iCSI Partners

2021 Summary

Although 2021 started off in a similar manner to what had been the case through most of 2020, iCSI work was able to proceed almost normally with open laboratories all year. The vaccination program gave a boost to the hope of better times. However, travel restrictions and quarantine requirements made international cooperation difficult, and beam times in European laboratories in particular had to be cancelled or postponed.

Educating master’s students is important to iCSI. In 2021, eleven graduating master’s students were associated with iCSI, of whom two delivered directly into the ongoing projects. The gender balance within iCSI is maintained, with all personnel categories within a 40/60 distribution.

In 2021, iCSI finalized the centre’s employment plan by welcoming the three final candidates: Postdoctoral fellow Tina Bergh and PhD candidate Bjørn Frederik Baumgarten at NTNU, and PhD candidate Bjørn Gading Solemsli at UiO (being respectively the 6th postdoc and the 14th and 15th PhDs within iCSI). Three candidates (Endre Fenes, Hongfei Ma and Stine Lervold) finalized their PhD theses with two defences in March and one in June, respectively. iCSI congratulates them!

The high publishing activity has continued from last year, and 23 reviewed papers were accepted and published in 2021. As in the previous year, Innovation Area 4 (PVC Value Chain: World Class Energy and Raw Material Efficiency for the Production of Chlorine and Vinyl Chloride Monomer) kept going with a high publication rate, but also IIA1, 3, 5 and 6 have published several papers. The publication and presentation lists can be found on pages 65–71.

Once more, lack of travel and conference participation are reflected in the list of conference contributions. Most of the presentations are from the iCSI Annual Seminar, which after two postponements, fortunately could take place at Hovde gård in October. In 2021 a few international digital events took place, however, and some of them had invited lecturers from iCSI.

The science is progressing in all Industrial Innovation Areas, and on page 15 we present this year’s highlight. One goal in IIA1 has been to explain why the Pd/Ni net used in the production of nitric acid for fertilizers, transforms into something similar to a porous plate during industrial operation. This change results in a significant pressure drop through the gauze pack, limiting the number of Pd/Ni gauzes which can be installed simultaneously. The answer revealed by Asbjørn Slagtern Fjellvåg was similar to a classical corrosion mechanism; the grain boundaries serve as a rapid transport path for Pd- and Pt-diffusion, causing the grain boundaries to develop porosity and recrystallize the surface. In short, we can simply describe it as corrosion by platination.

In September, iCSI and NTNU made a contribution to the international catalysis society, by hosting the Webinar for the European Federation of Catalysis Societies (EFCATS) 2021 Catalysis Award event. Eight prize winners were presented, and they all gave lectures showing results from their work. iCSI is proud of our former PhD candidate Dimitrios Pappas, who won the Best PhD Thesis Award.

iCSI is also proud to have dedicated and enthusiastic international scientific advisors. This report introduces the readers to one of the advisors, Professor Regius in Chemistry Graham Hutchings from Cardiff University (page 12-14). Hutchings was the 2021 recipient of the Michel Boudart Award in Fundamental Catalysis from EFCATS and NACS, and iCSI congratulates him on this well-deserved honour!

The representation on the iCSI Board has changed for some of the industry partners in 2021, with Camilla Jordal taking over from Marco Piccinini as Inovyn’s board representative in January. We thank everyone on the board as well as all the scientists for their efforts for iCSI throughout the year.

While this report was prepared, we were seeing diminishing impacts of the Covid-19 pandemic. The Norwegian society opened up, lectures became physical, and the student social life was back. We started looking forward to an iCSI 2022 Annual Seminar with participation from our International Scientific advisors and to prepare for finalization of our research and innovation efforts in the best possible way.

But before we were able to complete the work, war was waged in Europe. iCSI and its participants express their deepest sympathy with the Ukrainian people and condemn the invasion. iCSI is particularly concerned about Ukrainian scientists and universities, as well as the open, global scientific and industrial community in general. Conflicts in the 21st century must be resolved through transparency, negotiations, compromise and without the use of violence and military force.

Cover photo: The capillary setup used for flow through experiments on BM31 at The European Synchrotron Radiation Facility (ESRF) by IIAS. The quartz capillary has an inner diameter of 1.5 mm and a wall thickness of 0.01 mm. The cone below the capillary is a heat blower. Photo by Karoline Kvande.
Content

ICSI Partners .. 2
2021 Summary .. 3
Vision, objectives and strategy ... 7
ICSI organization ... 8
Industrial Partners ... 9
Centre Board .. 10
Scientific Advisory Committee ... 11
Management and Administration ... 11
Researchers Portrait: Regius Professor of Chemistry: Graham Hutchings ... 12
Scientific Highlight 2021: Platinum catchment ... 15
HEGRA Project – Herøya Green Ammonia .. 16
Company presentation: K.A Rasmussen ... 17
ICSI moments ... 18
Annual Seminar ... 22
Postdoc Sebastian: Industrial exchange to Haldor Topsøe ... 24
PhD Karoline: Research stay at the University of Turin, Italy .. 24
The CATHEX partnership .. 26
Scientific Activities .. 29
IIA1: 21st century Ammonia Oxidation and Nitric Acid technology development ... 31
IIA2: Abatement of nitrogen-containing pollutants – state-of-the-art catalyst technology 36
IIA3: Frontier formalin technology development .. 38
IIA4: PVC Value Chain: World class energy and raw material efficiency for the production of Chlorine and Vinyl Chloride Monomer (VCM) ... 40
IIA5: The next step in Direct Activation of Lower Alkanes .. 43
IIA 6: Generic projects for additional industrial synergies .. 45
Three new PhDs ... 50
Internationalization 2021 ... 54
European research - Horizon 2020 projects .. 56
International collaborations supported by RCN and sources other than EU .. 56
Accounts 2021 ... 58
Education ... 59
Communication and Dissemination 2021 ... 65
ICSI Publications and conference contributions 2021 .. 65
ICSI associated Publications and conference contributions 2021 .. 67
The people at ICSI .. 72
ICSi's main objective is to boost industrial innovation and competitiveness and provide efficient, low-emission processes. This can be achieved through:

- Improved understanding of the kinetics and chemistry of the catalytic processes as a basis for performance enhancement and process optimization.
- Synergy between applied and basic research, competence-building and education through interaction between industry, research institutes and universities.
- Development of new materials and experimental and theoretical methods.
The Norwegian University of Science and Technology (NTNU) is serving as the Host institution for the iCSI Centre. The iCSI research partners – NTNU, SINTEF Industry and the University of Oslo (UiO) – represent the main research groups involved in heterogeneous catalysis research in Norway, located in Trondheim (NTNU and SINTEF) and Oslo (UiO and SINTEF). The industrial partners – Yara, KA Rasmussen AS, Dynea, INOVYN and Haldor Topsøe A/S – also conduct their own significant R&D. The collaboration enables the optimized use of complementary competence and a shared, highly advanced, experimental infrastructure that is being utilized, expanded and developed within iCSI. The research is organized into 6 Industrial Innovation Areas (IIA1–6), each with 1–6 work packages. Cutting-edge research topics addressing the key challenges are identified for each of the ICSI industrial innovation areas (IIA1–5) and defined as Work Packages. IIA6 is focusing on the development of methodology in line with the international forefront, and these methods are gradually being integrated into the activities of IIA1–5. Each IIA has 2–3 research partners and 1–2 industrial partners, while IIA6 is generic and involves all partners.

Centre Board

Scientific Advisory Committee

Research Partners

Host and Project Management

Industrial Partners

iCSI Annual Seminar

iCSI organization

An overall objective for iCSI is to strengthen the competitive position of the industrial partners by securing their technological lead with respect to selected catalysts and process operations and enabling them to further reduce their environmental footprint. In addition, certain Norwegian industrial operations and industrial core competences can be secured and developed.

Industrial Partners

INOVYN Ltd. is a leading producer of chlorovinyls and associated products, wholly owned by INEOS. INOVYN has eight European production sites and 4300 employees, of which INOVYN Norway AS constitutes about 300 employees in two sites. The chlorine/VCM production at Rafnes and the PVC plant at Herøya. Through iCSI, INOVYN wants to further improve the VCM technology to achieve world class energy and raw material efficiency.

Yara International ASA is a Norwegian-based chemical company with fertilizer as its largest business area. Yara also works with chemical and environmental solutions for industrial plants, vehicles and marine vessels. In addition to being present in more than 60 countries, Yara operates two industrial sites in Norway, Porsgrunn and Glomfjord, with approx. 700 employees. In iCSI, Yara aims to further strengthen its global competitiveness through innovation.

Haldor Topsøe AS is a catalyst producer and process plant technology developer based in Denmark. Haldor Topsøe wants to be the global leader within carbon emission reduction technologies for the chemical and refining industries. By perfecting chemistry for a better world, we enable our customers to succeed in the transition towards renewable energy.

K.A. Rasmussen AS is a refiner of precious metals and supplier of catalysts and products based on precious metals located in Hamar, Norway among other places in Europe. KA Rasmussen has specialized in technology for producing structured catalysts for the Ostwald process and silver particles for the oxidation of methanol. In iCSI, KA Rasmussen wants to expand its catalyst market base, contribute to meeting emissions targets and reduce the net consumption of noble and scarce metals in their product range.

Dynea AS is a Norwegian-owned specialty chemical company for sustainable wood adhesives, industrial coatings, specialty adhesives & polymers and surfacing solutions, with production sites in Norway, Denmark and Hungary, and licensing of the well known Dynea Silver Catalyzed Formaldehyde technology, fasil®. In iCSI, Dynea aims to continue its technological leadership in formalin production for improved plant operations and reduced cost for its fasil® technology.
Centre Board

The Board is the decision-making body for the execution of iCSI’s vision and objectives. Its functions and mandate are described in the ICSI Consortium-Agreement: “The Centre Board shall ensure that the intentions and plans underlying the Contract for the Project are fulfilled, and that the activities discussed in the Project description and the Work Plan are completed within the approved time frame. The Centre Board will further ensure that the interaction between the Centre, the Host institution and the other Consortium participants functions smoothly”. Each partner is represented (permanent + deputy) and has one vote. The Research Council of Norway is represented by an observer.

Pablo Beato from Haldor Topsøe has acted as Chair of the Board in 2021. In January 2021, Kamilla Jordal replaced Marco Piccinini as Inovyn’s representative.

Dr. Pablo Beato
Lead Scientist directing the Atomic-Scale Analysis Department at Haldor Topsøe

Lars Axelsen
General Manager of Technology Sales & Licensing at Dynea.

Torgeir Lunde
Head of Ammonia/Nitric Acid Technology at Yara Technology Centre at Yara International

Thomas By
Head of Research and Development at K.A. Rasmussen

Kamilla Jordal
Chemical engineer at Inovyn RTE-VCM

The Board is comprised of representatives from each iCSI partner institution.

Scientific Advisory Committee

Three renowned scientists from prominent institutions who have excelled within iCSI-relevant areas of heterogeneous catalysis have committed to contribute to iCSI and act as inspiration for the iCSI researchers. Their main tasks are to advise the iCSI Board on the ongoing work in the Centre, to participate and interact with the young researchers at the iCSI Annual Seminar, and to promote iCSIs internationalization and recognition.

Professor Alessandra Beretta
Politecnico di Milano, Italy

Professor Enrique Iglesia
University of California, Berkeley, USA

Professor Graham Hutchings
Cardiff University, United Kingdom

Management and Administration

The Centre is hosted by the Department of Chemical Engineering at NTNU. The administration team consists of a Centre Director, a Coordinator/Vice Director (50% position) and an Economy Advisor (20% position).

Professor Einar Uggerud
Head of Department of Chemistry at the University of Oslo

Professor Karina Mathisen
Vice Dean for Education and Dissemination at NTNU’s Faculty of Natural Sciences

Dr. Duncan Akporiaye
Research Director at SINTEF Industry.

Dr. Aase Marie Hundere
Special advisor RCN, with Responsibility for Nanotechnology and Advanced Materials

Professor iCSI Centre Director

Anne Hoff
Senior advisor iCSI Coordinator

Ragnhild Aaen
Economy Advisor iCSI Economy advisor January–March 2021

Hilde M. Flaathe
Financial Project Advisor iCSI Economy advisor April–December 2021
Researchers Portrait: Regius Professor of Chemistry: Graham Hutchings

Graham Hutchings with colleagues and friends at the 2016 CCI Conference, Cardiff, UK. Photo: Michael Hall.

Graham Hutchings is lucky to have top international researchers as scientific advisors, and Graham Hutchings is no exception. The complete list of his awards and accolades is too long to be included here, but a few are mentioned in the fact box. Graham, as the gentle and wonderful man he is, gave us time for a chat to hear how his successful career developed and to get some advice for the younger generation of scientists.

So, Graham's career didn't start with heterogeneous catalysis at all. His PhD is in biological chemistry, and he was looking for a job in that industry. After a few offers he didn't like, he reluctantly accepted a job in Imperial Chemical Industries on Teesside. This was a place neither he nor his wife Sally really wanted to go to because it was a very poor, polluted area with few facilities, quite different from London.

—“I decided I would just enjoy coming up for the interview because they were going to put me up at a Country Club, and I really fancied staying in a Country Club”

But the position was well paid, so Graham accepted the job offer and they bought a house and had a baby. And then before he arrived, ICI had changed the job in biochemical to one with heterogeneous catalysis and vanadium phosphates. That switch changed the course of his life for forever, because ever since then in 1975, he has been doing heterogeneous catalysis.

After a few years in research, he rather wanted to go where the company made money. He became the production support manager and later the plant manager for hydroformylation plasticizer alcohols. “It was a wonderful time,” he said.

“What did I learn during my years in the industry? I did research and I did production, and I liked the mixture of those. I learned that managing people is extremely challenging but also very rewarding. You know, you have to listen to people. It’s important and you have to engage them. You have a team, and everybody on that team has a voice. I learned that you don’t manage from the top. You’re certainly in the front, but you have to get everybody on board and working with you. I also learned to think big and not to take no for an answer.”

In 1981 Graham wanted to come back to research, and due to the recession in the UK and difficulties finding a job there, he stayed within ICI and took his family with him to South Africa, where he was a seconded Senior Officer and later Chief Research Officer at AECI in Modderfontein for 3 years. Then he realized he wanted to be “in charge of his own destiny” and decided that he would become an academic, but that wasn’t easy. He applied for lots of jobs but nobody at all wanted to employ someone from industry who didn’t have any papers, so a number of places turned him down.

—“And you know, at this point I look back and think, well maybe they might have regretted that, just slightly. At this point”

He finally managed to find an opening at Witwatersrand University in Johannesburg, mainly because his main reference was Max McGlashan – at that time probably the leading thermodynamicist in the world – and the Wits Head of Department was also a thermodynamicist. And there, his academic career started in 1984.

When asked what Graham is most proud of in his professional career, he doesn’t have a moment’s doubt. “I think people would be surprised if I didn’t say it was my discovery of catalysis by gold”. For those who don’t know, gold was at that time, in 1982–83, considered to be totally inert and not suitable for catalysis. He had earlier contributed to solving some of the AECI plant’s operational problems, and through that gained the production peoples’ trust. Now, they asked him to find a new catalyst for acetylene hydrochlorination to replace mercury, which was treated in a frighteningly lax manner despite being a serious health hazard. “I hit upon gold by reading some papers and taking the process data from one of these papers and coming up with a correlation for the activity versus the standard electrode potential. And I looked at this and I thought, if that’s right, then gold is the best catalyst. And experiments confirmed that. If I hadn’t gone to this factory, I would never have dealt with that problem – and I would never have come up with gold as a catalyst for the heterogeneous reaction.” In 2013, China signed the Minamata Convention which sought to ban uses of mercury worldwide, and in 2017 it entered into force as international law.

