

Professor Leiv Kolbeinsen, Dep. Mat. Sci. & Eng., NTNU

Including a short course in Process Metallurgy - or rather "Resources, Energy & the Environment"

- Climate change has gone from <u>If</u> to <u>When</u> to <u>Now</u> (World Bank)
- Everyone is entitled to his/her own opinion, but not his/her own facts.

What/Who am I?

Metal production/-reduction/-oxidation:

- Liquid Slags and Metals
- Chemical reactions, Mass and energy transfer, Phase relations/transitions
- Process modeling

«Environmental metallurgy»:

- Recycling of metals/slags/dross/energy etc
- Reduction materials
- Waste material prevention
- Resource characterization and optimization
 "Process symbiosis (Industry parks)" in cooperation with e.g. TSO Sustainability

Outline

3 Introductary postulates Industrial overview

Resources, Energy & Environment

- About «Får-i-kål» & «Kransekake»
- Words on energy
- From Oxide to Metal
- Why CO₂-emission?

CE: Cirkular (Green) Economy

- Process metallurgy A role i CE?
- Industrial symbiosis (Industry parks)

<u>metal production</u> Three Postulates:

- The sources of materials obtained from the Earth's crust, though very large, are finite.
 - This is a fact
- The capacity of the Earth's ecosystem to cope with the wastes from human production and consumption is finite and by many measures is approaching the limit.
 - This has universal support from scientists and other professionals with deep knowledge of the issue.
- The neo-liberal economic model of unrestrained capitalism as practiced by developed and many developing countries, despite its obvious material benefits over the past decades, has resulted in social and environmental problems on a scale that cannot be solved by market forces alone.
 - This is a hypothesis although increasingly supported by empirical evidence.

W. J. Rankin «Minerals, Metals and Sustainability – Meeting Future Material Needs» CSIRO publishing, 2011

Approximately 10% of What Goes 'in the Pipe' Comes Out as Goods and Services, the Rest Is Waste

3 Introductary postulates

Industrial overview

Resources, Energy & Environment

- About «Får-i-kål» & «Kransekake»
- Words on energy
- From Oxide to Metal
- Why CO₂-emission?

CE: Cirkular (Green) Economy

- Process metallurgy A role i CE?
- Industrial symbiosis (Industry parks)

