Where are the wider benefits? Transport appraisal and economic geography

Anthony J. Venables, Professor University of Oxford United Kingdom

The 5th Concept Symposium on Project Governance Valuing the Future - Public Investments and Social Return 20. – 21. September 2012

Symposium web-site: http://www.conceptsymposium.no/
Concept Research Programme: http://www.concept.ntnu.no/english/

Where are the wider benefits? transport appraisal and economic geography

Tony Venables, Oxford

Overview:

- Introduction and standard approaches
- Sources of 'wider benefit'
- Infrastructure appraisal; inter- and intra-city transport

Introduction and standard approaches

Literature presents very mixed findings:

- Aggregate studies implausibly weak effects
 Elasticity of output w.r.t. to infrastructure: ~ 0.1-0.2:
 - 'if infrastructure of Norway and UK had stayed the same as they were 100 years ago the resulting per capita GDP losses would be somewhere between a few percentage points and less than 30%.'.....
- Disaggregate data large effects
 Econometric evaluations of transport infrastructure
 - Transport infrastructure supports market integration (→ factor price convergence)
 - Promotes growth of proximate areas:
 - Eg: Chinese counties: increasing distance from roads 1% → GDP growth 0.12 0.28% pa lower (Banerjee, Duflo, Qian):
- Economic geography:

Proximity raises the efficiency of transactions

- Cities exist, and are productive.
- Transport a necessary ingredient

Introduction and standard approaches

Standard approach to transport appraisal:

- Project reduces generalised travel cost by Δp per journey
- Benefit to existing travellers, Q times Δp
- Benefit to traffic created ΔQ . times fraction of Δp .
- Social savings calculations
 - Q. Δ p + Δ Q. Δ p/2
 - Fogel: Impact of 19th century US railroads; upper bound (Q + Δ Q). Δ p
 - 'level of per capita income achieved by January 1, 1890 would have been reached by March 31, 1890 if railroads had never been invented'
- Social savings a rigorous and well-grounded method:
 - Private gain cannot exceed Δp , or would have travelled anyway.
 - Gains may be transmitted to other people via markets
 - Eg changes in wage, land prices; changes in production, supply
 - But if these markets are efficient, aggregate will be $Q.\Delta p + \Delta Q.\Delta p/2$
 - No free lunch from doing transport projects
- Basis of standard cost-benefit analyses.
- 'Wider benefits' only if some positive interaction with externalities / market failures

Why might transport improvements generate benefits > their direct cost savings + traffic creation?

- 'Distortions' due to tax wedges
- 'Distortions' due to market imperfections (pecuniary externalities)
- Externalities eg knowledge spillovers (technological externalities)
- Need to be assessed relative to 'distortions' in rest of economy
- Could, in principle, go either way.

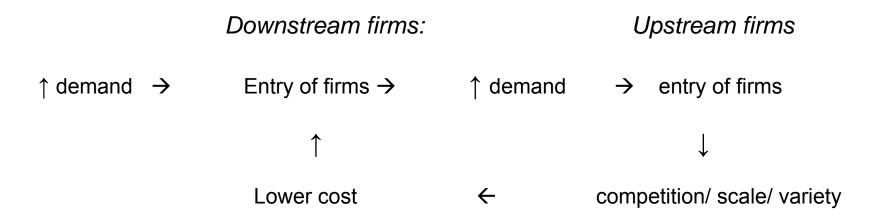
Empirical regularities: productivity gain associated with:

- Sectoral clusters
- City size:
 - Rosenthal and Strange: survey of studies:
 - Doubling city size raises productivity by 3-8%
 - Rice and Venables: (RSUE 2006)

UK NUTS3 regions: use driving time:

- Doubling proximity to economic mass raises earnings by 3.5% (controlling for occupation)
- Falls off rapidly with driving time: weak > 40 mins, disappears > 80 mins

Underlying mechanisms that create these 'externalities':


1) Market size, increasing returns and competition

- Standard approach based on textbook model of perfect competition
- What happens in environment with imperfect competition, increasing returns to scale and product differentiation?
- Transport improvements are like an increase the size of the market.
 - → entry of new firms

Shifts the competition-scale tradeoff: more intense competition and larger firms

- More competition, so price closer to marginal cost
- Larger firm scale, so reduction in average cost
- More varieties
- → Productivity and variety benefits that are additional to direct transport cost savings

2) Forward and backward linkages: (Hollywood, City of London)

- Cumulative causation process possible agglomeration
- Real income gains will accrue to the fixed factor:
 - Land (urban context)
 - Labour (international context)
- Externality if these are not the key decision takers.
- Can a 'large developer' internalise the benefit? (science parks, retail malls)

