

Distributed Signal Processing Units for CPC architectures

Nordic Workshop on Power System Protection 2017-05-23

Table of Contents

- 1. Trends in Substation Automation Systems, which enable Centralized Substation Protection & Control (CPC)
- 2. Trends in Power System Protection and their impact on Signal Processing for Protection Systems
- 3. Distributed Signal Processing Unit (DSPU)
- 4. Proposed CPC architecture

Trends in Substation Automation Systems

- Functional Integration
- (Higher integration) of IEC 61850 at the process level
- Reliable and deterministic Ethernet Communication (e.g. HSR + PTP)

Trends in Substation Automation Systems

- Functional Integration
- (Higher integration) of IEC 61850 at the process level
- Reliable and deterministic Ethernet Communication (e.g. HSR + PTP)

Centralized Substation Protection and Control (CPC)

Trends in Power System Protection

Phasor-Based

Time-Domain (incremental)

Traveling-Wave

Signal Processing for Protection Systems

Determinism (Real-time)

"A deterministic system can be mathematically verified, in contrast to a non-deterministic system, for which only a probability of success can be given"

Determinism (Real-time)

"A deterministic system can be mathematically verified, in contrast to a non-deterministic system, for which only a probability of success can be given"

 $t_{p}+t_{A/D} < T_{s}$

 T_{s} – Sampling Time t_{n} – Processing Time $t_{A/D}$ – Time for A/D conversion f_{MAX} – Max frequency of signal

H. Kirrmann and I. Sotiropoulos, "Determinism in Substation Automation with IEC 61850 (HSR/PTP)," in PAC World – Protection, Automation & Control World, Volume 39, March 2017

Distributed Signal Processing Unit (DSPU)

Distributed Signal Processing Unit (DSPU)

Reliable and Deterministic Communication providing 1 us time synchronisation or better

Centralized Substation Protection & Control

Synchronized Substation Process Image All required fault signature information of the entire substation All required status information (e.g. Breaker Connections, Arc sensors, etc.)

Reliable and Deterministic Communication providing 1 us time synchronisation or better

All required fault signature information of the entire substation All required status information (e.g. Breaker Connections, Arc sensors, etc.)

Reliable and Deterministic Communication providing 1 us time synchronisation or better

Future plans

1. Build a prototype of a DSPU

2. Show proof of concept with a centralized platform

3. Application development in phasor- and time-domain

KTH ROYAL INSTITUTE OF TECHNOLOGY

Questions ?