“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”

When it comes to students and young researchers, Graham has observed that times are now tough with hard competition for temporary positions, much tougher than in his young years. His best advice for them is that if you don’t enjoy doing science, then choose something else. But if you really love it, you should trust yourself, your own judgement and believe in yourself. Be aware of any unusual observations, because something that you weren’t expecting could open up a whole new area of research that you weren’t suspecting, so be open minded. You should also pick your advisors and mentors with care and choose ones who tell you when you’re doing things wrong.

Many people have influenced his path in his own career, and he is grateful for their guidance and corrections. The first mentor he mentions is Charles Vernon, his PhD supervisor. “He was an exceptionally bright person, who left me alone for long periods, and gave me the freedom to do the project the way I wanted to.” Graham has applied these experiences to his own PhD students, who are set up in groups with postdocs as co-supervisors.

The next mentor was Arthur Thomas. “He was my boss at ICI in South Africa, and he challenged me and gave me a lot of opportunities.”

Michel Che is another mentor, with whom Graham talked on the phone with regularity when he went to Cardiff. “He questioned why I was doing things.” Michel also helped him in a big way because he invited Graham to Paris as a visiting professor. There he could step back, and he realized that he should be doing a lot more with gold.

Ian Smith was someone who helped him when he was a head of school and helped him to understand the context of his science in the wider world.

—“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”

—“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”

—“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”

—“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”

—“I think that discovery, that insight of using gold for this reaction, led to a change in international law. I don’t think anything else I’ve done has had that level of impact”
The last person Graham mentions is Richard Catlow, who got the UK catalysis hub going. “I certainly couldn’t have done that without Richard.”

Graham has certainly had good advisors and supports but also an inner drive and curiosity to find explanations for observed phenomena. “You don’t know when the next big, wonderful discovery is going to be made. Maybe you’ll make it. Maybe you won’t, but there are always new things out there, and that’s what inspires me to ask questions as a researcher and answer them.”

—“Time is the most valuable possession that you have, and you must use it as effectively as you can”

Last year Graham celebrated his 70th birthday, but he doesn’t plan to stop working yet. He has a 50% appointment at Cardiff University, and he is still the Regius Professor of Chemistry. Whether he will still be at Cardiff when he is 80, he doesn’t know. “I think the next generation has to take over at some point, but not yet. I’ll stop when I don’t think I’ve got any decent ideas anymore.”

Graham’s view for the future is that we now need to find how we can use resources more effectively and how to use carbon in a circular way. “We can’t carry on consuming resources and we have to be very innovative.”

Graham claims that chemistry is his hobby. Ever since he saw his first chemistry experiment at the age of 11 he wanted to be a chemist. Chemistry has been a passion for 60 years. “If you don’t watch out, it can make you into a very boring person.” His dear Sally shared this concern and once 20 years ago, when the weekends were spent writing papers, she asked him to get himself a life. “So, I joined the wine club. I now have an interest in wine and have become quite knowledgeable on Bordeaux wines and Alsace wines, and I delight in South African wines.”

Sally said this was not what she had in mind! But he also reveals that he reads Nordic crime (unlike science, they have an ending), and goes for walks in the beautiful countryside around the small farm and the village where they live in North Yorkshire.

As have most of us, Graham has suffered from the pandemic, and he is now looking forward to travelling again. He especially misses his daughter and grandson in Oregon, and a visit to them is first priority when it becomes advisable to travel abroad again. iCSI wishes him a good trip and also the very best with his wife and family in England and Wales going forward.

Graham Hutchings – CV in short:

Education
1972: BSc in Chemistry with First Class Honours, University College London
1976: PhD in Biological Chemistry, University College London. Supervisor: Prof C. Vernon
2002: DSc (University of London)

Experience
1975–1984:ICI Petrochemicals Division: Researcher, plant manager and production support manager at Teeside, Senior and Chief Research Officer at AECI, Modderfontein, South Africa
1984–1987: University of Witwatersrand, South Africa: Lecturer and Professor
1987–1997: University of Liverpool: Assistant Director of the Leverhulme Centre for Innovative Catalysis, Deputy Director and Professor
1997 – present: Cardiff University: Head of School and Professor of Physical Chemistry, Director of Cardiff Catalysis Institute, Pro Vice Chancellor Research, Distinguished Research Professor and Regius Professor of Chemistry

• Has supervised around 200 PhDs and 100 Postdocs over his career
• 776 refereed research papers; 54 Patents; 74 Review articles; 21 Edited works, 58 000 citation

Many academic positions entailing trust and awards, of which a few can be mentioned:
• European Federation of Catalysis Societies 2021 Michel Boudart Award in Fundamental Catalysis
• Royal Society of Chemistry 2018 Faraday Lectureship Prize
• ENI Award for Advanced Environmental Solutions 2017
• Royal Society Davy Medal 2013
• Dechema 2012 Alvin Mittasch Award
• International Association of Catalysis Societies 2012 Heinz Heinemann Award
• European Federation of Catalysis Societies 2006 François Gault Lecturer
• American Chemical Society 1996 Langmuir Distinguished Lecturer Award

Scientific Highlight 2021: Platinum catchment

Synthetic nitrogen-based fertilizers are perhaps the most important product of the chemical industry today, because of their vitality for feeding the human population. Without the synthetic binding of nitrogen from the air, approximately 40% of the human population would likely not be alive today. One of the key constituents in synthetic fertilizers is nitric acid, HNO₃, produced by the Ostwald process. During the ammonia oxidation step (NH₃ → NO, T = 900 °C), significant quantities of Pt (and some Rh) are lost from the Pt/Rh (90/10 wt. %) catalyst in the form of PtO₂ and RhO₂. To mitigate the Pt-loss, a Pd/Ni (95/5 wt. %) gauze (woven net) is installed downstream to capture the Pt. However, during industrial operation, the Pd/Ni (95/5 wt. %) net transforms into something more similar to a porous plate (Figure 1a), resulting in a significant pressure drop through the gauze pack, limiting the number of Pd/Ni pores which can be installed simultaneously.

In the platinum catchment project in iCSI (IIA1, WP1.1), we have shown how only PtO₂ in an air-flow causes a complete reconstruction of the Pd/Ni (95/5 wt. %) net, and that thermalgas etching causes porosity and a large Pd-loss [1]. To understand the mechanism of grain reconstruction, in situ tomography was performed at the ESRF (ID15A) using the setup illustrated in Figure 1b. Combined with several lab scale techniques, our goal was to unravel how a solid Pd and Pd/Ni wire can transform into a porous wire instead of experiencing grain growth. The answer was similar to a classical corrosion mechanism: the grain boundaries serve as a rapid transport path for Pd- and Pt-diffusion, causing the grain boundaries to develop porosity and recrystallize the surface [2]. In short, we can simply describe it as corrosion by platination (Figure 2).

Figure 1. a) Pd/Ni-net after 5 months of industrial operation and b) schematic of the furnace (10x10x12 cm) used for the tomography experiments.

Figure 2. Summary of the results and mechanism for grain reconstruction of the Pd- and Pd/Ni wires.

Investigation of grain reconstruction

Mechanism

Many academic positions entailing trust and awards, of which a few can be mentioned:

• European Federation of Catalysis Societies 2021 Michel Boudart Award in Fundamental Catalysis
• Royal Society of Chemistry 2018 Faraday Lectureship Prize
• ENI Award for Advanced Environmental Solutions 2017
• Royal Society Davy Medal 2013
• Dechema 2012 Alvin Mittasch Award
• International Association of Catalysis Societies 2012 Heinz Heinemann Award
• European Federation of Catalysis Societies 2006 François Gault Lecturer
• American Chemical Society 1996 Langmuir Distinguished Lecturer Award

Publications

Graham Hutchings – CV in short:

Education
1972: BSc in Chemistry with First Class Honours, University College London
1976: PhD in Biological Chemistry, University College London. Supervisor: Prof C. Vernon
2002: DSc (University of London)

Experience
1975–1984:ICI Petrochemicals Division: Researcher, plant manager and production support manager at Teeside, Senior and Chief Research Officer at AECI, Modderfontein, South Africa
1984–1987: University of Witwatersrand, South Africa: Lecturer and Professor
1987–1997: University of Liverpool: Assistant Director of the Leverhulme Centre for Innovative Catalysis, Deputy Director and Professor
1997 – present: Cardiff University: Head of School and Professor of Physical Chemistry, Director of Cardiff Catalysis Institute, Pro Vice Chancellor Research, Distinguished Research Professor and Regius Professor of Chemistry

• Has supervised around 200 PhDs and 100 Postdocs over his career
• 776 refereed research papers; 54 Patents; 74 Review articles; 21 Edited works, 58 000 citation

Many academic positions entailing trust and awards, of which a few can be mentioned:

• European Federation of Catalysis Societies 2021 Michel Boudart Award in Fundamental Catalysis
• Royal Society of Chemistry 2018 Faraday Lectureship Prize
• ENI Award for Advanced Environmental Solutions 2017
• Royal Society Davy Medal 2013
• Dechema 2012 Alvin Mittasch Award
• International Association of Catalysis Societies 2012 Heinz Heinemann Award
• European Federation of Catalysis Societies 2006 François Gault Lecturer
• American Chemical Society 1996 Langmuir Distinguished Lecturer Award

Publications
2021 marked a milestone year for Yara’s electrification efforts for the ammonia plant at Herøya, Porsgrunn. The year started by establishing a dedicated organization, Yara Clean Ammonia, that will develop a portfolio of green and blue ammonia projects across the globe as well as establishing new markets for these products. For the Herøya plant, Yara was granted funding from ENOVA in December for the first phase of the electrification project.

This first phase aims to qualify the necessary technology, but also to mature the market for the final products. This stepwise approach is required as the cost both to build and to operate are higher than using conventional technology.

The technology chosen for this first phase is PEM-electrolysers provided by British manufacturer ITM Power. Linde Engineering was awarded the EPC contract. This will make the ammonia plant a hybrid plant, mixing hydrogen from the electrolysers with feed gas from the current steam methane reformer, into the existing Haber-Bosch process, to synthesize ammonia. The construction has already started, and the plant will become operational in mid-2023, making it one of the first green ammonia projects at this scale since Yara (Norsk Hydro) closed down its old electrolyser plant in Glomfjord in 1993.

The 24 MW project will support roughly 20 000 tonnes of ammonia production per year, or 60–80 000 tonnes of fertilizer equivalents. The electrolyser technology is continuously under development, but further research is required to develop cheaper, even more efficient and more durable stacks to make ready for a full-scale electrified ammonia plant. Together with sufficient access to cheap and reliable renewable energy, this step represents the beginning of decarbonizing an industry emitting ~1.5 % of the global CO₂ emissions. Yara is continuously monitoring the landscape for new commercially available technology to enable us to invest in the right technology at the right time.

For the full-scale electrification of the Porsgrunn plant, Yara has established Hegra. The project is maturing and full-scale electrification will be able to save around 800 000 tonnes of CO₂ per year, eliminating one of the largest emission points in Norway. The project has gained a lot of attention in the last year, and if implemented it will start production in 2026–2027.

K.A. Rasmussen is a company which produces precious metals. Within this field we cover everything from collecting and buying used precious metals, to producing different products using these scarce and valuable elements: gold (Au), silver (Ag), platinum (Pt), palladium (Pd) and rhodium (Rh).

The company was founded in 1872 and has since evolved from a small goldsmith shop in Oslo to a precious metals company dealing with the recycling and refining of end-of-use products to return the metal to the market.

What all of these elements have in common is that they are highly noble metals and prefer to be in a metallic state. In addition to this, Pt, Pd and Rh, which are three of the six Platinum Group Metals (PGM), are very similar when it comes to chemical behaviour. The result of this effect is that separating them from each other is rather difficult. KAR’s greatest expertise is this challenging separation process, and we can extract these elements with a purity of 99.9 % or greater.

Another interesting part of the function of precious metals is that they are highly efficient catalysts for different chemical reactions. For instance, platinum is a great oxidation catalyst. The same goes for silver. Although these expensive metals have been exchanged with other catalyst types in many applications, they are still in use in some areas, most commonly in processes with very harsh environments often involving high temperatures. One such example is the Ostwald process, burning ammonia in air to produce NOx and further downstream, HNO₃. Here, a platinum catalyst is placed in the high temperature zone for the ammonia oxidation, keeping the conversion and yield high.

To provide such a catalyst, KAR can produce wires with diameters down to 60 µm. These wires are then knitted or woven to form a cloth which can be fitted to the chemical reactor of the Ostwald process. For KAR the goal is to remain the leading Nordic precious metal company. In the practical world, this means our company always needs to have the best available employees, knowledge and methods for recycling metals and producing high-quality products. The products of tomorrow need not be the same as they are today, but we believe there is a place for Precious Metals for both industrial and consumer use.
iCSI moments 2021

Another year wearing face masks

Visiting Yara at Herøya – November

Safety first! – Always

Skiing in Bratsberg – March

Visiting ESRF in Grenoble – June
There’s always an excuse for cake! - February & November

New PhDs – March & June

2021 Doctor promotion – November

Lund MAX IV – November

Bortistu in Stordalen – September
After two postponements, 49 researchers were finally able to meet at Hovde farm October 18-19. About half came from NTNU, the others were evenly distributed between SINTEF, UiO and the industry partners.

After two years of pandemics, there has been a great longing for conferences and other arenas where PhD students and young researchers can present their results and practice in scientific discussions. Since the pandemic once again prevented the international scientific advisors from coming, we were given more time for our own researchers. All doctoral students and post-docs within iCSI were therefore encouraged, and given the opportunity to present orally. A general comment from the board members was that the presentations were interesting and good. They also thought the level of the discussion of results and the communication skills had increased.

Although the board missed the poster session not on the agenda, they agreed that it was correct to give priority to the young researchers for oral presentations. iCSI promised to come back with a poster session at the 2022 seminar, which will take place June 21–22 in Oslo.

The seminar is also an important place for colleagues from the different institutions to meet, get to know each other and discuss future projects.
Postdoc Sebastian: Industrial exchange to Haldor Topsøe

Last October I finally had the chance to spend a couple of months at Haldor Topsøe. This had been planned for a long time, however, corona kept interfering with those plans. In October, it finally seemed like the risk was manageable only for me to learn that the housing situation in Copenhagen is a little more dire than back in Oslo. Luckily, at the last minute I succeeded in finding a place – with “hygge” but pricey – on Jægersborggade, a street in the trendy neighbourhood of Nørrebro. From there, the commute to Lyngby took only about an hour via the metro, a bus and a small local train. At work at last, I really did get into it, thoroughly enjoying my stay there and helped of course by the – by Norwegian standards – rich lunch buffet.

I had the chance to work in the Characterization group with iCSI’s very own Chair of the Board, Pablo Beato. We wanted to see whether we could improve a well-aged test unit so it could perform methane to methanol reactions relevant to IAS, which would enable us to compare and benchmark test results across labs. In addition, we also utilized Raman spectroscopy to induce resonance vibrations in copper species of our active materials and finally had the opportunity to probe some of our most exploratory and novel zeolite materials with the highly advanced transmission electron microscope and the support of Topsøe’s Ramchandra Tiruvalam.

The time passed much too quickly, owing to the fact that between long hours at work and the commute, I also found time to explore the city and experience non-work related activities. For example, it was great to have been invited by Topsøe’s Juan Salvador Martinez Espin to come and join his field hockey team. In the end, the only thing that was amiss with my stay at Haldor Topsøe was the cancelled julefrokost (Christmas breakfast) due to the surge of Omicron cases in the last few days before the end of my trip. Overall, it was grand time and I am grateful I could partake in this opportunity.