3) Labour market effects

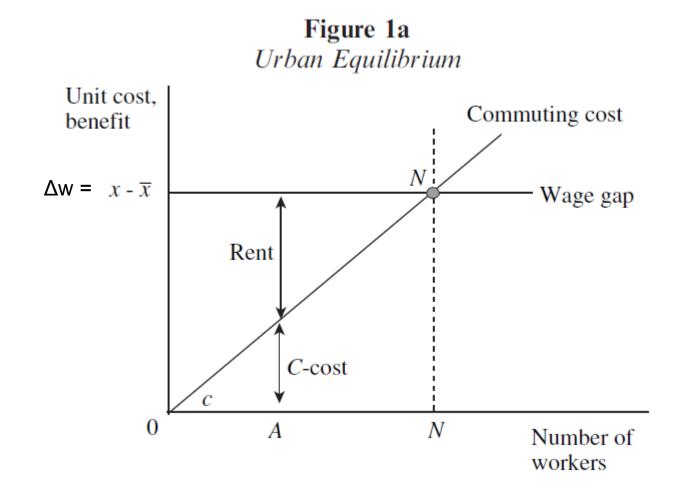
- Better matching in a thick market:
 - Firms with specific skill requirements
 - Workers with specific skills
 - Returns to scale in matching functions
- Incentives to undertake training:
 - If single prospective employer there is no incentive to get specific training
 - 'Hold-up'
 - Monopsony power
- Risk sharing:
 - Firms have independent shocks
 - Hire workers from same labour market
 - Larger labour market reduces variance

4) Knowledge spillovers and demonstration effects

- Best practise observed by others and knowledge spills-over:
 - '.. secrets of trade... in the air'
- Mechanisms?
 - Labour market turnover
 - 'Buzz'
 - F2F
 - Networks and information
 - Demonstration effects
 - Best practise can be copied:

Infrastructure appraisal: inter-city

Improved inter-city communications:

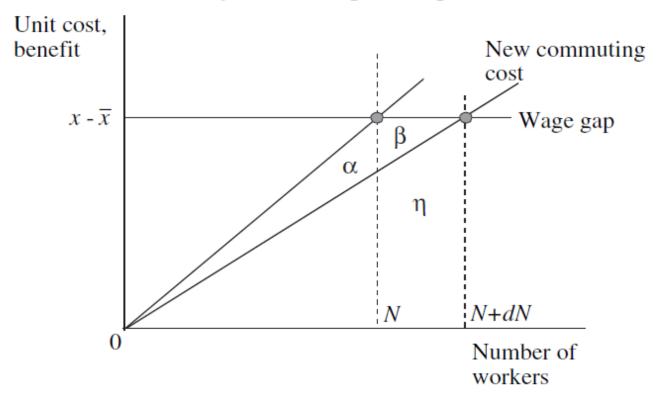

- Equivalent to city enlargement
 - Gains from overall city scale
 - Bergen Stavanger?
- Facilitates city specialisation
 - London, Manchester and HS2.
 - Production of (financial?) services involves numerous 'tasks':
 - Some tasks receive more benefits from cluster spillovers
 - Some tasks create more cluster spillovers
 - Transport improvement brings down costs of coordination London/ Manchester
 - Allows some tasks to move to Manchester, creating space for others to expand in London
 - Real income gains in both cities >> direct benefit of time-saving

Infrastructure appraisal: intra-city

Improved intra-city communications:

Standard urban model with exogenous wage gap, Δw

- Central business district
- Commuting cost
- Land rent
- City expands until real wages equalised


Infrastructure appraisal: intra-city

Transport improvement reduces commuting costs

α: direct cost saving (Δp) Welfare gain β: value of extra trips ($\Delta p.\Delta Q/2$)

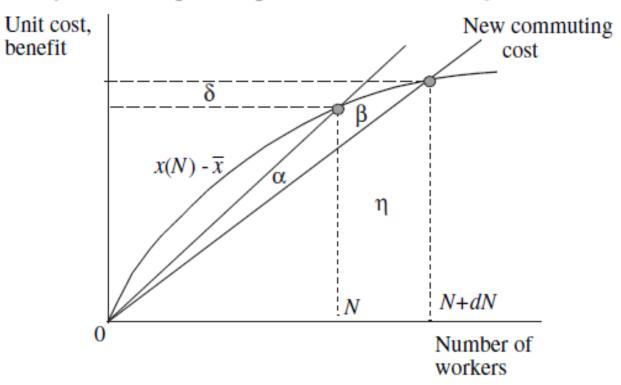
 $\beta + \eta$: GDP increment (η is not a welfare gain)

