical shift and µ is the slope of the amplitude
envelope. The parameter values were λ = 1, µ = −10. The C3P
parameters are the same as in 3.5.

3.7. Cubic Amplitude Cubic Phase (C3A-C3P)

s (t) =
(
λ+ µt+ γt2 + βt3

)
cos
(
φt3 + ψt2 + ωt+ θ

)
,
(14)

where the parameters λ, µ, γ, and β control the time-varying be-
havior of A (t). The C3 amplitude envelope can be designed to
vary considerably in short time frames by placing all the roots of
the polynomial inside the frame. The amplitude parameter values
were λ = 0.059, µ = −16.68, γ = −1110, β = 19305. The
C3A is simply the C3P signal normalized between 0 and 1. The
C3P parameter values are the same as in 3.5.

3.8. Sinusoidal Amplitude Sinusoidal Phase (SA-SP)

This example contains both classic AM and FM modulations. We
expect this signal to pose a challenge for all models.

s (t) = [A+B cos (ωAt)] cos (ω0t+ θ0 + α cos (ωt)) , (15)

where A is the constant gain, B is the amplitude of the sinu-
soid, and ωA is the constant frequency of the amplitude envelope.
The sinusoidal amplitude envelope mimics the classic amplitude
modulation signal and it arises in cases when there is tremolo
or beating frequencies. The frequency parameter ω controls the
rate of temporal variation inside the frame. The parameter values
are A = 0.7143, B = 0.2857, ωA = 2πfA with fA = 50,
ω0 = 2πf0 with f0 = 1000, θ0 = −π

2
, α = 1, ω = 2πfP with

fP = 130.
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Figure 1: Illustration of the waveform for each synthetic nonsta-
tionary sinusoid from section 3.

3.9. Exponentially Damped Sinusoidal Amplitude Sinusoidal
Phase (ESA-SP)

The ESA-SP sinusoid is s (t) = A (t) cos [Φ (t)] with A (t) and
Φ (t) given below.

A (t) = exp (λ+ µt) [A+B cos (ωAt)] , (16)

Φ (t) = ω0t+ θ0 + α cos (ωt) , (17)

where λ and µ are respectively the constant and damping factors
and A is the constant gain, B is the amplitude of the sinusoid, and
ωA is the constant frequency. This amplitude envelope is simply
the multiplication of the exponential (E) and the sinusoidal (S) en-
velopes, thus the result is a sinusoid modulated by the exponential.
The parameter values are the same as in 3.8.

Figure 1 shows the synthetic nonstationary sinusoids described
above to illustrate the resulting waveforms. Note that each sig-
nal presents very different characteristics, imposing different chal-
lenges for the models.

4. SYNTHETIC NONSTATIONARY SINUSOID
MODELING ACCURACY

This section presents the experiment performed to compare the
modeling accuracy of eaQHM, RSM, and EDSM for the nonsta-
tionary sinusoids described in section 3. We modeled each syn-
thetic nonstationary sinusoid described earlier with eaQHM, RSM,
and EDSM and measured the resulting modeling accuracy with the
SRER as described next.

4.1. Measuring Modeling Accuracy

In what follows, we assume that the following relation holds

s (t) = y (t) + ŷ (t) , (18)

where s (t) is the original synthetic signal, y (t) is the model re-
construction after resynthesis, and ŷ (t) is the modeling residual
obtained by subtraction of y (t) from s (t) in the time domain.
Then, the signal-to-reconstruction-error ratio (SRER) is defined as

SRER = 20 log10

RMS [s (t)]

RMS [ŷ (t)]
dB. (19)

Thus the SRER is the ratio in dB of the energy in the original
synthetic signal s (t) and the modeling residual ŷ (t). Positive val-
ues indicate that s (t) has more energy than ŷ (t), while negative
values indicate the opposite. Note that ŷ (t) will only have low
energy when the model y (t) follows s (t) very closely, which in-
dicates good modeling performance. Consequently, higher SRER
values indicate a better fit.

4.2. Analysis Parameters

All the synthetic nonstationary sinusoids were split into overlap-
ping frames prior to analysis. The hop size was H = 0.001Fs or
1 ms and the window size L varied between 10 ms and 70 ms as
shown in Table 1.

EDSM uses a square window w (t) for analysis and a Ham-
ming window for overlap-add (OLA) resynthesis. RSM uses Ham-
ming windows for both analysis and OLA resynthesis, while eaQHM
uses a Hamming window for analysis and analytic resynthesis di-
rectly from (7).

4.3. Results

Table 1 shows the SRER value in dB for each synthetic signal from
section 3 for eachL indicated. RSM resulted in negative values for
some values of L.