metal	produ	ction
	•	

Position	Plant name when started	Year	Product started	Plant name today	Products today	Comments
1	Chistiania Spigerverk	1853	Iron		Closed 1989	Elkem 1972 Jernverket 1984
2	Meraker	1898	CaC2		Closed 2006	Owners: Union Carbide and Elkem
3	Hafslund	1899	CaC2 (1899 - 1967) FeSi (1908 - 2002)		Closed 2002	
4	Bjølvefossen Ålvik	1905	CaC2 Later FeSi and FeCr	Elkem Bjølvefossen	FeSi and Foundry Products	Elkem from 1986
5	Odda smelteverk	1906 (1924)	CaC2		Closed 2002	British Oxygen Company from 1937
6	Fiskaa Verk (1917)	1907	Fertilizers	Elkem Solar	Solar Si, carbon	Rebuilt 2005-2008
7	Vennesla	1908	Aluminium	Hydro Vennesla	Aluminium	Hydro Aluminium
8	Kristiansands Nikkelraffineringsverk A/S	1910	Nickel	Glencore Nikkelverket	Nickel, coppercathodes, cobolt, (gold, silver)	Falconbridge Nikkelverk A/S (1929) Xstrata (2006)
9	Arendal SiC	1912	SiC	Saint-Gobain Ceramic Materials	From 2005 only processing of SiC	
10	Eydehavn	1912	Aluminium		Closed 1975	
11	Sulitjelma smeltehytte	1912	Cu		Closed 1991	
12	Pea Porsgrunn	1913	FeMn/SiMn	Eramet Porsgrunn	FeMn	Eramet
13	Electric Furnace Products Com	1915	Mn	Eramet Sauda	FeMn SiMn	Union Carbide to 1981 Elkem 1981-99 Eramet from 1999
14	Tinfoss Jernverk AS	1916	Iron		Closed 1987	FeSi, SiMn and Silicon
15	Tyssedal	1916	Aluminium	TiZir Titanium and Iron	Titania slag and Iron	Repurposed in 1988 from Al
16	Elkem Bremanger	1917	Iron	Elkem Bremanger	FeSi, Silgrain	
17	Det Norske Zinkkompani A/S	1924	Zink	Boliden Odda As	Zinc / AlF	
18	Lilleby smelteverk	1927	FeSi		Closed 2002	
19	AS Tafjord Smelteverk	1930	FeSi		Closed 1962	
20	Orkla Metall	1931	Cu and S FeSi from 1964	Elkem Thamshavn	Si + microsilica	Orkla to 1986 - Elkem 1986 -
21	Norsk Jernverk	1946	Iron/Steel	Celsa Armeringsstål, FeSil, Glencore Manganese	Steel FeMn FeSi SiMn	Started 1955 Restructured 1988
22	Årdal	1948	AI	Hydro Aluminium AS Årdal	AI	Hydro Aluminium
23	Sunndal	1954	AI	Sunndal Primary Production	Al	Hydro Aluminium
24	Mosal Mosjøen	1958	AI	Alcoa Mosjøen	Al, carbon	Elkem/Alcoa - Alcoa 2009
25	Fesil Nord	1960	FeSi	Finnfjord Smelteverk	FeSi	Finnfjord Smelteverk from 1983
26	Holla verk	1962	FeSi	Wacker Chemicals Norway As Holla Metall	Silicon	FESIL sold to Wacker 2010
27	Husnes	1962	AI	Hydro Husnes	Al	Rio tinto / Hydro
28	Orkla Exelon	1962	SiC	Washington Mills AS	SiC	Washington Mills 2004
29	Hydro Karmøy	1963	AI	Karmøy Primary Production	Al	Hydro Aluminium
30	Elkem Salten	1967	FeSi	Elkem Salten	Si FeSi	
31	Elkem Lista	1971	AI	Alcoa Lista	AI	Elkem/Alcoa - Alcoa 2009
32	Tinfoss Øye	1974	SiMn	Eramet Kvinesdal	SiMn	Eramet from 2008

Net consumption of electricity in Norway.

3%

20

0

Greenhouse gas emissions by industry in Norway in 2014

3 Introductary postulates Industrial overview (Norway)

Resources, Energy & Environment

- About «Får-i-kål» & «Kransekake»
- Words on energy
- From Oxide to Metal
- Why CO₂-emission?

CE: Cirkular (Green) Economy Process metallurgy - A role i CE? Industrial symbiosis (Industry parks)

Får-i-kål (Mutton [Sheep] in Cabbage)

Without Salt and Pepper? Will I still be fårikål?

Kransekake (Almond Tower cake)

Using an almond-grinder is cumbersome; food-processor is much easier? (Is that so?)

Food, Energy & Material use

Important elements ~1890:

1 H	2		_			Peri	odic 1	able	of the	e Elem	nents	13		15	-	17	² He
drogen 1008	^{IIA} 2A ⁴ Be											B	4A 6	SA N	VIA 6A	VIIA 7A 9 F	10 Ne
Lithium 6341	Beryllium 9012 12											Boron 10.811	Carbon 12011	Nitrogen 14007 15	Dxyger 15397 16	Fluorine 18.998	Neon 20180
Na Sodium 22.950	Mg Magnesium 24.305	3 ШВ 3В	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B		— vⅢ — 8	10	11 19 18	12 IIB 2B	Aluminum 26.982	Silicon 28.086	Phosphorus 30,974	S Sulfur 32.066	Chlorine 35.453	Ar Argon 29.948
19 K Potassium 35.098	Calcium 40.078	Scandium 44.956	22 Ti Titanium 47.88	23 Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54,538	Fe Iron 55.933	Cobalt 58.933	28 Nickel 58.693	29 Cu Copper	30 Zn Zinc 65.39	Gallium 69.732	Gemanium 7261	Arsenic 74.922	Selenium 78.972	Bromine 79.904	36 Krypton 84.80
37 Rb Rubidium	38 Strontium 87.62	39 Y Yttrium 88.906	40 Zir Zirconium 91.224	41 Nb Niobium 92,906	42 Molybdenum 95.95	43 Tc Technetium 58.907	Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	Ag Silver 107.868	48 Cd Cadmium 112411	49 In Indium 114818	50 Sn 11871	Sb Antimony 121,760	Tellurium	53 Iodine 126.904	S4 Xeon 13129
SS Cesium Lations	56 Ba Barium	57-71	72 Hf Hafnium	73 Ta Tantalum 180948	74 W Tungsten 18185	75 Re Rhenium 185,207	76 Os Osmium 19023	77 Ir Iridium	78 Pt Platinum 195.08	79 Au Gold 196.967	Hg	81 TI Thallium 201381	B2 Pb Lead 2072	83 Bismuth 205 980	84 Polonium 1208 9821	85 At Astatine 209.987	86 Rn Radon
87 Francium 223.020	88 Radium 226.025	89-103	104 Rf Rutherfordium	105 Db Dubnium (252)	106 Sg Seaborgium [266]	107 Bh Bohrium 12641	108 Hs Hassium (269)	109 Mt Meitnerium (258)	110 DS Darmstadtium	III Rg Roentgenium 12721	112 Cn Copernicium (277)	113 Uut Ununtrium unknown	114 Fl Flerovium	Uup Ununpentium unknown	116 LV Livermorium	117 Uuus Ununseptium unkrown	118 Uuo Ununactium unknown
	Lanth: Ser	Lanti Lanti 130 89	hanum Cei 8906 140 90	ium Prasec (115 14 91	dymlum 0.908	lymium Prom 14.24 93	ethium Sam 4913 19 94	iarium Euro 1036 15 95	Spium Gade 1966 13 96	Stinium Ter 157.25 151 97	bium 161 161 161 161	250 16 99	mium Er 4.930 1 100	bium Thi 57.26 16 101	lium Ytts 8934 1 102	erbium Lut 73.04 17 103	LU etium 4967
	Actir Ser	ies P	inium The		ctinium Ura			onium Ame	ricium Cu	rium Berk	elium 7/070 Califo	rnium Einst	einium Fei		elevium No	belium Lawr	encium 2621
			Alkali Metal	Alkalir Earth		sition stal	Basic Metal	Semimetal	Nonmeta	Halog		ble as	anthanide	Actinide		© 20	114 Todd Heimenstine sciencenotes.org

06.06.2017

Energy Crisis?

The <u>annual</u> global energy consumption, for 2009, was estimated at 16 TWyrs (or 140,160,000,000 KW-hrs) illustrated by the orange sphere on the leftmost side

Comparing finite and renewale planetary energy reserves)Terawatt-years). Total recoverable reserves are shown for the finate resources.

Energy quality – Energy – Exergy

(what is good use of renewable energy?)

Massflows are usually also Energy flows

- Exergy = $f(T, P, a_i)$ Quality & amount: Ability to perform work
- => Exergy is what people usually mean when they say «Energy»

It is wise to distinguish between:

- Heat
- Fuel
- Reducing agent
- Electricity

Metal production: Reductants/Energy sources

Stolen from Jean-Pierre Birat (and adapted by me)

 Occur primarily in can be utilised as f the other hand the caused environme problems by dilutil stacks are blatant (when ill formulate

Strong oxide forming (lith

 Silicon, Aluminum, abundant in nature require large amou or indirectly for ge

Iron-like (siderophile) elen

 This group also inc important additive 10 times higher th most recycled (>40 the amount of scra

$MeO_x + xR = Me + xRO$

 $[Me = Metal, MeO_x = metal oxide;$

R = Reducing gas (H_2 or CO) - RO = Oxidized Reducing gas (H_2 O or CO₂)

Figure shows dependance of $log(P_{RO}/P_R)$ on temperature for the equilibrium $MeO_x + xR = Me + xRO$ when R equals CO.