PhD Karoline: Research stay at the University of Turin, Italy

From August 2021 to February 2022, I was on a research stay at the University of Turin, working with Prof. Silvia Bordiga. I found this to be a really great experience where I had the chance to challenge myself, both scientifically and culturally. Living in Turin for six months gave me the opportunity to learn about Italian culture, learn a little bit of Italian and eat and drink a lot of fantastic Italian, and more specifically, Piedmontese food. The group in Turin welcomed me with open arms, providing me with a lot of help in the lab, nice discussions as well as lots of social events like dinners or an “aperitivo” after work.

The group members are experts on spectroscopic characterization techniques, which gave me the chance to learn and work with something new and different to what I usually work with in Oslo. From mostly working on catalytic testing and temperature-programmed reduction (TPR) protocols for the direct activation of lower alkanes, I started my stay in Turin with troubleshooting and finalizing a setup for operando UV-vis spectroscopy measurements. With this setup, I was able to measure UV-vis on several types of reactions, giving us exciting, new knowledge. Besides UV-vis, I also learned how to operate a specially designed CO-volume-try experimental setup, as well as working a little bit on Raman and CO-IR spectroscopy measurements. At the end, I also had some nice sessions with our expert on spectroscopy, Prof. Elisa Borfecchia, providing me with great help and guidance for analysing XAS data that we collected at a beam time at BM31 at ESRF in November.

All in all, I am so grateful to iCSI for giving me the opportunity to do this exchange, and it is truly an experience I would not want to be without, professionally or personally.
The CATHEX partnership

The CATHEX project, with support from the INTPART programme funded by the Research Council of Norway, is a large network project running from 2020 to 2025. The project links iCSI with four world-leading catalysis environments: the University of Cape Town, East China University of Science and Technology, University of Toronto and University of Wisconsin-Madison. The core activity of the network is to strengthen the integration of theory and experiments in catalysis research and education through personnel exchange and shared workshops.

The start-up was a bit delayed due to the pandemic, but in 2021 the travel restriction was overcome by starting a webinar series where the partners contributed with online lectures, open for students and researchers at all the partner universities. Even though the time difference is a challenge (15:00 CET = 22:00 in Shanghai = 8:00 in Madison) 40–50 participants from all over the world typically took part in the webinars. More lectures are planned for 2022.

The webinar on November 12, 2021 was dedicated to Professor Emeritus Anders Holmen, who recently celebrated his 80th birthday. His lecture was an overview of the main knowledge gained from his 40 years doing Fischer-Tropsch research, while Associate Professor Jia Yang continued by showing recently obtained results in Fischer-Tropsch studies using Steady-State Isotopic Transient Kinetic Analysis (SSTTKA).

CATHEX supported one professor visit by Patricia Kooyman from the University of Cape Town (UTC) to UiO in 2021, and for 2022 several student and researcher exchanges from UTC to NTNU and UiO are in the planning stages.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecturer</th>
<th>Lecture topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.05.2021</td>
<td>Patricia J. Kooyman, UCT</td>
<td>Bridging the pressure gap in transmission electron microscopy</td>
</tr>
<tr>
<td>21.05.2021</td>
<td>Xinggui Zhou, ECUST</td>
<td>Regulating the Adsorption Configuration on Metal Catalysts for Semi-Hydrogenation of Acetylene</td>
</tr>
<tr>
<td>04.06.2021</td>
<td>Michael Claeys, UCT</td>
<td>Catalyst characterization using in-situ magnetic measurements</td>
</tr>
<tr>
<td>24.09.2021</td>
<td>Hilde Johnsen Venvik, NTNU</td>
<td>Methanol partial oxidation to formaldehyde over silver - new kinetic and structural insights</td>
</tr>
<tr>
<td>15.10.2021</td>
<td>Magnus Rønning, NTNU</td>
<td>Characterisation of catalysts in chemical processes by combination of operando techniques</td>
</tr>
<tr>
<td>12.11.2021</td>
<td>Anders Holmen, NTNU</td>
<td>Studies of the Fischer-Tropsch Synthesis Steady-State Isotopic Transient Kinetic Analysis (SSTTKA) for investigation of catalysts for Fischer-Tropsch synthesis</td>
</tr>
<tr>
<td>10.12.2021</td>
<td>Anja O. Sjåstad, UiO</td>
<td>From model to real catalysts operated at relevant process conditions</td>
</tr>
</tbody>
</table>

Patricia Kooyman, University of Cape Town, was the first professor to give a CATHEX lecture.
Scientific Activities
Scientific Activities

iCSI main Industrial Innovation Areas (IIAs) and Work Packages (WP):

IIA1
- 21st Century Ammonia Oxidation and Nitric Acid technology development

IIA2
- New NOx abatement technologies for the marine market and state-of-the-art SCR catalysis

IIA3
- Frontier formalin technology development

IIA4
- PVC Value Chain: World class energy and raw material efficiency for the production of Chlorine and Vinyl Chloride Monomer (VCM)

IIA5
- The next step in direct activation of lower alkanes

IIA6
- Generic projects for additional industrial synergies

IIA1: 21st century Ammonia Oxidation and Nitric Acid technology development

The IIA1 team 2021

<table>
<thead>
<tr>
<th>Anja Olafsen Sjåstad</th>
<th>UIO</th>
<th>IIA leader, PhD supervisor and WP responsible (WP1.1), advisor (WP1.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmer Fjellvåg</td>
<td>UIO</td>
<td>Advisor (WP1.1-1.2)</td>
</tr>
<tr>
<td>Asbjørn Slagtern Fjellvåg</td>
<td>UIO</td>
<td>PhD candidate (WP1.1)</td>
</tr>
<tr>
<td>Julie Hessevik</td>
<td>UIO</td>
<td>PhD candidate (WP1.1)</td>
</tr>
<tr>
<td>Oskar Iveland</td>
<td>UIO</td>
<td>Master student (WP1.1)</td>
</tr>
<tr>
<td>David Waller</td>
<td>YARA</td>
<td>Industrial senior (Yara), PhD supervisor (WP1.1), industry researcher (WP1.1-1.2-1.3)</td>
</tr>
<tr>
<td>Halvor Øien</td>
<td>YARA</td>
<td>Industry researcher (WP 1.1)</td>
</tr>
<tr>
<td>Siri-Mette Olsen</td>
<td>YARA</td>
<td>Industry researcher (WP 1.1)</td>
</tr>
<tr>
<td>Thomas Øy</td>
<td>KA Rasmussen</td>
<td>Industry Researcher (WP1.1-1.2)</td>
</tr>
<tr>
<td>Ann Kristin Lagmannsveen</td>
<td>KA Rasmussen</td>
<td>Industry Researcher (WP1.1-1.2)</td>
</tr>
<tr>
<td>Silje Fosse Håkonsen</td>
<td>SINTEF</td>
<td>Researcher WP responsible (WP1.2)</td>
</tr>
<tr>
<td>Børge Holme</td>
<td>SINTEF</td>
<td>Researcher (WP1.2)</td>
</tr>
<tr>
<td>Magnus Ranning</td>
<td>NTNU</td>
<td>PhD supervisor, WP responsible (WP1.3)</td>
</tr>
<tr>
<td>Jithin Gopakumar</td>
<td>NTNU</td>
<td>PhD candidate (WP1.3)</td>
</tr>
<tr>
<td>Sunniva Vold</td>
<td>NTNU</td>
<td>Master student (WP1.3)</td>
</tr>
<tr>
<td>Rune Ladeng</td>
<td>SINTEF</td>
<td>PhD supervisor, senior researcher (WP1.3)</td>
</tr>
<tr>
<td>Bjørn Christian Enger</td>
<td>SINTEF</td>
<td>Senior researcher (WP1.3)</td>
</tr>
<tr>
<td>Kari Anne Andreassen</td>
<td>SINTEF</td>
<td>Senior Engineer (WP1.2)</td>
</tr>
</tbody>
</table>

Oxides as Pt-catchment materials

The current technology to mitigate noble metal loss from the Pt-Rh catalyst used in high temperature ammonia oxidation in the Ostwald process is to employ catchment nets of Pd-Ni alloys.² Although considerable amounts of Pt are captured by such nets and hence are available for recycling, the Pd-based nets show significant losses of Pd at the same time. Earlier we showed that oxides like LaNiO₃ are also able to capture Pt at process conditions where the reaction with PtO₂(g) at 900°C yields La₂NiPtO₆ as product.³ This suggests that oxides may become important catchment materials at reduced costs. Currently, we screen a number of oxide candidate compounds in order to validate and discover essential parameters for an efficient Pt-catchment material at process conditions.

Among the selection criteria, we emphasize that the oxide needs to form a thermodynamically stable Pt-containing phase at relevant temperatures (800-900 °C) when reacting with PtO₂(g). Several ternary and quaternary platinates are mentioned in the literature. On the basis of known or hypothetical crystal structures, we use DFT calculations to better describe enthalpies of formation and possible reaction pathways. The maximum theoretical limit for platinum incorporation into the structure of the oxide obviously depends on the chemical composition of the resultant platinates. In practice, it also depends on the transport of Pt into the oxide pellet material. Consideration of the crystal structures, diffusion pathways and experimental studies of Pt diffusion into oxide single crystals and porous pellets provide insight into the Pt transport into these...
Experimental investigations of Pt/PtRh volatilization and catchment
A set of polished Pd and PdPt discs with a diameter of 5–6 mm and 5 different PdPt compositions have been exposed to a flow of different partial pressures of PtO₂ vapor for four hours at 900 °C. The diffusion profile was subsequently analysed using Sputtered Neutral particle Mass Spectrometry (SNMS) and is shown in Figure 1.

Our results show that for the low Pt-containing samples, Pt is captured from the gas and a clear diffusion profile is observed. However, for samples that initially contained high amounts of Pt, we measure the opposite effect, where Pt is actually lost from the catchment sample under these conditions. This behaviour is more pronounced in the catchment samples containing the most Pt. An interesting observation is that with higher PtO₂ partial pressure the more Pt is caught by the discs.

The turning point (with net zero uptake of Pt) also seems to shift to higher Pt containing alloys when increasing the PtO₂ partial pressure in the gas phase.

The conclusions from this work are that:
1. There is a limiting Pt concentration for Pt catchment in Pd. Once a certain Pt concentration has been reached, equilibrium is established, and equal amounts of Pt are caught and lost from the sample (Figure 2).
2. Another limiting factor for Pt catchment is that the higher the partial pressure of PtO₂ in the gas phase, the more Pt will be captured on the Pd.

This work has answered a key question as to why ammonia oxidation plants observe a limitation in how much Pt they are able to capture.

Figure 1. Net Pt uptake in Pd and PdPt binary alloys after 4 hours exposure to different PtO₂ partial pressures.

Figure 2. Illustration of PtO₂ catchment in Pd materials. We note a strong Pt enrichment in the surface of the catchment pellets after exposure to PtO₂; see the SEM-EDX cross sections in Figures 1 and 2. The candidate oxides must furthermore show chemical stability at process conditions (steam and NOx gases) and not negatively influence NOX gas species equilibria in the product stream. For instance, catchment pellets based on oxides with a basic cation may possibly decompose in humid and harsh conditions due to pulverization triggered by formation of hydroxides or carbonates.

Our first generation of oxide catchment materials focuses on perovskite and Ruddlesden-Popper type compounds. The second and wider screening covers a number of binary oxides, several of which form colourful platinates (Figure 3). A series of oxides have been tested in dry air with PtO₂ (g) in our in-house 6-zone furnace at 700, 800 and 900 °C, and the same type of oxides are currently being tested at real process conditions in a pilot plant at Yara International in Porsgrunn. Based on all the mentioned factors, we aim to conclude on the most promising Pt-catchment materials for mitigating Pt loss in the nitric acid plant.

References

Figure 2. Cross-section SEM of La-Ni-Pt-O system show a dense layer of La₂Ni₂−ₓPt₂ₓO₆ at the top and a number of NiO particles at the boundary to the porous structure.

Figure 3. Pellets after exposure to PtO₂ at 1) 900 °C, 2) 800 °C; 3) 700 °C. Original color is white.

Figure 1. Cross-section SEM-EDX of La-Ni-Pt-O pellet shows Pt enrichment in the surface part but not in the bulk.
Nitric acid (HNO₃) is an important chemical building block and produced industrially by the Ostwald process involving ammonia oxidation by atmospheric oxygen using Pt-Rh gauze catalysts to yield nitric oxide. The typical NO concentration at the exit of the ammonia combustor is 10 %, and nitric oxide is further oxidised in a homogeneous gas phase reaction to NO₂, which is further absorbed in water to yield nitric acid. Using a catalyst to oxidise NO to NO₂ is attractive to reduce the CAPEX by replacing the bulky homogeneous oxidation process with a much more compact heterogeneously catalysed process. Literature reports on catalytic NO oxidation at high concentrations are scarce.

Catalytic oxidation of NO has, however, been studied extensively in diesel engine exhaust treatment. Here the NO concentration in the feed is normally in the range of 10–100 ppm, which is very far from nitric acid production conditions. The investigated catalysts in the literature so far range from noble metals via supported metal oxides, to ion exchanged zeolites and activated carbon fibres. The thermodynamics of the reaction changes to a greater percentage of NO₂ in the feed.

Additionally, the high concentration of nitric oxide, gas-phase conversion and the presence of water in the feed are the main challenges that hold back this reaction from being catalytic. Hence, to date no catalyst has been found that fully oxidises nitric oxide to nitrogen dioxide at industrial conditions.

Typical gas composition at the exit of the ammonia combustor mainly contains 10 % NO, 6 % O₂ and 15 % H₂O. But as we move away from the ammonia combustor exit towards the absorption tower, the gas composition changes to a greater percentage of NO₂ in the feed. Hence, any novel catalyst used at this stage in nitric acid plant for NO oxidation should be able to withstand NO₂ and also be inert towards the product.

Manganese is quite widely known to be an excellent low temperature oxidation catalyst. Two 20wt % Manganese on Zirconia support catalysts were prepared using incipient wetness impregnation. One of the catalysts was co-promoted with 1wt % Ag. The current work aims to investigate NO₂ inhibition on a manganese zirconia catalyst at Ag edge with different Ag standards (mainly, Ag(NO₂), AgNO₃ and Ag₂O). Fresh 20wt %Mn1wt %Ag on Zirconia Catalyst holds Ag as Ag¹⁰ and Ag₂O form is more stable, and hence has lower catalytic performance. The results also portray an ideal location for this Ag-promoted catalyst bed by comparing the differences in total conversions by unpromoted manganese on zirconia catalyst. The favourable region for catalyst bed operation would be closer to the exit of the ammonia combustor with less or no amount of NO₂ for a manganese-based catalyst.

What happened to Ag’s performance? An ex-situ XANES was collected for 20wt %Mn1wt %Ag on Zirconia Catalyst on Ag K edge at three points as presented in Figures 1 and 2. A linear combination fitting (LCF in Athena, XAS Data Processing Software) was performed on this data at Ag edge with different Ag standards (mainly, Ag¹⁰, Ag and Ag¹). NO₂ as product. But with Feed (ii), which contains more oxygenated species, Ag¹⁰ goes to Ag¹ (AgNO₂) and back to Ag⁰ with the release of NO₂ as product. What happened to Ag’s performance? An ex-situ XANES was collected for 20wt %Mn1wt %Ag on Zirconia Catalyst on Ag K edge at three points as presented in Figures 1 and 2. A linear combination fitting (LCF in Athena, XAS Data Processing Software) was performed on this data at Ag edge with different Ag standards (mainly, Ag¹⁰, Ag and Ag¹). NO₂ as product. But with Feed (ii), which contains more oxygenated species, Ag¹⁰ goes to Ag¹ (AgNO₂) and back to Ag⁰ with the release of NO₂ as product.

