Outotec

Ore processing in fluidized bed technologies

Overview

- Fundamentals in fluidized bed technology.
- Outotec's experience in fluidized bed technologies.
- CFB/FB applications for iron containing ores.
- CFB aplications for alumina calcination.
- Technology and project development.

Fluidized bed systems - fundamentals

- In a fluidized bed particles are held suspended by the upward.
- Increasing gas velocities will create different flow regimes.
- The highest slip velocity is reached in CFB, leading to high mass & heat transfer rates.
- Outotec has applied CFB, FB, AFB and FR for treatment of different fine ores.

Annular fluidized bed (AFB)

Circulating fluidized bed advantages

- High mass & heat transfer
 Uniform temperature, low energy consumption.
- Direct processing of fines Minimum fines losses and accretions.
- High productivity

Minimum plant downtime & low specific investment costs.

- No heavy rotating equipment
 Easy and flexible control, low operation
 & maintenance costs.
- Easy and exact control of temperature and retention time.
- Direct combustion of natural gas in the CFB furnace.

Circulating fluidized bed

Outotec

Outotec's experience in fluidized bed technologies

CFB applications

Num	Number of Plants	
Industrial		
Calcining of alumina	52	
Calcining of limestone, clay etc.	4	
Roasting of gold ores	7	
Power plants	82	
Adsorption of wastes / desulphurization	on 16	
Fluorine adsorption (electrolysis)	10	
Circored	1	
Circoheat	1	
Subtotal	173	

Rio Tinto Alcan Gove 3 CFB calciners.

HBI Circored plant Trinidad. Capacity 0.5 million t/a

CFB applications

	Number of Plants
<u>Semi industrial / pilot</u>	
Circodust	1
Elred	1
Circofer	1
AIF3 synthesis	1
Pyrohydrolysis	1
Decomposition and recycling of s	salts <u>1</u>
Subtotal	6
Total CFB references	179

Outotec's fluidized bed applications

CFB applications - iron ore processing

- Outotec has built CFB plants for preheating, roasting and hydrogen based reduction of iron ores.
- In the case of iron ore preheating & calcination, the target is to remove LOI and to preheat the ore for down stream processes (e.g. direct reduction or smelting reduction).
- For ilmenite roasting the target is to change magnetic properties of the ore to allow the removal of chromite by magnetic separation.

Outotec

CFB applications - iron ore processing

- One Circored plant for direct reduction of iron ore was built, using hydrogen as reductant: Circored plant Trinidad 1996.
- Two ilmenite roasters were built by Outotec: Exxaro 2001, Empangeni South Africa; and Moma Sands 2005 Mozambique.
- Two iron ore preheaters were built by Outotec: preheater for Circored plant Trinidad 1996 and preheater for HIsmelt Australia 2002.

Circored plant Trinidad

HBI stockpile at the Circored plant Trinidad

CFB/FB applications – DRI/HBI production

- Circored is the only hydrogen based direct reduction process for iron ores available in the market.
- Hydrogen is used as reductant, which is normally supplied from steam-methane reforming plant.
- Up to 95% metallization degree can be achieve using two reduction stages (CFB/FB).
- Final product could be HBI or DRI as feed to other processes (e.g. EAF steelmaking, BF ironmaking).

Circored process - Block diagram

Outotec

CFB/FB applications – DRI/HBI production

Circored plant Trinidad. 0.5 Million t/a HBI plant.

CFB applications - iron ore preheating

Circoheat[®] iron ore preheater for HIsmelt

CFB applications – iron ore preheating

Circoheat[®] iron ore preheater

CFB applications – ilmenite roasting

Moma Sands 2005 – Mozambique, South Africa

- Capacity of roaster: 1200 tpd roasted ilmenite
- Roasting under reducing conditions • at 800°C temperature.
- Ilmenite: 57 % TiO₂, 27 % Fe ٠
- Circulating fluidized bed for optimal process control (temperature and retention time).
- External hot gas generator for substoichiometric combustion of diesel fuel oil.
- Reactor dimensions: $rac{1}{2}$ 3 m, 21 m high.

CFB applications – ilmenite roasting

- Capacity of roaster: 1000 tpd roasted ilmenite.
- Start-up: 1999. ۲
- Roasting under oxidizing conditions to be able to decrease the chromite content by magnetic separation before smelting.
- Ilmenite: 49 % TiO2, 37 % Fe.
- Circulating fluidized bed with internal combustion of Sasol gas.
- Reactor dimensions: \cancel{P} 1.9 m, 12 m high.

Exxaro 2001 – Empangeni, South Africa

CFB applications - ilmenite roasting

Exxaro ilmenite roaster process flowsheet

A 99120/3

CFB applications: alumina calcination

- Calciners built: 52
- Calciners upgraded: 11
- Total CFB Capacity: >36 MTPY (40 % of world production)
- Under construction: 2 CFBs

CFB Applications: alumina calcination

Outotec

Technology and project development

Technology development

R&D Way of work Iterative interplay between process design & test work

Process design

- Process flowsheets, mass and energy balances of processes, operating points, sensitivity analyses.
- Plant design: equipment dimensioning and functionality.
- **Test work** (lab scale, batch, continuous, pilot scale):
 - For plant design, scale-up and process guarantees.
 - For production of material to be tested further.

Outotec R&D Center, Frankfurt, Germany.

Outotec

Scale up experience

Process	Pilot plant size	Commercial plant size	Factor (approximate)
Alumina calcining 1966	125 mm Ø 5 kg/h	1.0 m Ø 1 t/h	1:200
Alumina calcining 1970	1,000 mm Ø 1,000 kg/h	3.6 m Ø 20 t/h	1:20
Coal combustion	360 mm Ø	5 m Ø	1:1,000
1982	20 kg/h	21 t/h	
Gold ore roasting	200 mm Ø	3.8 m Ø	1:4,000
1990	22 kg/h	83 t/h	
Circored	200 mm Ø	5.0 m Ø	1:3,500
1999	18 kg/h	63 t/h	

Project development time frame and costs

Conclusions

- Outotec's CFB technology presents several advantages for thermal treatment of different fine ores.
- The direct combustion of natural gas in the CFB furnace results in an efficient method for fine ore heating, minimizing fuel consumption.
- The use of hydrogen for DRI & HBI production has been demonstrated, and combined with EAF could represents an alternative route for steel production.
- Outotec has a vast experience accumulated for more than 50 years in different fluidized bed applications.

Thank you