At first sight these two collection of curves look the same, but:

When solid carbon is present the CO₂ from reduction will react with C and form new CO gas that can reduce metal oxide once more.

Reduction with Hydrogen do not involve a similar function.

Reduce => Refine Vs. Refine => Reduce

Figure 8.4: The reduce-refine and refine-reduce sequences for the production of metals.

W. J. Rankin «Minerals, Metals and Sustainability – Meeting Future Material Needs» CSIRO publishing, 2011

Silicon is used in a number of processes/applications

- **Ferrosilicon** is used both for removing oxygen from liquid steel and cast iron (deoxidation), as well as being an alloying element. The end-users are the automotive and construction companies.
- **Silicon is mainly** used for alloying other metals, especially aluminium (about 45 % of global silicon production is for alloying purposes). As for ferrosilicon, the end-users are automotive and construction companies.
- Silicon is also used as feedstock for the silicone industry (about 40 %). The end products are typically cosmetics, construction, anti-foam, medical equipment, automotive parts, etc.
- Silicon is an essential ingredient in semiconductors and in the solar industry (about 10-15 % and growing). In electronic equipment, the amount of pollution elements must be as low as in the ppb (parts per billion) range. More than 90 % of all electronic components are based on silicon. Another important market for the industry is silicon used in solar cells. Here the pollution level is in the ppm (parts per million) range.

The Renewable energy leader globally

ICRIER Working Paper 329 Ashok Gulati, Stuti Manchanda, Rakesh Kacker: Harvesting Solar Power in India! Aug 2016

Germany – The Renewable energy leader in total cumulative installations globally and leads by a successful model. In 2014:

Country	Cumulative installed solar capacity [GW]	MW/million people
Germany	38	469
China	28	20
Japan	23	181
India	3	2.3

Germany's 38 GW accounts for nearly 21 percent of total solar installed capacity in the world (2014). All this makes Germany a key leader in solar power.

There are 2 key elements in Germany's solar power success that have contributed to substantial rooftop installations:

guaranteed grid connection to renewable energy producers and Feed-in-Tariffs (FITs)

By 2013,

23 percent of global residential solar rooftops and

37 percent of global commercial solar rooftop

installations took place in Germany*. Governed by the Renewable Energy Sources Act 2000 (*Erneuerbare-Energien-Gesetz EEG*), renewables including solar enjoy priority grid connection and are supported through Feed-in-Tariffs (FITs) in Germany. This has enabled even the small producers and farmers to connect to the grid and earn revenue by selling solar power.

* http://marketrealist.com/2015/02/german-rooftops-domniate-global-photovoltaic-capacity/ (Accessed: 6th June 2016)

Silicon in the human body

ELEMENTS OF A SMARTPHONE

Ci

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

The Needle in a Haystack

Not easily found – Unpleasant

Trace elements Dilution - poisoning

Si production and CO₂ emissions

 $SiO_2(s)+(1+x)C(s) = xSi+(1-x)SiO(g)+(1+x)CO(g)$

Electricity source	Total spec. CO ₂ (kg CO ₂ /kg Si)			
Theoretical C - free	[1.6 (1CO ₂ /Si)] – 3.2 (2 CO => 2CO ₂ /Si)			
Hydro/Nuclear	4.3			
Gas Power	10.6			
Coal power	17.7			

Main steps in the Si-process (Elkem)

What happens when cold CH_4 (g) meets hot SiO (g)?