Publication

Publications and conference contributions from IIA1 in 2021 are listed on page 65.
IIA2: Abatement of nitrogen-containing pollutants – state-of-the-art catalyst technology

The IIA2 team 2021

Jasmina Hafizovic Cavka SINTEF IIA leader
David Waller YARA Industrial senior YARA, Industry researcher
Karl-Isak Skau YARA Industry researcher
Silje F. Håkonsen SINTEF Researcher and WP responsible
Martin F. Sunding SINTEF Researcher
Patricia Almeida Carvalho SINTEF Senior researcher
Anna Lind SINTEF Researcher

Motivation

When ammonia is combusted in a nitric acid plant in the Oswald process to produce NOx, N₂O is an undesired by-product. The levels of N₂O might appear to be low but the high Global Warming Potential (GWP) of N₂O of 298 means that it used to account for 50 % of Yara’s Greenhouse Gas (GHG) emissions. For this reason Yara developed an abatement catalyst that is located directly below the platinum-based oxidation catalysts. The catalyst consists of a Co and Al spinel phase supported on CeO₂. This catalyst can achieve greater than 95 % abatement with no changes to plant operation. The deN₂O catalysts have proven to be able to perform at a high level in the harsh conditions inside an ammonia burner for over a decade. In this project, aged catalysts are being studied to better understand the transitions in the material with the aim to formulate even more active and stable catalyst.

Research project

Different deN₂O catalyst samples that have been in operation in a commercial nitric acid plant at various times on stream have been investigated by light microscopy, UV-Vis-NIR, XRD and SEM-EDS. This time series of catalysts is particularly interesting to study as all the catalysts come from the same batch, and have been exposed to the same operating conditions in the plant.

Polished cross-sections of the samples were investigated by light microscopy, dark field illumination. The results showed that the fresh catalyst has a homogeneous green colour through the cross section, while a homogeneous light blueish colour is observed in the sample that has been in the plant for four years. Interestingly, a clear colour change and presence of a core region are observed in the 6-month and 2-year samples.

EDS line scan of the cross section of the sample that has been on stream for six months shows a clear, sharp gradient in the Co level that corresponds to the colour change observed under light microscopy. Uniform concentration of Al was found in the cross section. This sample has a core region with the original Co:Al ratio of 2, while the surface region has lost Co and has a Co:Al ratio similar to the sample that has been on stream for four years.

TEM samples were extracted by FIB from the surface and core area of the catalyst that has been on stream for 6-month. STEM/EDS of the core region of the 6-month on stream sample show that the spinel particles consist of a range of different spinel phases, and indicate that the results from SEM/EDS, UV-Vis-NIR and XRD are an average of these.

Another interesting result from STEM-EDS is that spinel particles close to the surface show segregation of Co and Al, where Co is partly reduced. This is not observed in spinel particles in the core. It is therefore easy to propose that the segregation of the spinel is related to the spinel transition from high cobalt to low cobalt type, and this relationship will be interesting to explore further.

Figure 1. STEM/EDS of interior of catalyst that has been on stream for 6 months. Co:Al ratio of spinel particles.

Figure 2. STEM/EDS of surface spinel particle sample that has been on stream for 6 months. The bottom figure shows the composition along the line indicated in the upper picture.
An annular reactor design for the methanol to formaldehyde (MTF) reaction

One of the research topics in WP3.1 is extracting kinetic data of the MTF reaction. A new reactor and catalyst design has therefore been developed to aid us in these endeavours. The conventional particle bed design, while true to the industrial reactor, poses some limitation in obtaining such data. Based on previous work on alkane partial oxidation in microstructured reactors, and on work done by ICSI advisor Prof. Beretta, an annular reactor concept has been developed and implemented. Using this reactor design, gas phase reactions can be eliminated, and we are able to perform the MTF reaction at low methanol and oxygen conversion with high formaldehyde selectivity.

The reactor design features a cylindrical silver catalyst with an outer diameter a millimetre smaller than the inner diameter of the quartz reactor. Above and below the catalyst are quartz tubes with similar diameters, thus minimizing the total volume inside the reactor and changes in the flow pattern throughout the reactor. This reactor design allows us to run experiments with a laminar flow, high linear gas velocity, and no pressure drop. Catalyst temperatures are measured inside a quartz duct at the centre of the catalyst cylinder and isothermal conditions are obtained. Figure 1 shows a schematic representation of the catalyst fitted inside the reactor.

Using this reactor design, various experiments have been conducted in an attempt to extract meaningful kinetic data from the MTF reaction. The state of the restructuring of the catalyst surface must be considered for each experiment, starting with a smooth surface for the fresh silver. Various tests with fresh silver catalyst were run at a range of temperature set points (540–600 °C) for every 20 °C step. During these experiments the influence of residence time and oxygen partial pressure were evaluated over the course of four days on stream. At the end of each experiment the catalyst surface was characterized using SEM. In order to collect kinetic data, separate catalyst tubes were subjected to eight days at isothermal conditions are obtained. Figure 1 shows a schematic representation of the catalyst fitted inside the reactor, and the development of the silver surface over the course of the MTF reaction.

The first results from the work were published in Lervold et al. (2021), and the main findings are:

- Using the annular reactor we can run the MTF reaction at partial oxygen conversion at high temperatures (>500 °C), and high formaldehyde selectivity (93–97%).
- The oxygen partial pressure has a notable influence on the methanol. However, bed temperatures also increased as the oxygen partial pressure was increased. When doubling the oxygen partial pressure the catalyst was a consistent 20 °C warmer compared to the reference conditions, and it proved challenging to adjust the furnace setpoint in such a way as to keep the bed temperature constant. However, an increase in methanol conversion and molar oxygen consumption can be observed with an increasing oxygen partial pressure. Not final, the results indicate a first order dependency on oxygen partial pressure within the range of these experiments.
- Our annular silver catalyst undergoes massive morphological changes on the surface similar to those established for electrolytic silver particles (see “start” and “end” surface structure in Figure 1). But unlike the particles, for which it could be only a matter of hours, this process takes several days until a “dynamic steady-state morphology” is reached at temperatures of >600 °C. With regards to catalyst performance, the extent of the restructuring has a definite effect on the total conversion during the reaction, which increased throughout the extended time on stream.
- When extracting kinetic data, a clear non-linearity is observed between low (<540 °C) and high (>540 °C) bed temperatures for both methanol conversion and the corresponding Arrhenius plot. An activation energy estimate was made for the higher temperatures, which comes out to be 41 kJ/mol. The non-linearity in the plot indicates a difference in mechanism at lower temperatures compared to the higher temperatures.

Graphical abstract of Lervold et al. (2021) showing the conversion plots (marked X) and selectivity plots (marked S), a schematic representation of the annular catalyst fitted in the reactor, and the development of the silver surface over the course of the MTF reaction.

Publications
Publications and conference contributions from IIA3 are listed on page 66.
IIA4: PVC Value Chain: World class energy and raw material efficiency for the production of Chlorine and Vinyl Chloride Monomer (VCM)

The IIA4 team 2021

De Chen
NTNU
IIA leader, PhD supervisor, WP responsible (WP4.1–4.2–4.3)

Endre Fenes
NTNU
PhD candidate (WP4.1)

Yalan Wang
NTNU
Postdoctoral fellow (WP4.1)

Hongfei Ma
NTNU
PhD candidate (WP4.3 and WP4.4)

Wei Zhang
NTNU
PhD candidate (WP4.3 and WP4.4)

Seyyedeh Roomina F. Motlagh
NTNU
Specialization student (WP4.3)

Jordal, Kamilla
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Lola Irene Stokstad
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Andrea Marsella
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Sandro Vidotto
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Margherita Macino
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Tigran Margossian
INOVYN
Industry researcher (WP4.1–4.2–4.3)

Kumar R. Rout
SINTEF
Researcher (WP4.1–4.2–4.3)

Torbjørn Gjervan
SINTEF
Researcher (WP4.2)

Motivation

Polyvinylchloride (PVC), produced by polymerization of the monomer vinyl chloride (VCM), is the third-most widely produced plastic and finds application in flooring, piping, profiles, cables, etc. VCM production based on ethylene was introduced in the 1950s and is a mature process where high plant reliability and continuous improvement of energy and raw material efficiency are still required to remain competitive. VCM is produced from ethylene and chlorine in a process involving several chemical conversion steps, one being the oxychlorination of ethylene to EDC, i.e. 1,2 dichloroethane, in a fixed or fluidized bed reactor.

The CuCl₂/γ-Al₂O₃ system is the commonly used catalyst in this process, and it is generally agreed that the oxychlorination reaction involves a redox process in which copper cycles between Cu(I) and Cu(II) states. The ethylene oxychlorination redox cycle depends on the dynamics of elementary steps that cause the reduction and oxidation of the redox-active metal chlorides. The active sites of the surface CuCl₂ layer are highly dynamical, involving Cl and O removal and insertion. The dynamic structure of the active sites, namely the oxidation state of the Cu and Cl vacancy concentration of the catalysts, plays a very important role in determining the properties of molecular species that act as intermediate and transition states, thus the catalyst activity, selectivity and stability.

It remains a challenge to monitor dynamic active sites, these properties in situ, and to provide a principle to tune the Cl vacancy concentration at industrially relevant conditions. The main objectives of the project are to: 1) experimentally and theoretically elucidate the site requirement and mechanisms of surface catalysis of half-reactions such as CuCl₂ reduction by ethylene to EDC and CuCl, CuCl oxidation by oxygen to CuOCl₂, and its hydrochlorination as well as the whole redox cycle at an atomic level; 2) provide a predictive kinetic model to accurately describe the dynamics of active sites and their activity; 3) rationally design catalysts to control the redox cycle to achieve high activity, selectivity and stability.

Four working packages were designed in the project of ethylene oxychlorination to 1,2 dichloroethane (EDC) to address the project goals: WP4.1, kinetic investigations and modelling; in-situ characterization; WP4.2, reactor modelling and simulation; WP4.3, deactivation and by-product formation; WP4.4, new development.
Research in 2021
The main achievements of 2021 are as follows:

1. The new method of transient kinetic study was established by combining UV/Vis-NIR and mass spectroscopy. The full spectra of Cu species such as CuCl₂, CuCl₂⁻, CuCl, and Cu₂OCl₂ were detected and identified for the first time, and their transient changes and contribution in the reduction, oxidation, and hydrochlorination steps as well as in the steady-state operation in the catalytic cycle can be accurately “imaged” by resolving the UV-vis-NIR spectra dataset using the multivariate curve resolution (MCR) analysis.

2. A DFT-assisted microkinetic model was established to predict the steady-state reaction and CuCl₂ concentration.

Transient kinetic study of Ethylene Oxychlorination to 1,2 dichloroethane (EDC)
We have demonstrated an effective multivariate curve resolution kinetic approach for analyzing the large UV−vis-NIR spectroscopy dataset to monitor the copper active sites dynamics at the real reaction conditions as function of time on stream, see figure. MCR analysis of the time-resolved UV−vis-NIR spectra make it possible to image and quantify all the Cu species involved in the reaction, including the intermediates in the step transient experiments, of the reduction and oxidation, especially for the hydrochlorination steps. In particular, MCR analysis can monitor the evolution of the active site concentrations.

Tailoring active sites of CuCl₂/Al₂O₃ at industrially relevant conditions
The structures of CuCl₂ clusters on alumina (110) with alkaline and alkaline earth metals as promoters were established, and the electronic properties, charge distributions and energetic profiles of elemental steps of the ethylene oxychlorination were studied by density functional theory (DFT). The effects of the promoter on the activity and stability of the catalysts were studied by DFT-assisted microkinetic modelling. The dependence of the reaction rate and the CuCl₂ concentration on the coordinated structure of Cu with Cl, such as the charge of Cl and Cu and Cl-Cl length, and descriptors to describe the reaction rate and CuCl₂ concentration at the steady state conditions were identified.

Publication
Publications and conference contributions from IIA4 are listed on page 66.

IIA5: The next step in Direct Activation of Lower Alkanes

The IIA5 team 2021

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stian Svelle</td>
<td>UiO</td>
<td>IIA Leader, PhD supervisor, WP responsible (WP5.1-5.2-5.3)</td>
</tr>
<tr>
<td>Unni Olsbye</td>
<td>UiO</td>
<td>PhD supervisor (WP5.1-5.2)</td>
</tr>
<tr>
<td>Karoline Kvaande</td>
<td>UiO</td>
<td>PhD candidate (WP5.1-5.2)</td>
</tr>
<tr>
<td>Sebastian Prodinger</td>
<td>UiO</td>
<td>Postdoctoral fellow (WP5.1-5.2-5.3)</td>
</tr>
<tr>
<td>Bjørn Gading Solemsli</td>
<td>NTNU</td>
<td>PhD candidate (WP4.3 and WP4.4)</td>
</tr>
<tr>
<td>Odd Reidar Bygdnes</td>
<td>UiO</td>
<td>Master student (WP5.1-5.2)</td>
</tr>
<tr>
<td>Pablo Beato</td>
<td>Haldor Topsæ A/S</td>
<td>Industrial senior and researcher (WP5.1-5.2-5.3)</td>
</tr>
<tr>
<td>Lars Fahl Lundegaard</td>
<td>Haldor Topsæ A/S</td>
<td>Industrial researcher (WP5.1-5.2-5.3)</td>
</tr>
<tr>
<td>Bjornar Arstad</td>
<td>SINTEF</td>
<td>Senior researcher (WP5.3)</td>
</tr>
</tbody>
</table>

In the iCSI IIA5, we have focused extensive efforts on the study of CH₄-temperature programmed reduction (TPR) (Figure 1a). Our earlier studies have shown CH₄-TPR to be a successful screening tool for finding the optimal CH₄ activation temperature for the direct methane to methanol (DMTM) conversion of varying Cu-loaded zeolite frameworks. This is accomplished by determining the temperature at which CO₂ is produced, or alternatively, the onset of CH₄ consumption across different zeolite frameworks. Initial studies further suggest that the amount of produced CO₂ could be used to determine the most active Cu-zeolite composition when comparing a set of biocatalytic zeolites. We hypothesized that the descriptive potential of the CH₄-TPR technique to be related to the nature of Cu-oxo species in the framework, as well as the Cu reducibility. Consequently, we

Figure 1. (a) A schematic of the TPR protocol used at BM31. (b) shows the different evolvement of the Cu(I)-fraction throughout CH₄ and C₂H₆-TPR for two different MOR zeolites. The fraction of Cu(I) has been found using LCF analysis.
spent significant efforts on applying for XAS beam time, in order to confirm our hypotheses. With our first trial at MAX IV, we were only partially successful, hampered by complications from the onset of COVID-19. Things were looking better when we received a new beam time at ESF for spring 2021, however, due to our need to be onsite, the beam time was postponed to the beginning of November. Finally, with a great team from both Oslo and our collaborators in Turin, we were able to get an excellent dataset with a flowthrough capillary setup at BM31 (Figure 2). We performed the experiments on a set of well-characterized Cu-MOR of optimal composition exhibiting high CH$_3$OH-productivity. Additionally, we performed C$_3$H$_8$- and CO-TPR to use as supplementary and comparative measurements, with the aim that these additional datasets will aid us in the search for understanding specific changes to the Cu speciation and oxidation state throughout the protocols. Now we are working on extended analysis of the dataset, using linear combination fitting (LCF) and multivariate curve resolution alternating least square (MCR-ALS) analysis on the X-ray absorption near edge structure (XANES) spectra to separate out the pure Cu components appearing throughout the protocol. The preliminary results from LCF are shown in Figure 1b. In addition, we will do advanced analysis of the extended X-ray absorption fine structure (EXAFS) region, performing wavelet transform (WT) analysis. This is done by creating 2D spectra from interpreting and fitting the R-space and Fourier Transform EXAFS spectra. With this technique we may be able to separate out and decipher the local structure and nuclearity of the Cu species present at different conditions. In total, this study should give us a deeper insight into why and how CH$_3$TTPR can be used as a descriptor for the DMTM reaction, making it easier to find optimal materials and reaction conditions in the future to optimize the protocol.

