

Measuremen Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammai Installation

Conclusions

Shaft Current Protection

Tin Rabuzin Research Engineer, SmarTS Lab, KTH

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

1 Introduction

- **2** Measurement Devices
- **3** Protection Relay
- **4** Protection Systems
- **5** IEC61850-9-2 and MU
- 6 Hallstahammar Installation

7 Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

3/45

- Shaft overcurrent protection is an important generator protection issue
- Currents flowing in the shaft damage bearings
- Results in reduced operating time and financial losses

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Shaft Voltage

"... in a perfectly constructed alternator both practice and theory tell us that no such vagabond current exists so that the cause must be looked for in constructive inequalities." Buchannan, 1915

- Main cause of shaft currents are magnetic asymmetries in the stator core
- Magnetic asymmetry arises due to normal manufacturing processes

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahamma Installation

Conclusions

Shaft Voltage

Ratio is reduced to lowest terms:

$$\frac{A}{B} = \frac{4 \times S}{P} \tag{1}$$

If A is odd number:

$$f_{shaft} = A \times f_{line}$$
 (2)

If A is even number, no shaft current exists.

Hydro generators

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammai Installation
- Conclusions

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahamma Installation

Conclusions

Problem and Literature Review

Turbo generators

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

8/45

- Suitable sensor had to be used which satisfies mechanical and electrical requirements
 - Possible influence of stray flux from the generator
 - Installation requirements space constraints
 - Low currents flowing in a large conductor (shaft)
- Numerical relay had to be used (REG670 Version 2.0)
 - Low output from measurement device had to be adapted

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammai Installation

Conclusions

Current Transformer

- Made out of 2 or 4 parts depending on the size of the shaft
- Shaft is single primary winding
- Many secondary turns
- Low secondary voltage and current

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9and MU
- Hallstahammai Installation
- Conclusions

Rogowski coil

Introduction

• Ampere's law

$$i(t) = rac{1}{\mu_0} \oint \overrightarrow{B(t)} \cdot \overrightarrow{ds}$$
 (3)

Induced voltage

$$u(t) = N \frac{d\Phi}{dt} \qquad (4)$$

• Current and voltage relation

$$u(t) = N\frac{A}{s} \cdot \mu_0 \cdot \vec{i(t)}$$
 (5)

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Rogowski coil

Advantages	Drawbacks
No iron core - linear, no saturation	Necessity of integration circuit
and magnetizing current	Necessity of integration circuit
Low production cost	Low voltage output
Mechanical fexibility, small size	Low frequency noise
and weight	from integrator circuit
Electrically safe when open	Sensitivity to conductor position
Wide bandwidth	Limited rejection of external fields
Non-disturbing for primary circuit	Inability to measure DC currents
Can endure large overload without	
damage	

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Measurement Devices

- Three measurement devices
 - Rogowski coil
 - CT ILDD 096
 - CT Zelisko GWR3
- Focus is put on Rogowski coil
- ILDD 096 is used to demonstrate reduced magnetic performance
- Zelisko GWR3 is considered as a part of retrofit installation

Measurement Devices

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahamma Installation

Conclusions

Rogowski coil

Sensitivity	200 mV/A	Accuracy	±0.3 %
Bandwidth	4 Hz to 40 kHz	Linearity	± 0.05 %

Measurement Devices

Introduction

Measurement Devices

Protectior Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahamma Installation

Conclusions

Zelisko GWR3

Name	Zelisko GWR3	Primary Winding	1 turn
Inner Diameter	DI=990~mm	Secondary Winding	600 turns
Outer Diameter	DO = 1100 mm	Test Winding	2 turns

Measurement Devices

Introduction

Measurement Devices

Protectior Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammai Installation

Conclusions

ILDD 096

Name	ILDD 096	Primary winding	1 turn
Inner Diameter	990 mm	Secondary winding	500 turns
Outer Diameter	1030 mm	Test winding	4 turns

Test Measurements

▲□▶ ★@▶ ★ 差▶ ★ 差▶ 差| = の Q @

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-3 and MU

Hallstahammai Installation

Conclusions

Waveform Recordings

Introduction

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammai Installation

Conclusions

Measuremen Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammai Installation

Conclusions

Protection Relay - REG670 2.0

Application Configuration - Analogue Inputs

Connection type	Ph-N
SetFrequency	50/150 Hz
FreqBandWidth	0.0 Hz
FilterLength	1.0 s
OverLap	20 %

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Protection Relay - REG670 2.0

Application Configuration - Protection Function

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Protection Relay - REG670 2.0

Linearity and Accuracy of the relay

Quantity	Rated Value	Nominal Range
Current	$I_r = 1 \text{ or } 5A$	$(0.2 10) \sim 1$
Operative Range	$(0-100) \times I_r$	$(0.2 - 40) \times I_r$
AC Voltage	$U_r = 110 \text{ V}$	(05 288) V
Operative Range	(0 – 340) V	(0.3 - 200) V

• Voltage and current outputs of measurement devices are below nominal range of the relay

Device	Voltage at $I_{prim} = 1A$	Current at $I_{prim} = 1A$
Rogowski coil	200 mV	Х
Zelisko GWR3	104 mV	pprox 1.5 mA
ILDD 096	90 mV	$pprox 1 \ { m mA}$

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammai Installation

Conclusions

Protection Relay - REG670 2.0

Linearity and Accuracy of the relay

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Protection Relay - REG670 2.0

