Time horizon and valuation Case E39 Søgne-Ålgård

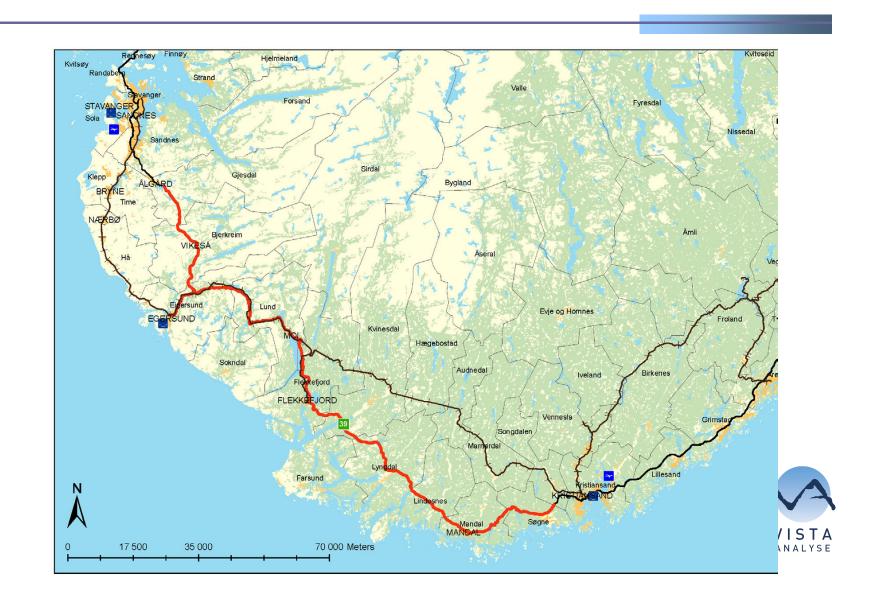
Nicolai Heldal, Partner Vista Analyse AS Norway

The 5th Concept Symposium on Project Governance Valuing the Future - Public Investments and Social Return 20. – 21. September 2012

Symposium web-site: http://www.conceptsymposium.no/ Concept Research Programme: http://www.concept.ntnu.no/english/

Concept

Time horizon and valuation Case E39 Søgne-Ålgård


Nicolai Heldal Vista Analyse AS 20.09.2012

E39 Søgne-Ålgård – brief introduction

- E39 between Søgne in Vest-Agder and Ålgård in Rogaland.
- 190 km long, part of the main road connecting the west coast of Norway
- Passes ten municipalities and connects the two urban regions Nord-Jæren and the Kristiansand region
- Project trigging needs:
 - Shorter travel time and more efficient transport between Nord Jæren and the Kristiansand region
 - Reduction in the frequency of serious accidents related to oncoming traffic and driving off the road

Søgne-Ålgård

Benefits and costs

- Travellers and transport users
 - Shorter travel time
 - Reduction of expected delays
- Public finances
 - Investment costs
 - Operation and maintenance costs
 - Tax income
- Benefits for the society as a whole
 - Reduced accident costs

Time horizon and valuationstarting points

- The time profile differs between the various costs and benefits
- Valuation of costs and benefits at different points of time is crucial for the profitability of a project

What affects valuation of costs and benefits in the future?

- 1. For how long do the benefits occur?
 - a. Evaluation period
 - b. Lifetime of the investment
- 2. How do we compare benefits and costs at different points in time?
 - a. Discount rate/risk equivalents
 - b. Real price adjustment
 - c. Volume growth

Evaluation period and technical liftime

- Evaluation period
 - For how long do the benefits from the project continue?
- Technical lifetime of the investment
 - For how long do the physical facilities last, assuming the current level of maintenance?