Publication
Publications and conference contributions from IIA5 are listed on page 67.

Motivation
Advanced spectroscopic and microscopic investigations under conditions highly relevant to industrial operation are being particularly targeted, with the intention of moving the research to the forefront and providing methodological tools that can be applied in the industrial innovation areas 1–5. Other efforts are directed towards advancing atomistic and kinetic modelling of metals and oxides, as well as reactor modelling, with the goal to eventually enable an integrated, multiscale modelling approach.
Advanced operando characterisation of heterogeneous catalysts for sustainable process industries

We use a multiprobe approach to link structural properties of a catalyst with its activity and selectivity. For this, we apply in situ and operando spectroscopy in-house (Infrared, X-ray, UV-vis) and at synchrotrons (XAFS, PXRD) for combined data acquisition. New insight on the active sites of the catalysts and the respective kinetics of the occurring chemical reactions can guide us towards favourable compositions and conditions, thereby enabling sustainable processes with higher efficiency, lower cost, reduced emissions or by-products and improved lifetime.

The massive datasets associated with such combined studies of catalysts at work call for efficient procedures of data reduction. With the application of multivariate statistical analysis tools, rapid data reduction and analysis enables combined and more complex experiments. We have direct synergies with four out of the five other industrial innovation areas within iCSI and collaborations within the Catalysis Group at NTNU. Several publications were co-authored and made it into or are well underway to publication: Pt-Ni bimetallic nanoclusters in dry reforming,\(^1\) oxygenolition of studied by UV-vis-NIR,\(^2\) carbon supported Fe-based Fischer-Tropsch synthesis to olefins from renewable feedstocks\(^3\) and selective catalytic reduction of NO by ammonia over Cu-based catalysts\(^4\), and with the SUNCAT Group at Stanford University on understanding selectivity in CO\(_2\) hydrogenation to methanol for MoP nanoparticle catalysts using \textit{in situ} techniques.\(^5\)

Bridging materials gap in operando NAP XPS study of ammonia oxidation

In this work we focus on explaining the performance of PtRh alloys for ammonia oxidation. PtRh alloys are excellent catalysts for NH\(_3\) oxidation, with relevance to both the production of mineral fertilizers and environmental applications. For these applications, temperature and reactant composition define the two primary regimes: i) high temperature conditions relevant to the Ostwald process with O\(_2\):NH\(_3\) ratio around 65:35, and ii) intermediate temperature (500–700 K) ammonia “slip” abatement by oxidation in high oxygen excess of 99:1. For establishing the catalyst’s structure-performance relationship, closing pressure, temperature and materials gaps is necessary. Towards bridging the pressure gap, our previous operando near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS) study of PtRh surface alloys on Pt(111) showed how abundance of surface oxygen (-O) and nitrogen species (-N) dictates product distribution to N\(_2\), NO and N\(_2\)O. Here we describe preliminary results from the latest operando NAP XPS measurements (TEMP-PO 2021, Soleil) of PtRh alloys supported on model Al\(_2\)O\(_3\), where we are also aiming to bridge the materials gap.

The model catalyst for bridging the materials gap was prepared by deposition of Pt, Rh and Pt+Rh onto a thin (~2 nm) alumina film, which was grown on NiAl(110) crystal (panel a). Scanning Tunneling Microscopy (STM) images show that formed nanoparticles are ca. 3–5 nm thick (panels b-d) and are stable during annealing at 600 K for 30 min, in which a minor increase in nanoparticle size was found (not shown).

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Tafjord J, Regli SK, Dugulan I, Ranney M, Rytter E, Holmen A, Myrstad R, Yang J. (Submitted and under review.)</td>
</tr>
</tbody>
</table>

\(^{1}\) The model catalyst for bridging the materials gap was prepared by deposition of Pt, Rh and Pt+Rh onto a thin (~2 nm) alumina film, which was grown on NiAl(110) crystal (panel a). Scanning Tunneling Microscopy (STM) images show that formed nanoparticles are ca. 3–5 nm thick (panels b-d) and are stable during annealing at 600 K for 30 min, in which a minor increase in nanoparticle size was found (not shown).

\(^{2}\) Quadruple Mass spectrometry, when measured simultaneously with NAP XPS, shows that production of N\(_2\) at 600 K is comparable for all compositions (Pt, Rh, PtRh alloy) in 1 mbar with a 50:50 O\(_2\):NH\(_3\) blend (panel e). The proportion of N\(_2\) was above 75 %. The major difference appeared in NO production (panel f), where pure Rh/Al\(_2\)O\(_3\) showed a negligible amount of NO and N\(_2\)O production (<2 %). Pt and PtRh alloy behave similarly, producing ~15 % of the oxides.

\(^{3}\) Preliminary analysis shows that surface nitrogen abundance is the likely reason for this behaviour (panel g). On pure Pt almost no -N was found on the surface. Pt is the most active from PGM, reaction is fast, and no unreacted NH\(_3\) is present either. Enrichment with Rh results in more atomic -N species at the surface (for PtRh). Pure Rh binds -N the strongest, allowing critical -N coverage to be present at the surface, for N-N to recombin and desorb. These results are consistent with our previous conclusions for PtRh/Pt(111), namely that a critical amount of atomic -N coverage is needed for N\(_2\) to be the preferred product, which can be achieved by using a surface that binds -N more strongly, such as Rh.

\(^{4}\) The model catalyst for bridging the materials gap was prepared by deposition of Pt, Rh and Pt+Rh onto a thin (~2 nm) alumina film, which was grown on NiAl(110) crystal (panel a). Scanning Tunneling Microscopy (STM) images show that formed nanoparticles are ca. 3–5 nm thick (panels b-d) and are stable during annealing at 600 K for 30 min, in which a minor increase in nanoparticle size was found (not shown).

\(^{5}\) Quadruple Mass spectrometry, when measured simultaneously with NAP XPS, shows that production of N\(_2\) at 600 K is comparable for all compositions (Pt, Rh, PtRh alloy) in 1 mbar with a 50:50 O\(_2\):NH\(_3\) blend (panel e). The proportion of N\(_2\) was above 75 %. The major difference appeared in NO production (panel f), where pure Rh/Al\(_2\)O\(_3\) showed a negligible amount of NO and N\(_2\)O production (<2 %). Pt and PtRh alloy behave similarly, producing ~15 % of the oxides.

\(^{6}\) Preliminary analysis shows that surface nitrogen abundance is the likely reason for this behaviour (panel g). On pure Pt almost no -N was found on the surface. Pt is the most active from PGM, reaction is fast, and no unreacted NH\(_3\) is present either. Enrichment with Rh results in more atomic -N species at the surface (for PtRh). Pure Rh binds -N the strongest, allowing critical -N coverage to be present at the surface, for N-N to recombin and desorb. These results are consistent with our previous conclusions for PtRh/Pt(111), namely that a critical amount of atomic -N coverage is needed for N\(_2\) to be the preferred product, which can be achieved by using a surface that binds -N more strongly, such as Rh.
Microkinetic modelling with DFT (DFTKIN)

The DFTKIN framework consists of a collection of tools for building, solving and analysing the results of microkinetic models with input from DFT/QM or experimental results. The purpose of the DFTKIN framework is to make microkinetic modelling more readily available in SINTEF as a general, complementary tool for atom scale modelers, with a focus on providing support for surface reactions with and without a changing surface. While the intended applications are primarily surface reactions, gas phase reactions must also be supported for complete descriptions of gas-surface reactions. The focus has been on assembling various available open-source tools and building on these to create a practical workflow. pymut and openMKM provided by the Vlachos group at MIT were eventually chosen as the basis for the workflows. Time and effort have been invested in making the tools run seamlessly on normal workstations for development, and for setting up interactive systems for presenting results.

Two different use cases were chosen for demonstration: CO₂ adsorption on various systems with amines, and oxidation of a Si surface. Each use case was broken into a ladder with various degrees of complication. While this toolbox is primarily intended for use with in-house generated data for reactions, this was not feasible within the project. Thus, literature data has been collected for the use cases. Si oxidation was investigated in several stages: (1) oxidation at high temperature of the first Si layer by etching, (2) oxidation of several Si-layers at high temperature by etching, (3) oxidation of the first Si layer by oxide growth at lower temperatures (4) oxidation of several Si-layers at lower temperatures by oxide growth and finally (5) competitive oxidation by etching or oxide growth of several layers at intermediate temperatures. Each of the above-mentioned steps represents an increased complication of the model. This use case taken into account a surface that permanently changes during reaction, which is more advanced than pure catalytic surface reactions.

The implementation of the CO₂ case proved to be more cumbersome than expected. Gas phase reactions, while simpler in principle, were not correctly implemented in the chosen software packages. Corrections for this were implemented as part of the project.

In addition to the model development and integration, a web interface has been developed to initially facilitate storage and analysis of data, and then execution of new simulations in 2022. The figure below illustrates how to plot curves from results stored in an online database. The tab indicates the other functionalities available: Search in the database, Prepare and Launch a new simulation, Visualize and Compare results, Upload results and template (description of a reactor system where parameters can be changed).

In-situ analysis of industrial catalytic reactions using a novel ISMA

For many industrial reactions, the formation of coke (or other deposits) is a relevant side reaction which leads to deactivation of the catalyst. With the ISMA, deposition kinetics and deactivation kinetics can be investigated simultaneously. In addition, sorption processes can be investigated.

The ISMA (shown in Figure 1) is a fixed-bed reactor with the added capability to simultaneously measure weight changes of the catalyst bed during reaction. The reactor tube oscillates, and the frequency is directly correlated to mass changes. Thus, the mass changes of the catalyst can be recorded in real time during the reaction with the formula:

\[\Delta m = K_0 \left(\frac{1}{f_1^2} - \frac{1}{f_2^2} \right) \]

The ISMA was developed (improved version of the earlier so-called TEOM, tapered element oscillatory microbalance) and will be provided by SINTEF.

Publications and conference contributions from IIA6 are listed on page 67.
Three new PhDs

Candidate: Endre Fenes
Date of defense: March 17, 2021
Title of thesis: Ethylene Oxychlorination on CuCl₂ based Catalysts: Mechanism and Kinetics
Public trial lecture: Fixed vs fluidized bed reactors for highly exothermal reactions: Pros and cons

The Committee
First opponent: Professor Dmitry Yu. Murzin, Åbo Akademi, Finland
Second opponent: Professor Alessandra Beretta, Politecnico di Milano, Italy
Administrator: Professor Kristin Syverud, NTNU
Supervisor: Professor De Chen, NTNU
Co-supervisors: Terje Fuglerud, Inovyn and Kumar Ranjan Rout, SINTEF

iCSI Industrial Innovation Area: PVC Value Chain: World class energy and raw material efficiency for the production of Chlorine and Vinyl Chloride Monomer (VCM).

Industry partner: Inovyn
Current Position: Senior Process Engineer at Inovyn, Rafnes

Candidate: Hongfei Ma
Date of defense: March 23, 2021
Title of thesis: Kinetic Studies of Ethylene Oxychlorination to Ethylene Dichloride and Vinyl Chloride
Public trial lecture: Catalysis in E-Hydrogen and Ammonia

The Committee
First opponent: Professor Tapio Salmi, Åbo Akademi University, Finland
Second opponent: Professor Xiang Feng, China University of Petroleum (Huadong), China
Administrator: Dr. Li He, NTNU
Supervisor: Professor De Chen, NTNU
Co-supervisors: Terje Fuglerud, Inovyn and Kumar Ranjan Rout, SINTEF

iCSI Industrial Innovation Area: PVC Value Chain: World class energy and raw material efficiency for the production of Chlorine and Vinyl Chloride Monomer (VCM).

Industry partner: Inovyn
Current Position: Postdoc at NTNU, Trondheim

To the left: De Chen, Endre Fenes, Kristin Syverud and Kumar Ranjan Rout. To the right: The opponents Dmitry Yu. Murzin and Alessandra Beretta.

To the left: De Chen, Li He, Hongfei Ma and Kumar Ranjan Rout. To the right: His opponents Tapio Salmi and Xiang Feng on the screen.
Candidate: Stine Lervold
Date of defense: June 23, 2021
Title of thesis: Investigations of the methanol to formaldehyde (MTF) reaction over silver
Public trial lecture: Recent developments in catalyst properties and stability for the methanation of CO₂
The Committee:
First opponent: Professor Leon Lefferts, University of Twente, The Netherland
Second opponent: Professor Hanna Härelind, Chalmers University of Technology, Sweden
Administrator: Professor (Head of Department) Jens-Petter Andreassen, NTNU
Supervisor: Professor Hilde Johnsen Venvik, NTNU
Co-supervisors: Ass. professor Jia Yang, NTNU, and Senior Researcher Rune Ladeng, SINTEF
ICSI Industrial Innovation Area: Frontier formalin technology development
Industry partners: K.A. Rasmussen and Dynea
Current Position: Senior Engineer at Equinor, Trondheim

To the left: Rune Ladeng, Hilde Johnsen Venvik, Stine Lervold and Jia Yang. To the right: Stine Lervold with the opponents Leon Lefferts and Hanna Härelind on the screen.
hundred participants took part in the announcement. The 2021 Catalysis Award event took place. Nearly 300 European Federation of Catalysis Societies (EFCATS) iCSI hosted September 2 a webinar where the 26. Madison. See more about the CATHEX project on page 26. Seventy per cent of the 23 scientific publications from 2021 were published in collaboration with colleagues at international universities. As a Lise Meitner professor, Hilde Johnsen Venvik has visited the Department of Chemical Engineering at Lund University with guest lectures on two occasions. The Cathex project is a network project running from 2020 to 2025. It links iCSI with four world-leading catalysis environments: the University of Cape Town, East China University of Science and Technology, University of Toronto and University of Wisconsin-Madison. See more about the CATHEX project on page 26. iCSI hosted September 2 a webinar where the European Federation of Catalysis Societies (EFCATS) 2021 Catalysis Award event took place. Nearly 300 hundred participants took part in the announcement of the five awards, followed by the prize winners’ lectures. The recorded lectures can be seen from EFCATS’ webpage. iCSI is proud to tell that both our scientific advisor Graham Hutchings and our former PhD candidate Dimitrios Pappas were among the prize winners! Graham received the Michel Boudart Award in Fundamental Catalysis, while Dimitrios got the EFCATS Best PhD Thesis Award.