Linearity and Accuracy of the relay

◆□▶ <圖▶ < 目▶ < 目▶ <目▶ <○○</p>

ntroduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Amplifier Settings

- Possibility of voltage or current input/output
- Every combination was chosen
- 2 voltage/voltage gains due to setting procedure
- · Systems were also tested without an amplifier

	Setting 1	Setting 2	Setting 3	Setting 4
Input Range	0250 mV	01 V	05 mA	05 mA
Output Range	010V	010 V	010 V	020 mA
Gain	40	10	2 V/mA	4

Measurement Devices

Protectio Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammai Installation

Conclusions

Protection System A

◆□▶
◆□▶
●>

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

- leasurement
- Devices
- Protection Relay
- Protection Systems
- IEC61850-9-3 and MU
- Hallstahammar Installation
- Conclusions

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Protection Systems

Introduction

Ramping Tests

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Filtering Tests

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammai Installation

Conclusions

Device	Set 0	Set 1	Set 2	Set 3	Set 4	I _{prim}
Rogowski coil	965 mA	1000 mA	970 mA	Х	Х	
Zelisko GWR3	960 mA	914 mA	959 mA	980 mA	960 mA	1 A
ILDD 096	925 mA	972 mA	950 mA	1081 mA	1100 mA	
Rogowski coil	500 mA	500 mA	500 mA	Х	Х	
Zelisko GWR3	490 mA	458 mA	502 mA	505 mA	533 mA	0.5 A
ILDD 096	620 mA	606 mA	563 mA	684 mA	725 mA	

Introduction

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Summary

- More stable and accurate measurements with voltage than current signals
- Higher voltage results in more accurate measurements
- No amplifier is needed at currently set alarm and trip values
- Zelisko GWR3 and Rogowski coil can be used with REG670 2.0

IEC61850-9-2 and MU

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

Advantages

- No input transformers on the SAM600 results in higher accuracy at low voltage levels
- Reduced wiring and EMI on the low level signal
- No need for dedicated voltage input channel on the TRM

IEC61850-9-2 and MU

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems

IEC61850-9-2 and MU

- Hallstahamma Installation
- Conclusions

OMICRON set-up for IEC61850-9-2 test

	SMAI4	MU_SHAFT_SMAI_3P	SMAIHPAC	
MU1_921.11	BLOCK G4AI3P REVROT G4AI1 GRP4L1 G4AI2 GRP4L2 G4AI3 GRP4L3 G4AI4	MU_SHAFT_SMAI	G3P AI3P BLOCK AI1 AI2 AI3 AI4	MU_SHAFT_3P MU_SHAFT_HPAC
	GRP4N G4N O:1 1:8 1:16	j.	O:4 1:8 1:3	,

IEC61850-9-2 and MU

SAM600

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahamma Installation

Conclusions

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-3 and MU

Hallstahammar Installation

Conclusions

Hallstahammar Installation

- Introduction
- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

Hallstahammar Installation

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

Hallstahammar Installation

◆□▶
◆□▶
●>

- Introduction
- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-3 and MU
- Hallstahammar Installation
- Conclusions

Hallstahammar Installation

Stray flux

Secondary Voltage (mV)

-10

-20

-30

-40

'n

50

100

150 200

Time (ms)

250

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Hallstahammar Installation

Noise waveforms Amplitude Spectrum of Primary Current 40 18 - ILDD 052 ILDD 052 Rogowski coil Rogowski coil 16 30 14 20 12 10 V(f)| (mV) 10 0 8

6

4

2

50

300

150

200

100

Frequency (Hz)

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9and MU

Hallstahammar Installation

Conclusions

Hallstahammar Installation

Shaft Current

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

Hallstahammar Installation

Trip and alarm level settings of REG670

- Four parts of the installation
 - Rogowski coil + MU + REG670 2.0
 - Rogowski coil + (Amplifier) + REG670 2.0
 - ILDD 096 + (Amplifier) + REG670 2.0
 - ILDD 096 + RARIC

System	Trip Value	Alarm Value
Rogowski (No Amp)	200 mV	100 mV
Rogowski (With Amp)	8 V	4 V
Rogowski (MU)	200 mV	100 mV
ILDD 096 (No Amp)	125 mV	62
ILDD 096 (With Amp)	5,2 V	2,6 V
ILDD 096 + RARIC	164 mV	Х

Hallstahammar Installation

Shaft Current

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

Hallstahammar Installation

Waveforms

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

• Rogowski coil is a suitable choice for measurement of shaft currents due to its mechanical and electrical properties

Conclusions

- Lightweight, flexible, easy to mount
- Linear, no saturation, frequency independent, rejection of stray flux
- It can be used in pair with protection relay REG670 2.0
- Existing installations with ILDD or new installations with Zelisko GWR3 can be used with REG670 2.0
- If trip and alarm levels will be kept as they are, no amplifier is needed

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

- Measurement Devices
- Protection Relay
- Protection Systems
- IEC61850-9-2 and MU
- Hallstahammar Installation
- Conclusions

- Merging Unit has no input current transformers which results in a good performance even with low level signals
- No amplifier has to be used even if trip and alarm levels are reduced
- Since fiber optics are used, EMI on low level signals is eliminated

Measurement Devices

Protection Relay

Protection Systems

IEC61850-9-2 and MU

Hallstahammar Installation

Conclusions

Questions?

Protection Systems Linearity - Systems A and B with Zelisko GWR3

Linearity - System B with ILDD 096

Hallstahammar Installation

Linearity Measurements

