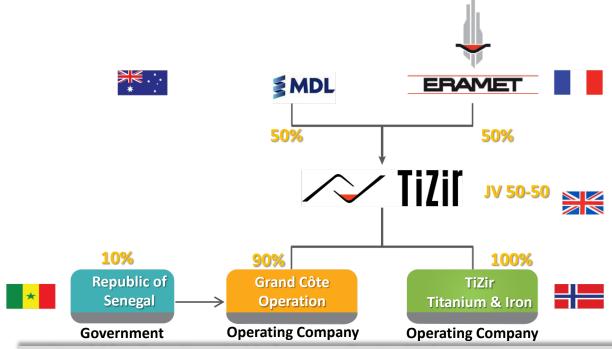


Prereduction and use of Hydrogen at TiZir

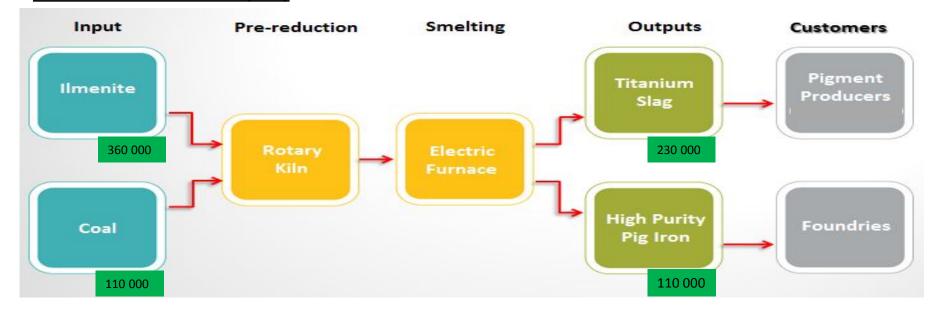
Harald Grande


TiZir plant in Tyssedal (TTI)

TiZir Limited, in a Snapshot

- Extensive Experience in HMS
- Concession of Grande Côte Operations (2007)
- DFS of Grande Côte Operations (2010)

- Mining & Metallurgy Group (Ni, Mn, Alloys)
- Operate 2 Major Mines and 7 Smelters
- Tinfos Acquisition including TTI (2008)



- Grand Côte ilmenite suitable for upgrading to CP slag at TTI
- Security of ilmenite supply for TTI provides expansion opportunity
- Grande Côte Mine development commenced in July 2011
- Production started at the Mine in May 2014
- Total investments TiZir2011-2015 800 mill USD

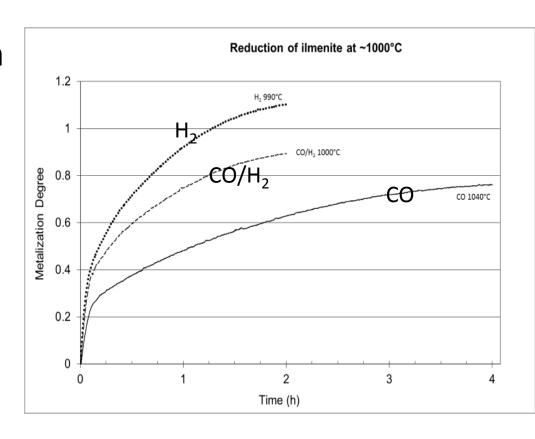
TiZir's Two Operational Facilities

TiZir Titanium & Iron (TTI)

Grande Cote Operations (GCO)

Hydrogen project at TTI, developing for the future

- Develop and expand
- > A technology adapted to the future:
 - Power
 - Climate
 - Resources
- ➤ Limited footprint
- Core competence built over time internally and externally
- ➤ Strong process experience in modelling and control of multi stage processes.

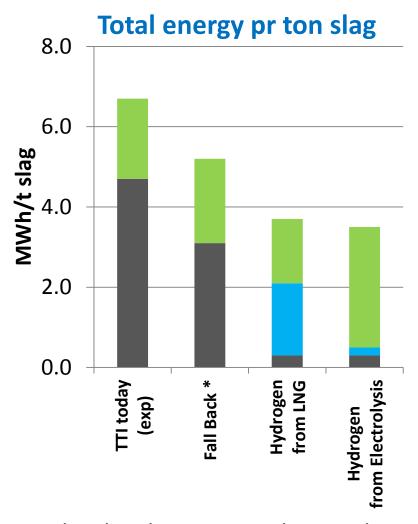

Scientific community, important contribution

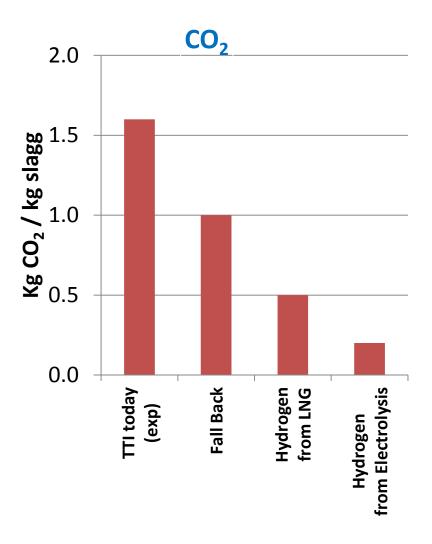
- ➤ Long history
- Close link to industry
- ➤ Strong Universities
- > Strong research organizations
- > Development of candidates for MSc and PhD
- > Recruitment

TTI apporach

> H₂ based pre-reduction

- Production increase
- CO₂ reduction
- Energy efficient
- Development of core knowledge
- Area efficient
- Process responce
- Operational security




Stephen C. Lobo, Experimental investigations and modelling of solid-state ilmenite reduction with hydrogen and carbon monoxide, Ph.D. thesis, NTNU, 2015.

GasFerroSil project

TTI apporach.

■ Coal and Carbon ■ Natural gas ■ Electricity

TTI Preparing to start a New Chapter

- Main objectives of the 2015 project:
 - New reactor design, worlds most advanced?Most Efficient Reactor
 - Capacity Increase + 15%
 - Process control, prepare for Hot Charging from Hydrogen reduction.
 - Working conditions, Environment, and Safety improvements
- Reactor start up December 2015
 - All objectives met within good margins
- 2016 Successful trials on continous lab-scale
 H2-reduction tests close to being concluded.

Challenges:

Replacing a fully functioning production plant with another technology:

- Mostly finacial and regulatory:
 - Market(products and factor inputs (el))
 - Availabilty and level of governmental support
 - Availability and level of risk capital.
 - Emission costs.(CO2)

TiZir Heading for Operational Excellence

Flexibility in serving our TiO₂ pigment customers

Health & Safety,
Environment, Social
& Community

Sustainable & Vertical Integration

GCO – TTI

TTI's green concept:

Minimising CO₂
emissions and energy
consumption per
tonne of TiO₂
feedstocks

Thank you for your attention.