Overview of international collaborations:

Universities and Institutes
- Aalto University, Finland
- AGH University of Science and Technology, Poland
- Brookhaven National Laboratory, USA
- Bulgarian academy of Science, Bulgaria
- Cardiff University, United Kingdom
- Chalmers University of Technology, Sweden
- China University of Petroleum (Huatao), China
- CNR, Italy
- CSIC, Spain
- Deft University of Technology, Netherlands
- Durham University, United Kingdom
- East China University of Science and Technology, China
- École Polytechnique Fédérale de Lausanne, Switzerland
- French Alternative Energies and Atomic Commission (CEA), France
- Ghent University, Belgium
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, CNRS, France
- Instituto Nacional del Carbón, INCAR-CSIC, Spain
- Karlsruhe Institute of Technology – KIT, Germany
- KAUST, Saudi Arabia
- Luleå University of Technology, Sweden
- Lund University, Sweden
- Manchester Metropolitan University, United Kingdom
- MAX IV Laboratory, Lund, Sweden
- Max Planck Institute for Energy Conversion, Germany
- Norner Research AS (SCG Chemicals), Norway
- Paul Scherrer Institut, Switzerland
- Politecnico di Milano, Italy
- Research Institutes of Sweden (RISE), Sweden
- Royal Institute of Technology (KTH), Sweden
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, China
- Shonan Institute of Coal Chemistry, Chinese Academy of Sciences, (ICC), China
- SLAC National Accelerator Laboratory, USA
- Sorbonne University, France
- South China University of Technology, China
- Stanford University, California, USA
- Stonybrook University, USA
- Swiss-Norwegian Beamlines at ESRF, France
- Technical University of Denmark, Denmark
- Technische Universität Eindhoven, Netherlands
- Tianjin University, China
- University College London, United Kingdom
- University of California, Berkeley, USA
- University of Cape Town, South Africa
- University of Eastern Finland, Finland
- University of Milan, Italy
- University of Sheffield, United Kingdom
- University of Strasbourg, France
- University of Surrey, United Kingdom
- University of Toronto, Canada
- University of Turin, Italy
- University of Virginia, USA
- University of Wisconsin-Madison, USA
- Utrecht University, Netherlands
- B.T.G. BV, Netherlands
- Borealis Polyolefine, Austria
- BTG-BTL, Belgium
- C2P2, Lyon (CNRS), France
- CEA – the French Alternative Energies and Atomic Energy Agency, France
- Elkem Silicon Materials, USA
- Fibre Excellence, France
- Firmenich, Switzerland
- Fundaco EURECAT, Spain
- GE Healthcare, Norway
- ICI Cattolica, Italy
- Johnson Matthey, United Kingdom
- Linde, Germany
- NextChem SPA, Italy
- OMV, Austria
- Process design center B.V. (PDC), Netherlands
- Randa, Czech Republic
- Repsol SA, Spain
- SDFSIO, France
- STI, Finland
- Steeper, Denmark
- Tata Steel UK Limited, United Kingdom
- Technip Energies, France
- The Centro Ricerche Fiat (CRF), France
- Türkiye Petrol Rafinerileri Anonim Sirketi (Tüpraş), Turkey
- UOP LLC, USA
- VTT, Finland

Companies
- Albemarle, Netherlands
- Arkema France SA, France
- A-V-S, United Kingdom
- B.T.G. BV, Netherlands
- Borealis Polyolefine, Austria
- BTG-BTL, Belgium
- C2P2, Lyon (CNRS), France
- CEA – the French Alternative Energies and Atomic Energy Agency, France
- Elkem Silicon Materials, USA
- Fibre Excellence, France
- Firmenich, Switzerland
- Fundaco EURECAT, Spain
- GE Healthcare, Norway
- ICI Cattolica, Italy
- Johnson Matthey, United Kingdom
- Linde, Germany
- NextChem SPA, Italy
- OMV, Austria
- Process design center B.V. (PDC), Netherlands
- Randa, Czech Republic
- Repsol SA, Spain
- SDFSIO, France
- STI, Finland
- Steeper, Denmark
- Tata Steel UK Limited, United Kingdom
- Technip Energies, France
- The Centro Ricerche Fiat (CRF), France
- Türkiye Petrol Rafinerileri Anonim Sirketi (Tüpraş), Turkey
- UOP LLC, USA
- VTT, Finland
European research - Horizon 2020 projects

MesoSiCO₂ - Design of low-cost and carbon-resistant Ni-based mesoporous silicas for chemical CO₂ utilization through tri-reforming of methane. H2020-MSCA-IF. ICSI-partner involved: NTNU. Duration: 2020–2023

PyroCo₂ - Demonstrating sustainable value creation from industrial CO₂ by its thermophilic microbial conversion into acetone. LC-GD-3-1-2020. ICSI-partner involved: SINTEF. Duration: 2021–2026.

INnCapPlant – Innovative moving bed adsorption process for CO₂ capture in coal-fired power plants operated under variable load. EBS-Poland. ICSI-partners involved: SINTEF, NTNU, Irish National partners: Cracow University of Technology (CUT). Duration: 2021–2023

**Unravelling the secrets of Cu-based catalysts for C-H activation. ERC SYNERGY. ICSI-partner involved: UiO. Other Norwegian partners: NMBU, International partners: Max-Planck, University of Turin. Duration: 2020–2026

**Stable and economic iridium catalysts for renewable energy technologies. UK Catalysis Hub. ICSI-partner involved: SINTEF. International partners: Manchester Metropolitan University, UCL, Cardiff University Harwell Research Complex, AvS. Duration: 2021–2023

International collaborations supported by RCN and sources other than EU

**Chemical Looping Desulfurization of Producer Gas from Biomass Gasification by Mn-based Solid Sorbent. RCN - researcher project. ICSI-partners involved: NTNU, SINTEF. Duration: 2017–2021

Nanoco4Fuels - Production of JP-8 Range Fuels and Chemicals from Pyrolysis Bio-Oil using Nanostructured Catalyst, Indo-Norwegian initiative on renewable fuels and chemicals within the Bionar and EnergiX work program.

**iCSI-partner involved: SINTEF, International partner: Anna University, Department of Chemistry, Chennai, India. Duration: 2018–2022

**Bio Fischer-Tropsch Staging and Multiple Hydrogen Feed of Biomass to Fischer-Tropsch Fuel Synthesis, RCN - researcher project. ICSI-partners involved: NTNU, SINTEF. Duration: 2018–2021

CATHEX - Advances in heterogeneous catalysis through integrated theoretical and experimental efforts. RCN - INTPART. ICSI-partners involved: NTNU, International partners: University of Cape Town, University of Toronto, University of Wisconsin-Madison, East China University of Sci. & Techn. Duration: 2020–2024

**Continued membership in the Swiss-Norwegian Beamlines (SNBL) at ESRF. NFR INFRASTRUKTUR. ICSI-partners involved: NTNU, UiO. Other Norwegian partners: IFE, UiB, UiS. Duration: 2021–2024

**Material technologies for post-combustion CO₂ capture and utilization network. Call for proposals involving Nordic or Nordic-Baltic PhD and researcher mobility. ICSI-partner involved: UiO. International partners: DTU, Luleå University of Technology, University of Eastern Finland. Duration: 2020–2024

Unravelling the secrets of Cu-based catalysts for C-H activation. ERC SYNERGY. ICSI-partner involved: UiO. Other Norwegian partners: NMBU, International partners: Max-Planck, University of Turin. Duration: 2020–2026
Accounts 2021

All cost and budget numbers appear in 1000 Norwegian Kroner (NOK) as of January 2022. NOK100 are equivalent to €10.0.

Table 1: Summarizes the costs in 2021 and the total budget for the period of the Centre after revision in January 2021. The different cost codes concern respectively:
- NTNU costs in Payroll and indirect expenses
- Other research partners (SINTEF and UiO) in Procurement of R&D services
- Equipment code includes rental of research equipment acquired to serve needs for the SFI
- Other operating expenses includes mainly research at industrial partners

<table>
<thead>
<tr>
<th>Cost code</th>
<th>Costs 2021</th>
<th>2015–2023 Total budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payroll and indirect expenses</td>
<td>8 294</td>
<td>58 365</td>
</tr>
<tr>
<td>Procurement of R&D services</td>
<td>14 261</td>
<td>93 207</td>
</tr>
<tr>
<td>Equipment</td>
<td>2 207</td>
<td>10 565</td>
</tr>
<tr>
<td>Other operating expenses</td>
<td>3 722</td>
<td>34 675</td>
</tr>
<tr>
<td>Totals</td>
<td>28 484</td>
<td>196 813</td>
</tr>
</tbody>
</table>

Table 2: Presents the cost and financing per partner. The industrial partners are Yara ASA, Dynea AS, INOVYN AS, KA. Rasmussen AS and Haldor Topsoe A/S.

<table>
<thead>
<tr>
<th>Cost and Financing per partner</th>
<th>2021 Accounts</th>
<th>2015–2023 Total budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner</td>
<td>Costs</td>
<td>Financing</td>
</tr>
<tr>
<td>NTNU</td>
<td>11 608</td>
<td>3 814</td>
</tr>
<tr>
<td>University of Oslo</td>
<td>7 213</td>
<td>1 842</td>
</tr>
<tr>
<td>SINTEF</td>
<td>7 047</td>
<td>2 163</td>
</tr>
<tr>
<td>Industrial partners</td>
<td>2 616</td>
<td>5 613</td>
</tr>
<tr>
<td>Research Council of Norway</td>
<td>15 050</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>28 484</td>
<td>28 484</td>
</tr>
</tbody>
</table>

Table 3: presents the costs per Industrial Innovation Area (IIA). The ICSI Management and administration include the overall administration of the Centre (Director, Coordinator and Economy advisor, meetings, seminars, SAC compensation and expenses, international exchange funding).

<table>
<thead>
<tr>
<th>Industrial Innovation Area (IIA)</th>
<th>Costs 2021</th>
<th>Costs 2015–2023 Total budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA1 21st century Nitric Acid technology development</td>
<td>5 145</td>
<td>29 155</td>
</tr>
<tr>
<td>IIA2 New NOx abatement technologies</td>
<td>1 511</td>
<td>6 706</td>
</tr>
<tr>
<td>IIA3 Frontier formalin technology development</td>
<td>3 277</td>
<td>189 972</td>
</tr>
<tr>
<td>IIA4 PVC Value Chain</td>
<td>5 047</td>
<td>25 019</td>
</tr>
<tr>
<td>IIA5 The next step in direct activation of methane</td>
<td>5 338</td>
<td>25 737</td>
</tr>
<tr>
<td>IIA6 Generic projects</td>
<td>4 158</td>
<td>30 759</td>
</tr>
<tr>
<td>IIA7 2020 Catalysis</td>
<td>2 022</td>
<td>2 022</td>
</tr>
<tr>
<td>ICSI Management and administration</td>
<td>1 986</td>
<td>11 994</td>
</tr>
<tr>
<td>Totals</td>
<td>28 484</td>
<td>150 269</td>
</tr>
</tbody>
</table>

Education

One new postdoctoral fellow was welcomed in IIA6 (Generic projects for additional industrial synergies) in 2021. Tina Bergh joined ICSI in April, after finishing her PhD with the title Interfacial intermetallic phases in aluminium-steel joints as part of SFI Manufacturing. Tina has been awarded a 4-year postdoc position, of which two years are with ICSI and the other two years are with the Department of Chemical Engineering and the Department of Mechanical and Industrial Engineering. Her tasks in ICSI are allocated to Transmission Electron Microscopy investigations and methodology development. Her supervisors will be professor Hilde Johnsen Venvik from ICSI, and Professor Randi Holmestad (Department of Physics, NTNU), as well as Adjunct Professor Per-Erik Vullum (SINTEF), from the TEM-group.

Postdoctoral researchers with financial support from ICSI

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Partner</th>
<th>Country</th>
<th>Dates</th>
<th>IIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yalan Wang</td>
<td>NTNU</td>
<td>China</td>
<td>2019-2022</td>
<td>F</td>
</tr>
<tr>
<td>Sebastian Prodinger</td>
<td>UiO</td>
<td>Austria</td>
<td>2020-2022</td>
<td>M</td>
</tr>
<tr>
<td>Tina Bergh</td>
<td>NTNU</td>
<td>Norway</td>
<td>2021-2023</td>
<td>F</td>
</tr>
</tbody>
</table>
PhD candidates with financial support from iCSI

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
<th>Years</th>
<th>Gender</th>
<th>Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endre Fenes</td>
<td>NTNU</td>
<td>Norway</td>
<td>2015-2019</td>
<td>M</td>
<td>IIA4</td>
</tr>
<tr>
<td>Samuel Regli</td>
<td>NTNU</td>
<td>Switzerland</td>
<td>2016-2019</td>
<td>M</td>
<td>IIA6</td>
</tr>
<tr>
<td>Stine Lervold</td>
<td>NTNU</td>
<td>Norway</td>
<td>2016-2020</td>
<td>F</td>
<td>IIA3</td>
</tr>
<tr>
<td>Asbjørn Slagtern Fjellvåg</td>
<td>UiO</td>
<td>Norway</td>
<td>2016-2021</td>
<td>M</td>
<td>IIA1</td>
</tr>
<tr>
<td>Hongfei Ma</td>
<td>NTNU</td>
<td>China</td>
<td>2017-2021</td>
<td>M</td>
<td>IIA4</td>
</tr>
<tr>
<td>Karoline Kvande</td>
<td>UiO</td>
<td>Norway</td>
<td>2019-2022</td>
<td>F</td>
<td>IIA5</td>
</tr>
<tr>
<td>Julie Hessevik</td>
<td>UiO</td>
<td>Norway</td>
<td>2019-2023</td>
<td>F</td>
<td>IIA1</td>
</tr>
<tr>
<td>Jithin Gopakumar</td>
<td>NTNU</td>
<td>India</td>
<td>2020-2023</td>
<td>M</td>
<td>IIA1</td>
</tr>
<tr>
<td>Youri van Valen</td>
<td>NTNU</td>
<td>Netherlands</td>
<td>2020-2023</td>
<td>M</td>
<td>IIA3</td>
</tr>
<tr>
<td>Wei Zhang</td>
<td>NTNU</td>
<td>China</td>
<td>2020-2023</td>
<td>F</td>
<td>IIA4</td>
</tr>
<tr>
<td>Bjørn Gading Solemsli</td>
<td>UiO</td>
<td>Norway</td>
<td>2021-2024</td>
<td>M</td>
<td>IIA5</td>
</tr>
<tr>
<td>Björn Frederik Baumgarten</td>
<td>NTNU</td>
<td>Germany</td>
<td>2021-2024</td>
<td>M</td>
<td>IIA6</td>
</tr>
</tbody>
</table>

1) Endre Fenes left iCSI in 2019 for a job in the industry, and his defense took place 17 March 2021.
2) Samuel Regli has held a temporary position as lab engineer at IKP, NTNU since August 2020, and his defense is expected to take place in 2022.
3) Stine Lervold left iCSI in November 2020 for a job in industry, and her defense took place 9 June 2021.
4) Hongfei Ma’s defense took place 23 March 2021. He is now a postdoc at Department of Chemical Engineering, NTNU.