5. DISCUSSION

Table 1 shows that not all models performed as expected. While
EDSM and eaQHM presented consistent performance for all the
synthetic nonstationary sinusoids tested, RSM did not present ro-
bust performance. The SRER measure is very strict because it
compares the waveforms directly. So small errors in only one pa-
rameter, such as the phase shift θ, for example, will lead to poor
performance when measured with the SRER because the result-
ing waveform will be different. However, the instability in perfor-
mance is likely due to the implementation used (the DESAM [50]
toolbox) rather than the RSM method itself.
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Table 1: SRER values in decibels (dB) for each synthetic signal when the window size L varies between 10 ms and 70 ms. C denotes
Constant, E denotes Exponential, L denotes Linear, Q denotes Quadratic, C3 denotes Cubic, and S denotes Sinusoidal for either the
amplitude envelope (A) or the phase (P). See section 3 for details.

SRER (dB) for each window Size L(ms)
sinusoid algorithm L = 10 ms L = 20 ms L = 30 ms L = 40 ms L = 50 ms L = 60 ms L = 70 ms

CA-LP
eaQHM 286.7 286.6 286.5 286.5 286.4 286.4 286.4

RSM −6.0 28.2 −6.0 25.1 −6.0 23.4 −6.0
EDSM 282.1 278.1 274.0 272.8 264.6 263.4 268.7

EA-LP
eaQHM 66.6 53.4 46.6 42.7 40.0 38.7 34.9

RSM −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0
EDSM 280.3 269.8 267.7 265.7 262.2 271.0 270.2

EA-QP
eaQHM 51.5 10.0 3.4 2.1 1.5 0.6 0.7

RSM −2.3 −1.6 −0.7 −0.8 −0.5 −7.7 −0.1
EDSM 41.1 6.7 3.5 2.3 1.9 1.4 1.2

CA-C3P
eaQHM 65.4 49.3 18.1 11.7 6.6 4.1 2.7

RSM −6.1 −5.2 −3.1 −5.4 −4.3 −21.5 −15.9
EDSM 46.1 24.4 12.8 7.7 5.7 4.8 4.2

EA-C3P
eaQHM 57.5 45.7 5.2 2.7 2.4 2.0 1.5

RSM −3.6 −2.6 −1.1 −2.3 −1.4 −14.7 −1.8
EDSM 49.3 24.9 11.1 5.0 3.6 3.4 3.1

LA-C3P
eaQHM 69.8 52.2 2.9 1.1 0.8 0.6 0.4

RSM −0.5 −0.3 −0.3 −0.3 −3.2 −3.9 −0.2
EDSM 52.5 15.5 5.4 3.1 2.6 1.8 1.6

C3A-C3P
eaQHM 29.8 7.6 4.1 3.7 3.4 3.4 3.4

RSM 2.6 3.7 3.1 3.2 3.2 3.2 3.2
EDSM 11.2 4.4 3.8 2.9 3.6 3.5 2.5

SA-SP
eaQHM 24.2 7.2 4.1 4.0 3.6 3.3 3.6

RSM 3.0 3.4 3.2 3.7 3.6 3.6 3.7
EDSM 12.0 5.7 5.5 4.7 4.9 4.8 4.8

ESA-SP
eaQHM 107.4 33.4 33.6 13.1 15.4 17.5 17.5

RSM −6.0 −6.0 24.6 −6.0 −0.1 20.6 −6.0
EDSM 165.9 139.8 123.6 112.0 102.9 95.5 89.1

Nonstationary sinusoids with time-varying frequency are more
challenging to model with longer windows. The modeling perfor-
mance of eaQHM and EDSM decreased when L increased for all
the synthetic nonstationary sinusoids except when the phase was
linear, namely CA-LP and EA-LP.

Both eaQHM and EDSM present very high SRER for station-
ary sinusoids (CA-LP). As expected, EDSM outperformed eaQHM
for its underlying sinusoid (EA-LP). EDSM also outperformed
eaQHM for exponentially damped sinusoidal amplitude modula-
tion and sinusoidal phase (ESA-SP). RSM performed poorly for its
underlying sinusoid (EA-QP), presenting negative values through-
out.

In general, eaQHM presented the best performance of all mod-
els for most signals tested, indicating that adaptation is able to
represent well even signals that are different from its underlying
model. EDSM also presents better performance than RSM possi-
bly due to the use of ESPRIT to estimate the parameter values.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose to model non-stationary oscillations with
adaptive sinusoids from the extended adaptive quasi-harmonic model
(eaQHM). We generated synthetic non-stationary sinusoids with
different amplitude and frequency modulations and compared the
modeling performance of adaptive sinusoids estimated with eaQHM,
exponentially damped sinusoids (EDS) estimated with ESPRIT,

and log-linear-amplitude quadratic-phase sinusoids estimated with
time-frequency reassignment (RSM). Modeling performance is mea-
sured with the signal-to-reconstruction-error ratio (SRER), which
uses the waveforms directly. The adaptive sinusoids from eaQHM
outperformed RSM for all the signals tested and presented perfor-
mance comparable to EDSM.

Future work should focus on applying eaQHM to modeling
recordings of expressive speech and music performance. In previ-
ous works, eaQHM has been shown to perform well when mod-
eling relatively stable speech utterances and musical instrument
sounds. However, modeling the modulations from expressive speech
and music performance would be challenging. Presently, eaQHM
only handles monophonic sounds. Therefore, it would be also very
interesting to investigate parameter estimation strategies for poly-
phonic music.
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