Condensation chamber, and on the lance:	
$2 \text{ SiO}(g) = \text{SiO}_2(s) + \text{Si}(s)$	(4)
$3 \text{ SiO}(g) + \text{CO}(g) = 2 \text{ SiO}_2(s) + \text{SiC}(s)$	(6)

 $\frac{\text{Reaction chamber}}{\text{SiO }(g) + 2 \text{ CH}_4 (g) = \text{SiC }(s) + \text{CO }(g) + 4 \text{ H}_2 (g)$ (2) $\text{CH}_4 (g) = \text{C }(s) + 2 \text{ H}_2 (g)$ (3)

$$\frac{\text{SiO generator (SiO formation chamber)}}{2 \text{ SiO}_2 (s) + \text{SiC } (s) = 3 \text{ SiO } (g) + \text{CO } (g)}$$
(5)

Based on a paper by B. Monsen, L. Kolbeinsen, S. Prytz, V. Myrvågnes, and K. Tang at the INFACON conference in Kazakhstan June 2013

Theory

Practice

Based on a paper by B. Monsen, L. Kolbeinsen, S. Prytz, V. Myrvågnes, and K. Tang at the INFACON conference in Kazakhstan June 2013

GasFerroSil project

Oxygen in Silica is used to convert CH_4 to "Syn Gas" ($H_2 + CO$) with Si as bi-product

Start up with bought SiC. Si-production with self-produced SiC.

3 Introductary postulates Industrial overview (Norway) Resources, Energy & Environment

- About «Får-i-kål» & «Kransekake»
- Words on energy
- From Oxide to Metal
- Why CO₂-emission?

CE: Cirkular (Green) Economy

- Process metallurgy A role i CE?
- Industrial symbiosis (Industry parks)

Today's aluminium recycling system: cascading use

- The bottom reservoir is formed by automotive secondary castings (mainly engine parts).
- Today, the cascading system is economically and ecologically meaningful.
 - → It makes use of all the metals (aluminium, alloying elements, other elements)
 - → This saves alloying elements for secondary casting
 - In the future, the same system with the same resources may become unsustainable.
 - \rightarrow Increasing amounts of scrap
 - → Limited capacity of engine parts to absorb this scrap
 - → Scrap surplus?

metal production Tomorrow's aluminium recycling system: Closed alloy cycles?

- A closing of alloy cycles would reduce the amount of scrap to be absorbed by automotive secondary castings.
 - → Use scrap for alternative applications (sinks)

How could this be achieved in the transport sector?

→ Currently, there is a cascading use of about 200 aluminium alloys used in vehicles.

Illustration of the circular economy, Ellen MacArthur Foundation

Where does this company sit within the circular economy?

Illustration of the circular economy, Ellen MacArthur Foundation

Where does this company sit within the circular economy?

Berndt Wittgens Sintef Materialer og kjemi

Organizing Self-Organizing Systems

Industrial symbiosis: cooperative manage-ment and exchange of resource flows - particularly materials, water, and energy - through clusters of companies.

etal production

Businesses have become increasingly attentive to the price and availability of these resources, the notion of interfirm coordination and management remains underdeveloped and collaborative opportunities are continually overlooked.

This article¹ describes a theory of industrial symbiosis examining the development of what have been called, industrial ecosystems or industrial networks, drawing on a mix of biology and ecology, complex systems-, and organizational theory.

¹Chertow and Ehrenfeld, *Organizing Self-Organizing Systems:Toward a Theory of Industrial Symbiosis* Journ. Industrial Ecology Volume 16, Issue 1 February 2012 pp 13–27 DOI: 10.1111/j.1530-9290.2011.00450.x

Industrial Symbiosis: Main Development Stages

1) Sprouting: Firms begin to exchange resources on a random basis for a variety of reasons. A limited network of interlinked flows takes shape as "kernels" of industrial symbiosis that face a market test and, even when successful, may or may not lead to further exchange activity.