Figure 1b
Net Gains from Transport Improvement

Infrastructure appraisal: intra-city + endogenous wage

Curve gives urban productivity (relative to non urban)

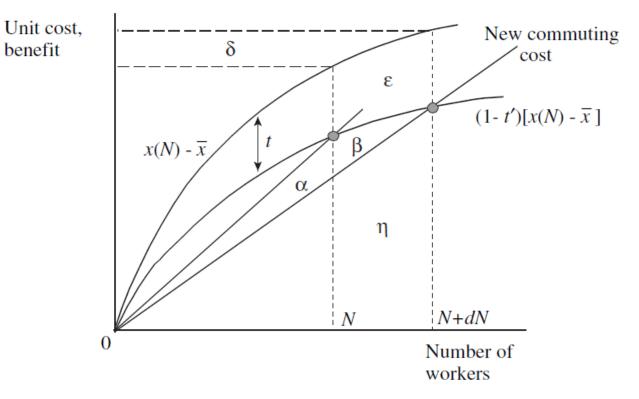
 α : direct cost saving (Δ p)

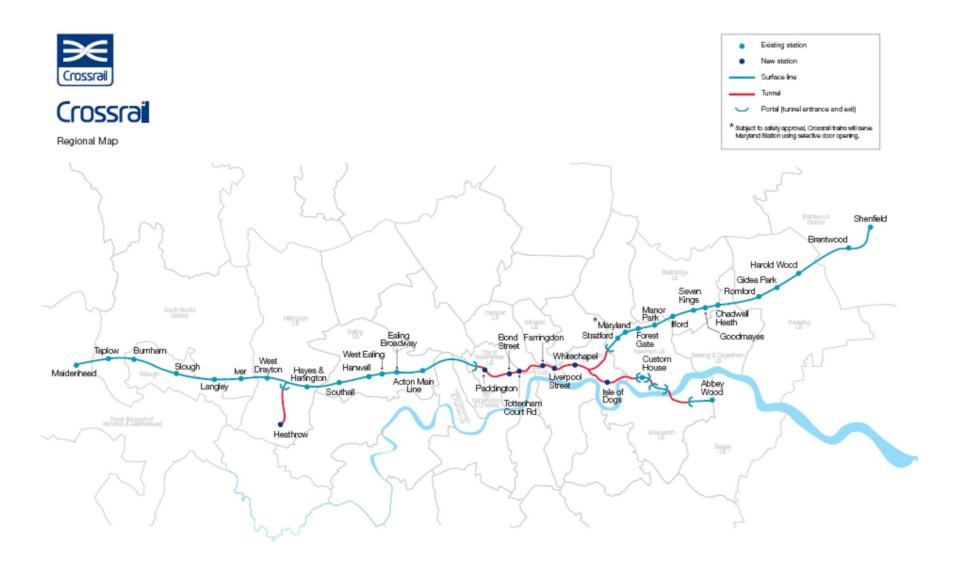

β: value of extra trips (Δp.ΔQ/2)

δ: value of extra productivity from reciprocal externalities

 $\beta + \delta + \eta$: GDP increment

Figure 1c
Net Gains from Transport Improvement with Endogenous Productivity


Welfare gain


Infrastructure: intra-city + endogenous wage + tax wedge

Lower curve is net of tax wage increment α : direct cost saving (Δp) β : private value of extra trips ($\Delta p.\Delta Q/2$) δ : value of extra productivity from reciprocal externalities ϵ : tax revenue on incremental journeys $\beta + \delta + \eta + \epsilon$: GDP increment

Figure 1d
Net Gains from Transport Improvement with Endogenous Productivity and Tax Wedge (t)

Infrastructure: intra-city: eg Cross-rail

Infrastructure: Crossrail

Table 5: Welfare and GDP impacts of Crossrail (£m)

	Welfare	GDP
Business time savings	4,847	4,847
Commuting time savings $\alpha + \beta$	4,152	
Leisure time savings	3,833	
Conventional appraisal	12,832	
Labour-market effects	_	η + ε = 11,644
Agglomeration benefits	3,094	3,094
Imperfect competition	485	485
Exchequer revenues ε	3,580	
Addition to conventional appraisal	7,159	
Total	19,991	20,069

Note: Environmental impacts not included. *Source*: Department for Transport (2006*a*).

Concluding comments

- Have set out some arguments and applications
- There is enough evidence of the benefits of proximity / scale to make inclusion of 'wider benefits' necessary and feasible.
- BUT:
 - Inherently difficult to value projects that have a 'transformative' effect on the location and efficiency of economic activity.
 - Need to build research and evidence base
 - Risks in moving away from the tightly structured framework of social savings: anything goes?