PhD candidates working on projects in iCSI with financial support from other sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
<th>Years</th>
<th>Gender</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ole H. Bjerkedal</td>
<td>NTNU</td>
<td>Norway</td>
<td>2016-2020</td>
<td>M</td>
<td>Selective catalytic reduction (SCR) of NOx emissions in maritime transport.</td>
</tr>
<tr>
<td>Muhammad Zubair</td>
<td>NTNU</td>
<td>Pakistan</td>
<td>2017-2020</td>
<td>M</td>
<td>Enhanced visible light adsorption TiO₂ based catalysts for photocatalytic H₂ production</td>
</tr>
<tr>
<td>Martina Cazzolaro</td>
<td>NTNU</td>
<td>Italy</td>
<td>2017-2020</td>
<td>F</td>
<td>Cu/CNF for selective hydrogenation of hydroxyacetone to 1,2-propanediol</td>
</tr>
<tr>
<td>Joakim Tafjord</td>
<td>NTNU</td>
<td>Norway</td>
<td>2017-2021</td>
<td>M</td>
<td>Iron-based Fischer Tropsch synthesis based on renewable feedstocks</td>
</tr>
<tr>
<td>Jianyu Ma</td>
<td>NTNU</td>
<td>China</td>
<td>2017-2020</td>
<td>M</td>
<td>Chemical looping desulphurization</td>
</tr>
<tr>
<td>Daniel Skodvin</td>
<td>NTNU</td>
<td>Norway</td>
<td>2017-2021</td>
<td>M</td>
<td>Carbon Nanomaterial-Ionic Liquid Hybrid for Ultrahigh Energy Super capacitor</td>
</tr>
<tr>
<td>Jibin Antony</td>
<td>NTNU</td>
<td>India</td>
<td>2018-2021</td>
<td>M</td>
<td>Nanostructured hybrid catalysts for photocatalytic applications</td>
</tr>
<tr>
<td>Mario Ernesto Casalegno</td>
<td>NTNU</td>
<td>Spain</td>
<td>2018-2022</td>
<td>M</td>
<td>Catalyst for onboard hydrogen generation from bioethanol</td>
</tr>
<tr>
<td>Ask Lysne</td>
<td>NTNU</td>
<td>Norway</td>
<td>2019-2022</td>
<td>M</td>
<td>Staging and Multiple Hydrogen Feed of Biomass to Fischer-Tropsch Fuel Synthesis</td>
</tr>
<tr>
<td>Dumitrita Spinu</td>
<td>NTNU</td>
<td>Romania</td>
<td>2019-2022</td>
<td>F</td>
<td>Low temperature CO₂ capture</td>
</tr>
<tr>
<td>Junbo Yu</td>
<td>NTNU</td>
<td>China</td>
<td>2019-2022</td>
<td>M</td>
<td>Hydrogen membrane separation technology</td>
</tr>
<tr>
<td>Monica Pazos Urrea</td>
<td>NTNU</td>
<td>Columbia</td>
<td>2020-2023</td>
<td>F</td>
<td>Kinetic studies of aqueous phase reforming including deactivation studies</td>
</tr>
<tr>
<td>Petter Tingelstad</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020-2023</td>
<td>M</td>
<td>Catalytic upgrading of bio-oil to aviation fuels</td>
</tr>
<tr>
<td>Oscar Izanne Encinas</td>
<td>NTNU</td>
<td>Spain</td>
<td>2020-2023</td>
<td>M</td>
<td>Biofuels production from Biomass</td>
</tr>
<tr>
<td>Kishore Rajendran</td>
<td>NTNU</td>
<td>India</td>
<td>2020-2023</td>
<td>M</td>
<td>Development of efficient catalyst for conversion of biomass to aviation fuel</td>
</tr>
<tr>
<td>Albert Miró i Rovira</td>
<td>NTNU</td>
<td>Spain</td>
<td>2021-2024</td>
<td>M</td>
<td>Catalytic upgrading of bio-oil to aviation fuels</td>
</tr>
<tr>
<td>Zhuhui Li</td>
<td>NTNU</td>
<td>China</td>
<td>2021-2024</td>
<td>F</td>
<td>Conversion of biomass and plastic wastes</td>
</tr>
<tr>
<td>Mustafa Kemarcu</td>
<td>UiO</td>
<td>Norway</td>
<td>2017-2021</td>
<td>M</td>
<td>Ethene oligomerization</td>
</tr>
<tr>
<td>Martin Jensen</td>
<td>UiO</td>
<td>Norway</td>
<td>2018-2022</td>
<td>M</td>
<td>Catalytic Materials</td>
</tr>
<tr>
<td>Vladyslav Shostak</td>
<td>UiO</td>
<td>Ukraine</td>
<td>2020-2023</td>
<td>M</td>
<td>Development of comprehensive diffusion/adsorption models for TAP kinetic experiments</td>
</tr>
<tr>
<td>Dag Sannes</td>
<td>UiO</td>
<td>Norway</td>
<td>2020-2023</td>
<td>M</td>
<td>Rational design of MOF catalysts for CO₂ conversion</td>
</tr>
<tr>
<td>Nicolai Haaber-Junge</td>
<td>UiO</td>
<td>Denmark</td>
<td>2020-2023</td>
<td>M</td>
<td>Zeolite catalyst deactivation</td>
</tr>
</tbody>
</table>

1) Muhammad Zubair defended his PhD thesis 18 March 2021
2) Jianyu Ma defended his PhD thesis 26 January 2021
3) Mustafa Sæterdal Kamurcu defended his PhD thesis 20 May 2021

Bjørn Gading Solemsli started under the supervision of Stian Svelle as a PhD candidate at the Department of Chemistry at University of Oslo February 15, after finalizing his Master’s Thesis for professor Unni Olsbye. In iCSI he will be continuing the work in IIA5 on zeotype catalysts for the methane-to-methanol (MTM) reaction. The working title of his project is “A deeper fundamental understanding of direct CH activation”.

Björn Frederik Baumgarten, started, as the last PhD candidate within iCSI, April 1. Björn did his bachelor at the Karlsruhe Institute of Technology (KIT), before he did his master’s in 2015–2017 at NTNU, with the specialization in Environmental Catalysis and Biofuels. Bjørn went back to Germany and worked in the biomass combustion group at The Rottenburg University of Applied Forest Sciences from 2018 to 2021. In his PhD project in IIA6, he will use an in-situ mass analyzer (ISMA) in CO₂ Hydrogenation. Associate Professor Jia Yang and Senior Research Scientist Rune Lødeng (SINTEF) will act as Björn’s PhD supervisors.
International exchange PhD candidates in iCSI, NTNU

<table>
<thead>
<tr>
<th>Candidate Name</th>
<th>Institution</th>
<th>Country</th>
<th>Duration</th>
<th>Gender</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolato Rosmini</td>
<td>Bulgarian academy of Science</td>
<td></td>
<td>2 months</td>
<td>F</td>
<td>Aqueous phase reforming of Woxogenated compounds</td>
</tr>
<tr>
<td>Aldo Lanza</td>
<td>Politecnico de Milan</td>
<td></td>
<td>2 months</td>
<td>M</td>
<td>Production of Chlorine and Vinyl Chloride Monomer (VCM)</td>
</tr>
<tr>
<td>Yurou Li</td>
<td>East China University of Science and Technology</td>
<td></td>
<td>3 months</td>
<td>F</td>
<td>Acetylene selective hydrogenation</td>
</tr>
</tbody>
</table>

Postdoctoral researchers working on projects in iCSI with financial support from other sources

<table>
<thead>
<tr>
<th>Researcher Name</th>
<th>Institution</th>
<th>Country</th>
<th>Duration</th>
<th>Gender</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suresh Balasingam Kannan</td>
<td>NTNU</td>
<td>India</td>
<td>2018–2021</td>
<td>M</td>
<td>Energy storage by high energy supercapacitors</td>
</tr>
<tr>
<td>Marie Davre Strømsheim</td>
<td>NTNU</td>
<td>Norway</td>
<td>2018–2021</td>
<td>F</td>
<td>Surface chemistry and segregation phenomena of Pd-alloy membranes</td>
</tr>
<tr>
<td>Katarzyna Swirk</td>
<td>NTNU</td>
<td>Poland</td>
<td>2020–2022</td>
<td>F</td>
<td>MesoSi-Co₂, Design of low-cost and carbon-resistant Ni-based mesoporous silicas for chemical CO₂ utilization through tri-reforming of methane</td>
</tr>
<tr>
<td>Hongfei Ma</td>
<td>NTNU</td>
<td>China</td>
<td>2021–2023</td>
<td>M</td>
<td>Chemical transformation of enzymatic hydrolysis lignin (EHL) with catalytic solvolysis to fuel commodities under mild conditions (EHLCATHOL)</td>
</tr>
<tr>
<td>Nico König</td>
<td>UiO</td>
<td>Germany</td>
<td>2020–2021</td>
<td>M</td>
<td>Catalyst synchrotron studies</td>
</tr>
<tr>
<td>Izar Capel Berdiell</td>
<td>UiO</td>
<td>Spain</td>
<td>2021–2023</td>
<td>M</td>
<td>Catalyst deactivation studies</td>
</tr>
</tbody>
</table>

Master’s students in Chemical engineering¹ (NTNU) or Chemistry² (UiO) in iCSI

<table>
<thead>
<tr>
<th>Researcher Name</th>
<th>Institution</th>
<th>Country</th>
<th>Duration</th>
<th>Gender</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristoffer Fiem Grimstvedt</td>
<td>UiO</td>
<td>Norway</td>
<td>2019–2021</td>
<td>M</td>
<td>Catalyst deactivation by coke formation</td>
</tr>
<tr>
<td>Oskar Ireland</td>
<td>UiO, iCSI</td>
<td>Norway</td>
<td>2019–2021</td>
<td>M</td>
<td>Synthesis and characterization of perovskites and catalytic testing</td>
</tr>
<tr>
<td>Odd Reidar Bygdnes</td>
<td>UiO</td>
<td>Norway</td>
<td>2020–2022</td>
<td>M</td>
<td>Methane to methanol – catalyst synthesis</td>
</tr>
<tr>
<td>Alexandre Jahr Kolstad</td>
<td>UiO, iCSI</td>
<td>Norway</td>
<td>2020–2022</td>
<td>F</td>
<td>Reactor STM and NAP XPS for ammonia oxidation</td>
</tr>
<tr>
<td>Mathilde Ingeborg Nilsen Verne</td>
<td>UiO-Nafurna, iCSI</td>
<td>Norway</td>
<td>2021–2023</td>
<td>M</td>
<td>In-situ XPS of PrRh NPs for NH₃ oxidation</td>
</tr>
<tr>
<td>Vilde Vinnes Jacobsen</td>
<td>NTNU</td>
<td>Norway</td>
<td>2019–2021</td>
<td>F</td>
<td>Production of olefins from waste plastics</td>
</tr>
<tr>
<td>Lasse Svendsen Chrobak</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>M</td>
<td>Carbon formation and catalysis in the conversion of methyl chloride and silicon into dimethyl dichlorosilane</td>
</tr>
<tr>
<td>Ida Emilie Malde Jacobsen</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>F</td>
<td>Carbon formation mechanisms on Co surfaces: A DFT study</td>
</tr>
<tr>
<td>Kristin Ørnevad Madsen</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>F</td>
<td>Catalytic Steam Reforming of Hydrocarbon Impurities from Biomass Gasification</td>
</tr>
<tr>
<td>Leo Gosbert Mboyerwa</td>
<td>NTNU</td>
<td>Tanzania</td>
<td>2020–2021</td>
<td>M</td>
<td>Catalytic conversion of lignocellulosic biomass to fuels</td>
</tr>
<tr>
<td>Albert Miró i Rovira</td>
<td>NTNU</td>
<td>Spain</td>
<td>2020–2021</td>
<td>M</td>
<td>Photocatalytic ammonia synthesis</td>
</tr>
<tr>
<td>Sunniva Skogheim</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>F</td>
<td>Catalytic methane abatement for natural gas engines</td>
</tr>
<tr>
<td>Sunniva Vold</td>
<td>iCSI, NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>F</td>
<td>Efficient catalysts for attaining NO /NO₂ equilibrium in nitric acid production</td>
</tr>
<tr>
<td>Erlend Skjørrød Værnes</td>
<td>NTNU</td>
<td>Norway</td>
<td>2020–2021</td>
<td>M</td>
<td>Low temperature selective hydrogenation using noble metal catalysts</td>
</tr>
<tr>
<td>Adrian Madsen Lager</td>
<td>NTNU</td>
<td>Norway</td>
<td>2021–2022</td>
<td>M</td>
<td>Fast hydro pyrolysis coupling with catalytic vapor upgrading (CVU)</td>
</tr>
<tr>
<td>Anette Synnave Groven</td>
<td>NTNU</td>
<td>Norway</td>
<td>2021–2022</td>
<td>F</td>
<td>Conversion of synthesis gas from biomass gasification over cobalt catalysts</td>
</tr>
<tr>
<td>Eirik Giil Woxholt</td>
<td>NTNU</td>
<td>Norway</td>
<td>2021–2022</td>
<td>M</td>
<td>Synthesis of solid sorbents and kinetic study for CO₂ capture</td>
</tr>
<tr>
<td>Karthikai Selvan Sivasamy</td>
<td>NTNU</td>
<td>India</td>
<td>2021–2022</td>
<td>M</td>
<td>Catalytic conversion of biomass-derived oxygenates to biofuel</td>
</tr>
<tr>
<td>Muhammad Arslan Aslam</td>
<td>NTNU, iCSI</td>
<td>Pakistan</td>
<td>2021–2022</td>
<td>M</td>
<td>Novel Fe based catalyst for Fischer-Tropsch synthesis</td>
</tr>
<tr>
<td>Seyyedeh Roosmina, Farzaneh Motlagh</td>
<td>NTNU, iCSI</td>
<td>Iran</td>
<td>2021–2022</td>
<td>F</td>
<td>Kinetic study of ethylene oxygen chlorination on promoted CuCl₃/ Al₂O₃ catalysts</td>
</tr>
</tbody>
</table>

1) Associated with iCSI through specialization project in autumn and master thesis project in spring the second year of the master’s studies.
2) Associated with iCSI through master’s studies over two years.
International exchange master’s students associated with iCSI

<table>
<thead>
<tr>
<th>Name</th>
<th>University</th>
<th>Country</th>
<th>Length</th>
<th>Degree</th>
<th>Project Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isabel Maria Pascual Garcia</td>
<td>NTNU</td>
<td>Spain</td>
<td>6 months</td>
<td>Master</td>
<td>Preparation and characterization of pelletized Mn-based sulfur sorbents</td>
</tr>
<tr>
<td>Leo Gräber</td>
<td>NTNU</td>
<td>Germany</td>
<td>4 months</td>
<td>Master</td>
<td>Photocatalysis</td>
</tr>
<tr>
<td>Rémi Lilian Guy Snidaro</td>
<td>NTNU</td>
<td>France</td>
<td>3 months</td>
<td>Master</td>
<td>Characterization of hydrocarbon steam reforming catalysts for syngas conditioning</td>
</tr>
</tbody>
</table>

Communication and Dissemination 2021

iCSI Invited Plenaries:

- Magnus Rønning: Operando XAS in aqueous phase reforming and other energy processes. BIKE Workshop; 2021-01-14–2021-01-15
- Olsbye, Unni; Gutterad, Emil Sebastian; Lazzarini, Andrea; Fjermedal, Torstein; Pulumati, S.H.; Nova, Ainarq; Skulason, Egill: Mechanistic studies of CO2 hydrogenation to methanol, methane and CO over Pt-containing Zr-MOFs. ACS Spring meeting 2021; 2021-04-05–2021-04-09
- Hilde Johnsen Venvik: Methanol partial oxidation to form-aldehyde (MTF) over silver – new kinetic and structural insights. 53rd Annual Polish Conference on Catalysis (digital), 2021-09-22
- Magnus Rønning: Operando XAS in aqueous phase reforming and other energy processes. CATHEX Webinar lecture; 2021-09-24
- Hilde Johnsen Venvik: LINXS THEME NEW MATERIALS: Thermal Catalysis. LINXS Catalysis Workshop; 2021-10-28
- Anders Holmen: Studies of the Fischer-Tropsch Synthesis. CATHEX Webinar Lecture; 2021-10-15
- Jia Yang: Steady-State Isotopic Transient Kinetic Analysis (SSITKA) for investigation of catalysts for Fischer-Tropsch synthesis. CATHEX Webinar Lecture; 2021-11-12

iCSI Publications and conference contributions 2021

IIA1: 21st Century Ammonia Oxidation and Nitric Acid Technology Development

Journal Publications

- Fjellvåg, Asbjørn Slagtern; Fjellvåg, Øystein; Kumar, Susmit; Ruud, Amund; Sjåstad, Anja Olofsen: Interplay of valence states and magnetic interactions in the perovskite system LaNi1–xRhO3. Journal of Solid State Chemistry 2021, 298, 122174
- Ivashenko, Oleksii; Johansson, Niclas; Pettersen, Christine; Jensen, Martin; Zheng, Jian; Schnadt, Joachim; Sjåstad, Anja: How surface species drive product distribution during ammonia oxidation: An STM and operando APXPS study. ACS Catal, 2021, 11, 8261–8273
- Ivashenko, Oleksii; Johansson, Niclas; Pettersen, Christine; Jensen, Martin; Zheng, Jian; Schnadt, Joachim; Sjåstad, Anja: How surface species drive product distribution during ammonia oxidation: An STM and operando APXPS study. ACS Catal, 2021, 11, 8261–8273
- Ivashenko, Oleksii; Johansson, Niclas; Pettersen, Christine; Jensen, Martin; Zheng, Jian; Schnadt, Joachim; Sjåstad, Anja Olofsen; Operando (N) APXPS study of PtRh alloys for NH3 oxidation. ICSI annual seminar; Hovde Gård, 2021-10-18–2021-10-19
- Ivashenko, Oleksii; Pettersen, Christine; Johansson, Niclas; Jensen, Martin; Zheng, Jian; Schnadt, Joachim; Sjåstad, Anja: How surface species drive product distribution during ammonia oxidation: An STM and operando APXPS study. ACS Catal, 2021, 11, 8261–8273