2) Uncovering: The realization that some networks have created positive environmental externalities becomes consciously revealed or "uncovered".

3) Embeddedness and institutionalization: In addition to self-organization, further expansion of the network becomes intentionally driven by an institute-ional entity created at an earlier stage that becomes more deeply established during this stage. As for how long this might last, we have evidence that industrial symbioses can persist over many decades, as is the case of Kalundborg, Denmark, and Kwinana, Australia

Industry-parks/-symbiosis

"Business Models"

B&R (Build & Recruit): Public or private developers create an industrial park or zone and then seek compatible tenants to whom land can be leased or sold. Often an "anchor tenant" is already known; sometimes attracting such a tenant becomes the linchpin for additional development.

PE-IP (The Planned Eco-Industrial Park): draws most directly from the build and recruit model. It adds another step, which is a directed effort to identify companies from different industries with a plan to locate them together so that they can share resources across and among themselves. Versions of the PE-IP model *have proven to be the least successful* of the various approaches so far, particularly in Europe and North America

In the **SOS (The self-organizing symbiosis)** model an industrial ecosystem emerges from decisions by private agents economically motivated to exchange resources to meet goals such as cost reduction, revenue enhancement, or business expansion.

The **RIP model (Retrofit Industrial Park)**, existing industrial parks are targeted for conversion to eco-industrial parks *after* build and recruit has occurred. Success is likely to hinge on the degree to which firms in these parks come to accept the norms and values that enable collaboration and interfirm exchange.

The **CEE-IP** (Circular Economy Eco-Industrial Park) model is a new form emerging in China associated with the implementation of the Circular Economy Promotion Law in 2009. So far more than 20 existing sites have been designated as "demonstration eco-industrial parks" as part of the circular economy preparations. Most are retrofits rather than build and recruit models, although many are significant expansions closer in concept to the PE-IP model. Theory suggests that a very positive context for the evolution of symbioses in China now exists.

Economy vs. Environment

Source: Artem Golev & G.D. Corder «Developing a classification system for regional resource synergies» Minerals Engineering 29 (2012) 58– 64

doi:10.1016/j.mineng.2011.10.018

Resilience is here the system's ability to absorb disturbances before it changes the variables and processes that control behavior

Gladstone (Australia) & Kalundborg (Denmark)

The 2052 Forecast: What will happen? How can metal production contribute?

Jorgen Randers Professor Emeritus Climate Strategy BI Norwegian Business School

- **1.** Make sure production does not include any fossil inputs
- 2. Make sure process is suited for solar power i.e. direct current and intermittent power
- **3.** Make sure there exist technologies (like CCS) to neutralize greenhouse gas emissions (e.g. CO₂ and CH₄)
- 4. Work for a global ban on metals made from fossil fuels or at least labelling of climate friendly metals

Metal production: Reductants/Energy sources

Stolen from Jean-Pierre Birat (and adapted by me)

Money is like muck, not good except it be spread.

(Francis Bacon)

izquotes.com

jorgen.randers@bi.no

www.2052.inf

CO₂ fra aluminiumproduksjon

Alternativ C fra CH₄ (Natur- eller Bio-gass)

CO₂ fra silisiumproduksjon

Alternativ C fra CH₄ (Natur- eller Bio-gass)

Elkem: Carbon Neutral Metal Production (CNMP)

FINNFJORD

- We've got the power

Bioolje

Kosttilskudd

Laksefor

Medisiner

Finnfjord Vision

World's largest ferrosilicon produce without CO₂ emissions

VISJON

Finnfjord - verdens første ferrosilisiumprodusent uten CO2 u

Ambitious Remote

Type I industrial eco-system (linear material flows)

Type II industrial eco-system (quasi-cyclical).

Type III industrial eco-system (cyclical).

