Influence of dispersed generation (DG) on distribution system protection

- What to expect from DG-units (island, S.C.-contribution, protection)
- Distribution System Earthfault Protection
- Distribution System Short Circuit Protection
- Challenges
 - Far-end fault (Ikmin), current suppression, side-infeed
 - Two-sided current flow vs. selectivity and blocking logic
 - Energising feeders voltage check

Dispersed Generation (DG) in the Distribution Power Grid

- Dispersed generation (DG)
 - Decentralized power plants
 - Feeding into the distribution level power-grid
 - Typically sized below 10 MVA
 - A booming business in the new millennium, due to legislation changes
 - NVE has approx. 500 DG applications
- The Norwegian distribution power grids (5 22 kV)
 - Radial networks traditionally buildt to feed, not to receive, power
 - The short circuit protection scheme based on «one-way» short circuit current
 - Isolated grounded network or compensated netw. with parallell resistor

What response to expect from DG-unit protection?

To be expected / requirements:

- Instantanous tripping of internal short circuits (dl> protection)
- Tripping of short circuits in the 22 kV system
 - Non selective, U<-relay with time delay 100 ms
 - Or selective, U<-relay with time delay higher than feeder –S.C. relays
- Tripping of earthfaults in the 22 kV system (3Uo> -relay, time delay < 10 s)
- Non-island (U<> and f<> relays)

To be «feared»:

- Failure of tripping
- Island mode or slow island detection
- Transient instability

Traditional EF Protection Scheme in Distribution Systems

Earthfault protection feeders

- Directional earthfault relays (Iø>)
- Time delays ($t_{max} = 10s$)

Earthfault protection busbars

Non - directional earthfault relays (3Uo>) •

Jacobsen Elektro

٠

Jacobsen Elektro

Traditional EF Protection Scheme

Direction of EF-current not dependent on DG-units

🏉 Jacobsen Elektro

EF Protection Scheme With DG

Dispersed Generation (DG) - Influence

•

- Earthfault voltage relays located at HV side at DG-units must trip the DG-units (3Uo>)
- Time delay higher than the max. delay of any directional earthfault relay (tø>) + closing time delay of parallel resistor.

Jacobsen Elektro

Reclosing Circuit Breaker

- Voltage check or synchro check to allow closing of breaker
- VT on feeder side of breaker

Short circuit protection – Higher & Lower level networks

Distribution transformers

- HV-fuses with typical arcing times
 - HV fault → 0.005 0.05 s
 - LV fault \rightarrow 1 s 10 s
 - 50 % fault → 0.1 s 0.3 s

Transmission network

- Distance relays trips:
 - Faults in transmission netw.
 - Faults in HV-distribution netw.

→ t ≤ 0.7s

Traditional Short Circuit Protection Scheme Without DG

Short circuit protection of feeders

Traditional Protection Scheme Without DG

Traditional Protection Scheme Without DG

Distribution System Protection – Dispersed Generation

Jacobsen Elektro

Introducing DG

🏉 Jacobsen Elektro

Introducing DG

New Ik_{min} considerations

Ways of Determining Direction of S.C. Current

- 1. Current grading if possible
 - Overcurrent (I>) can determine «forward direction» when:
 - $1.5 * Ik_{max reverse} < I_{setting} < 0.7 * Ik_{min forward}$
 - The criteria must be verified each time new DG-units are installed/planned
- 2. Relay types with directional decision
 - Distance relays (Z<)
 - Directional overcurrent (I_{dir}>)
 - Requires voltage measurement
- 3. Other
 - Differential protection (dI>)
 Suitable for cable feeders whithout tap-offs

Protection of far-end fault (Ikmin)

Short circuit protection must cover far-end fault.

- I>-relays cannot be set lower than max-load current.
 - − Side-infeed from DG \rightarrow relay measures smaller Ik_{min}
- Z<-relays can cover faults, even with low currents (as low as 10 % of In).
 - Side-infeed from DG \rightarrow relay measures higher impedance

Typical Busbar Protection Scheme Without DG

Requirements Statnett – FIKS (grid code)

- Max fault clearance time for faults between LV-CT and LV-CB (Practically speaking LV bus-fault)
 - 0.4 s if HV voltage = 132 kV
 - 0.5 s if HV voltage = 33kV...110 kV

Fast Busbar Protection Without DG

Overcurrent (I>) blocking scheme

- Dedicated I>-function at transformer bay provides fast clearance of busbar faults
- The fast I>-function is blocked by I>-start signal from relays at feeder bays

DG- influence on Busbar Blocking Schemes

Two side infeed requires directional decision in blocking scheme

- Directional decision at <u>feeder bays</u> to avoid false blocking of busbar faults
- Directional decision at transformer bay to avoid non-selective fast tripping of HV-faults.

Busbar protection

Using Z<-relays

- Z< relays with blocking scheme \rightarrow trip delay 50 100 ms
- Z< relays <u>without</u> blocking scheme using short reverse or non-directional zones.
 - Reverse zones must be shorter than, and time selective above, Zone 1 of all feeder bays
 - Trip delay 300 400 ms

Jacobsen Elektro

Example Z<-relays w/communication

Summary