Oral Presentations

- Borge Holme: How hard can it be to get a platinum depth profile from a palladium sample by SIMS (Secondary Ion Mass Spectrometry)? ICSI annual seminar; Hovde Gård, 2021-10-18–2021-10-19
- Jithin Gopakumar, Magnus Rønning, David Waller: Catalytic Oxidation of Nitric Oxide (NO) to Nitrogen Dioxide (NO2) for Nitric Acid (HNO3) Production. ICSI annual seminar; Hovde Gård, 2021-10-18–2021-10-19
- Pettersen, Christine; Sjåstad, Anja Olofsen; Ivashenko, Oleksii: Near-Surface Alloys of PtRh on Rh(111) Characterized by STM. The Journal of Physical Chemistry C, 2021, 125(45), 25140–25147
- Ivashenko, Oleksii; Pettersen, Christine; Johansson, Niclas; Jensen, Martin; Schnadt, Joachim; Sjåstad, Anja Olofsen: Operando (N) APXPS study of PtRh alloys for NH3 oxidation. ICSI meeting; 2021-10-18–2021-10-19
- Ivashenko, Oleksii; Pettersen, Christine; Johansson, Niclas; Jensen, Martin; Schnadt, Joachim; Sjåstad, Anja Olofsen: How surface species drive product distribution during ammonia oxidation: An operando APXPS Study. Max IV user meeting; 2021-10-25–2021-10-27
IIA2: Abatement of nitrogen-containing pollutants. State-of-the-art catalyst technology

Oral Presentations
Sijie F. Håkonsen, Karl Isak Skou, David Waller, Martin F. Sunding, Patricia Almeida Carvalho, Anna Lind, Mathieu Grandcolas, Jasmina H. Cavka: Abatement of nitrogen-containing pollutants: Characterisation studies of industrial de-NX reactor feed in ICSI annual seminar; Hovde Gård, 2021-10-18–2021-10-19

IIA3: Frontier Formalin Technology Development

Journal Publications
Stine Lervold; Rune Ledeng; Jia Yang; Johan Skjelstad; Kristian Binger; Hilde Johnsen Vervik: Partial oxidation of methanol to formaldehyde in an annular reactor, Chemical Engineering Journal, 2021, 423, 130141

Oral Presentations
Youzi van Valen: Methanol partial oxidation to formaldehyde over silver – continued, ICSI annual seminar; Hovde Gård, 2021-10-18–2021-10-19

IIA4: PVC Value Chain: World Class Energy and Raw Material Efficiency for the Production of Chlorine and Vinyl Chloride Monomer (VCM)

Journal Publications
Bao, Xuyang; Ma, Hufong; Tuo, Yuxiāo; Qi, Yanying; Feng, Xiang; Yang, Chaohe; Chen, De: Research progress on catalysts for the synthesis of VCM. Huagong jinzhan, 2021, Volume 40(4), 2034–2047

Oral Presentations
Chen, Wenyao; Cao, J.B.; Yang, Jia; Cao, Yueqiang; Zhang, Shengyang; Zhou, Yan; Zhang, Jun; Liu, Zhanning; Kang, Hao; Jiang, Zheng; Zhang, Jing; Qian, Gang; Zhou, Xinggui; Chen, De; Yuan, Wei-Kang; Zhu, Y.-An: Rational design of single-atom-doped CoO₉ catalysts for propane dehydrogenation: Breaking through volcano plot by Lewis acid−base interactions. ACS Catalysis, 2021, Volume 11(9), 5135–5147

IIA6: Generics Projects for Additional Industrial Synergies

Journal Publications

Duyar, Melis S.; Gallo, Alessandro; Regli, Samuel K.; Snider, Jonathan L.; Singh, Joseph A.; Valle, Eduardo; McNaney, Joshua; Bent, Stacey F.; Ranning, Magnus; Jaramillo, Thomas F.: Understanding Selectivity in CO₂ Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using in Situ Techniques. Catalysts 2021, 11(1), 143

Oral Presentations

Prodinger, Sebastian; Kvande, Karoline; Arstad, Bjørnar; Borfecchia, Elisa; Beato, Pablo; Svelle, Stian: Synthesis-Structure-Activity Relationship in Cu-MOR for Partial Methane Oxidation: AI Staging via Inorganic Structure Directing Agents, ACS Catalysis, Manuscript ID: cs200591b.81

Prodinger, Sebastian; Kvaande, Karoline; Arstad, Bjørnar; Borfecchia, Elisa; Beato, Pablo; Svelle, Stian: Synthesis-Structure-Activity Relationship in Zeolite Catalysis Research, Chemie Ingenieur Technik, 2021, Volume 93, 902–915 (part of a special issue In Memory of Prof. Dr. Ing. Jens Weitkamp)

Oral Presentations
Kvande, Karoline; Arstad, Bjørnar; Borfecchia, Elisa; Beato, Pablo; Svelle, Stian: Synthesis-Structure-Activity Relationship in Cu-MOR for Partial Methane Oxidation: AI Staging via Inorganic Structure Directing Agents, ACS Catalysis, Manuscript ID: cs200591b.81

Hovde Gård, 2021-10-18–2021-10-19

Journal Publications
Huang, Jin; Zhao, Yan; Qian, Gang; Zhang, Jing; Liu, Zhanning; Kang, Hao; Jiang, Zheng; Zhang, Jing; Pan, Chao; Qian, Gang: Atomic design of single-atom-doped CoO₉ catalysts for propane dehydrogenation: Breaking through volcano plot by Lewis acid–base interactions. ACS Catalysis, 2021, Volume 11(9), 5135–5147

Oral Presentations
Chen, Shaozh; Mo, Y.; Yasi; Lin, Dong; Tuo, Xyāo; Feng, Xiang; Liu, Yibin; Chen, Xiaobo; Chen, De; Yang, Chaohe; Xing, J.; Yuan, Wei-Kang; Zhou, Xinggui; Chen, Zhaohui; Mo, Yasi; Chen, Wenyao; Cao, J.B.; Yang, Jia; Cao, Yueqiang; Zhang, Shengyang; Zhou, Yan; Zhang, Jun; Liu, Zhanning; Kang, Hao; Feng, Xiang; Chen, De; Cu-terrachem trinuclear Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, Volume 287, 119953

Oral Presentations

Oral Presentations
Chen, Zhaohui; Mo, Yasi; Yasi; Lin, Dong; Tuo, Xyāo; Feng, Xiang; Liu, Yibin; Chen, Xiaobo; Chen, De; Yang, Chaohe; Xing, J.; Yuan, Wei-Kang; Zhou, Xinggui; Chen, Zhaohui; Mo, Yasi; Chen, Wenyao; Cao, J.B.; Yang, Jia; Cao, Yueqiang; Zhang, Shengyang; Zhou, Yan; Zhang, Jun; Liu, Zhanning; Kang, Hao; Feng, Xiang; Chen, De; Cu-terrachem trinuclear Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, Volume 287, 119953
Ma, Jianyu; Mahmoodinia, Mehdi; Rout, Kumar Ranjan; Blekkan, Eld A.: Regenerable Sorbents for High-Temperature Desulfurization of Syngas from Biomass Gasification. Chemie Ingenieur Technik, 2021, Volume 93(6), 949–958

Morén, Magnus; Cordero Lanzar, Tomas; Crudde, Pieter; Redeker, Evgeny; Swell, Stian; Van Speybroeck, Veronique; Olbye, Unni: Acidity effect on benzene metathesis kinetics over substituted H-MeAPO-5 catalysts. Journal of Catalysis, 2021, Volume 404, 594–606.

Niu, Jun; Wang, Yalan; Lian, Shirley Elisabeth Sj, Regl, Samuel K.; Yang, Jia; Rout, Kumar Ranjan; Luo, Jun; Rønning, Magnus; Ran, Jingyu; Chen, De: Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt-Ni Bimetallic Catalysts in Dry Reforming. ACS Catalysis 2021, Volume 11(4), 2398–2411.

Pandey, Umesh; Runningen, Anders; Gavriliuc, Ljubisa; Jørgensen, Erik Andreas; Putta, Koteswara Rao; Rout, Kumar Ranjan; Ryter, Erling; Ståhl, Magne; Hillesdal, Magne: Modeling Fischer-Tropsch kinetics and product distribution over a cobalt catalyst. AIChE Journal 2021, Volume 67(7), e12734.

Periyasamy, Manimuthu; Patra, Lokanath; Fjellvåg, Helmer: Effect of electron doping on the crystal structure and electronic properties of an n = 3 Ruddlesden-Popper compound La₃NiO₅. ACS Applied Electronic Materials, 2021, Volume 3(6), 2671–2684.

Pham, Thanh Hai; Cao, Junbo; Song, Nan; Cao, Yuejiang; Chen, Bing; Qian, Gang; Zhou, Xinguai; Chen, De; Duan, Dong; Xiaobo; Chen, De; Mintova, Svetlana; Yang, Chaoh; Reversing Titanium Oligomer Formation towards High-Reactivity and Green Synthesis of Titanium-Containing Molecular Sieves. Angewandte Chemie International Edition, 2021, Volume 60(7), 3443–3448.

Pirola-Herrero, Irene; Borocchia, Elis; Cordero-Lanzac, Tomas; Mentzel, Uffe; V. Joens, Finn; Lomachenko, Kirill A.; Bordiga, Silvia; Olbye, Unni; Beato, Pablo; Sverre, Stian; Finding the active species: The conversion of methanol to aromatics over Zn-S/ZSM-5/Alumina shaped catalysts. Journal of Catalysis, 2021, Volume 394, 416–428.

Poissonnier, Jeroun; Ranga, Chanaky; Lediang, Rume; Thibaut, Joris W.: Oxygen functionality and chain length effects in HD0: Impact of competitive adsorption on reactivity. Fuel, 2022, Volume 138, 012190.

Redeker, Evgeny; Johannsen, Nicolas; Kokkonen, Esko; Urpelainen, Samuli; Lopes Da Silva, Felipe; Kajpio, Mikko; Nieminen, Heta-Elias; Renham, Foija; Mikkaluoto, Ville; Ritola, Mikko; Olbye, Unni: Synchronizing gas injections and energy-resolved data acquisition for perturbation-enhanced APXPS experiments. Review of Scientific Instruments, 2021, Volume 92(4), 044101-1 - 044101-11.

Saha, Dipankar; Kumar, Susmit; Gonano, Bruno Roberto: Nascimento, Döjdson; Ståhld, Magne; Fjellvåg, Helmer: Total Scattering Study of Local Structural Changes in Mn₆S₇₋ₓ, Influenced by Magnetic Interactions. Chemistry of Materials, 2021, Volume 33, 2576–2584.

Shan, Yu-Ling; Zhao, Wen-Ting; Shi, Lei; Wang, Xiong-Xin; Xu, Hua-Lu; Yu, Wen-Long; Ding, Jun-Wei; Feng, Xiang; Chen, De: Effects of aluminia phases on the structural, surface and performance of VOₓ/Al₂O₃ catalysts in non-oxidative pyrolysis propane dehydrogenation. Molecular Catalysis, 2021, Volume 504, 111466.

Shang, Jingyuan; Fu, Guangbin; Cai, Zhenping; Feng, Xiaoyou; Xian, Chao; Yang, Jun; Yang, Jia; Zhu, Yi-An; Chen, De: C-H bonds breaking efficiency and green synthesis of layered Double Hydroxides; Effect of Cationic Ratio, Hydration on the structure, Catalytic pyrolysis of biomass by engineering the structure and textural properties of carbon-foam supported copper catalysts. Reactors & Co-catalysts 2021, Volume 330, 124975.

Sheng, Jinxuan; Fu, Guobin; Cai, Zhenping; Feng, Xiaoyou; Xian, Chao; Yang, Jun; Yang, Jia; Zhu, Yi-An; Chen, De: Regenerable Sorbents for High-Temperature Desulfurization of Syngas from Biomass Gasification. Chemie Ingenieur Technik, 2021, Volume 93(6), 949–958.
THE PEOPLE AT ICSI

Alessandra Beretta
Politecnico di Milano

Anders Holmen
NTNU

Andrea Marsella
Ineos

Anja Olafsen Sjåstad
UiO

Halvor Øien
Yara

Enrique Iglesia
UC Berkeley

Francesca L. Bleken
SINTEF

Graham Hutchings
Cardiff University

Hilde J. Venvik
NTNU

Hilde M. Flaathe
NTNU

Duncan Akporiaye
SINTEF

Edd A. Blekkan
NTNU

Einar Uggerud
UiO

Endre Fenes
NTNU

Jia Yang
NTNU

Jithin Gopakumar
NTNU

Jasmina H. Cavka
SINTEF

Ingeborg-Helene Svenum
SINTEF

Alessandra Beretta
Politecnico di Milano

Anders Holmen
NTNU

Andrea Marsella
Ineos

Anja Olafsen Sjåstad
UiO

Halvor Øien
Yara

Enrique Iglesia
UC Berkeley

Francesca L. Bleken
SINTEF

Graham Hutchings
Cardiff University

Hilde J. Venvik
NTNU

Hilde M. Flaathe
NTNU

Duncan Akporiaye
SINTEF

Edd A. Blekkan
NTNU

Einar Uggerud
UiO

Endre Fenes
NTNU

Jia Yang
NTNU

Jithin Gopakumar
NTNU
Acknowledgements

The authors acknowledge all the contributors to the Annual Report 2021:

Haldor Topsøe; Graham Hutchings, Cardiff University; Asbjørn Slagtern Fjellvåg, UiO; David Waller, Yara; Thomas By, K.A. Rasmussen; Karoline Kvande and Sebastian Prödinger, UiO. Scientific contributions were from: Julie Hessevik, UiO; Silje Fosse Håkonsen, SINTEF; Jithin Gupakumar, NTNU; Youri van Valen, NTNU; De Chen, NTNU; Stian Svelle, UiO; Samuel Regli, NTNU; Oleksii Vaschenko, UiO; Kristine Wik, SINTEF, Bjørn F. Baumgarten, NTNU; The authors thank Ingrid Nuse Translating for proofreading. Geir Mogen has contributed with photos from NTNU (pages 18, 27, 69 and 71), and Hilde Skar Olsen with photos from Max IV at Lund University (pages 21, 27 and 53), but also several people from the iCSI society has shared their photos from iCSI Moments 2021. The cover photo is from Karoline Kvande, UiO. Last but not least, thanks to Aase Camilla Tangen at the NTNU Grafisk Senter for her efforts in making the report presentable.

Authors

Dr. Anne Hoff and Prof. Hilde Johnsen Venvik, NTNU
iCSI

industrial Catalysis Science and Innovation