Residual values and reinvestments

- Differences between evaluation periods and technical lifetime must be handled through reinvestmensts and rest values
- Evaluation period> technical lifetime
 - reinvestment
- Evaluation period< technical lifetime</p>
 - residual value

Evaluation period and technical lifetime KVU and KS1

Assumption	KVU	KS1
Evaluation period	25 years	TS og U: 25 years
		V, M og F: 75 years
Technical lifetime	40 years	40 (+40) years
Rest value	Net present value of a	Net present value of a
	calculated share (15/40)	calculated share (5/40)
	of the original	of the original
	investment, based on	investment, based on
	the number of years	the number of years
	remaining after the	remaining after the
	evaluation period	evaluation period (close
		to zero)
Reinvestment	None	After 40 years

Real price adjustment

- Valuation of benefits is affected by income level
 - Real wage is used as indicator
- Different benefits and costs are affected differently
 - Handled through income elasticities

Real price adjustment KVU og KS1

- KVU: No real price adjustment
- KS1:
 - Real price adjustment of 1.6 per cent per year (based on official prognoses)
 - Elasticities
 - Business travel 1.0
 - Other travel 0.8
 - Environment and accidents 1.0
 - Investment, operation and maintenance costs :
 1.0 (levelled out by higher productivity)

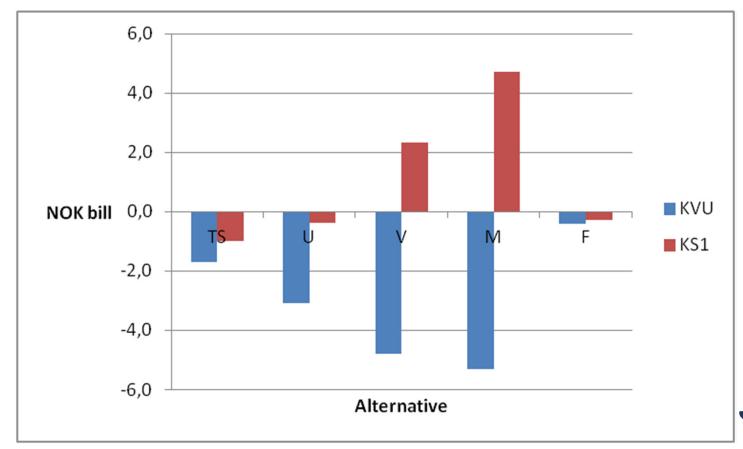
Discount rate and risk equivalents

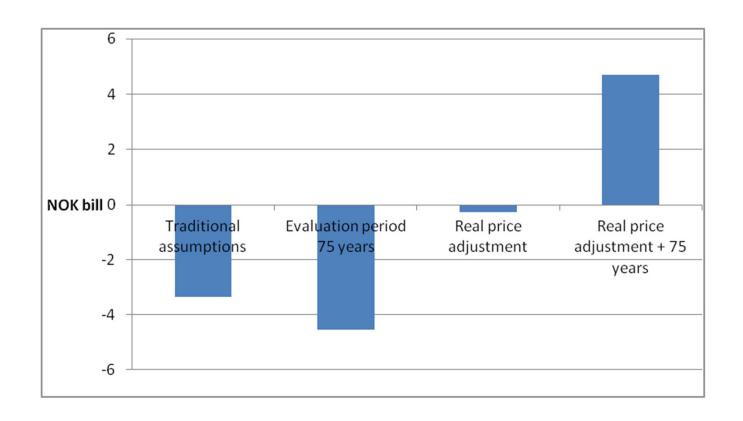
- Depends on systematic risk
- Lower in the long term?

Discount rate and risk equivalents – KVU and KS1

- KVU:
 - Discount rate 4,5 per cent
- KS1
 - Risk free rate 2,0 prosent
 - Risk premium 2,0 (time other travel)-2,5 per cent
- No time differentiation

How does it affect the results?


- Real price adjustment 1.4-1.6 per cent
- Volume growth 1 prosent
- In total on level with the risk premium


- Effective discount rate close to risk free discount rate
- The length of the evaluation period has much stronger impact than with "traditional" assumptions

www.vista-analyse.no

NPV KVU and KS1

NPV with alternative assumptions

Concluding remarks

- Valuation of costs and benefits at different points of time is crucial for the profitability of a project
- Discount rates, real price adjustments, valuation periods and technical lifetimes are important as separate parameters
- In combination they may be project makers or killers
- These parameters are too important to (continue to) be neglected by analysts

