Innovation and Creativity

The Carbon-Electrolyte Interface at High Cathodic Voltages

Benedicte E. Nilssen, Ahmet O. Tezel, Julian Tolchard and Ann Mari Svensson

Department of Materials Science and Engineering, NTNU

Nordbatt2 Workshop, 2-3 December 2015

Outline

- Introduction
- Carbon materials, properties
- Results
 - Electrochemical characterization (galvanostatic cycling, cyclic voltammetry)
 - In-situ XRD
- Potential route for mitigation of structural damage
- Summary

Anion intercalation

Li-ion hybrid capacitor

At high voltages: Electrolyte oxidation and anion intercalation

Structural/mechanical stability, loss of adherence to current collector **NTNU – Trondheim** Norwegian University of Science and Technology

- Preferential oxidation of EC^{1,2}
- No film, but decomposition products integrated in surface region³

¹F. Joho, P. Novak, *Electrochim. Acta*, **45**, 3589-3599 (2000).

²L. Xing, and O. Borodin, *Phys. Chem. Chem. Phys.*, **14**, 12838-12843 (2012).

³Younesi *et al., J. Electrochem. Soc.,* **162** (2015) A1289

Oxygen surface groups⁴
 ⁴Qi *et al.*, Phys. Chem. Chem. Phys.,
 16 (2014) 25306

- Exfoliation due to co-intercalation or mechanical stress of decomposition products⁵
- Exfoliation depends on crystallinity of carbon^{6,7}
- ⁵J.A. Seel and J.R. Dahn, *J. of Electrochem. Soc.*, **147**(3), 892-898 (2000)
 ⁶W. Märkle *et al.*, *Electrochimica Acta*, **55**, 4964-4969 (2010).
 ⁷W. Märkle. *et al.*, *Carbon*, **47**, 2727-2732 (2009).

Materials

KS6 graphite powder Particle size ~ 3 µm, *IMERYS*

AO-2, multilayer graphene (graphitic) *Graphenesupermarket* Particle size 0.15-3 µm

Super P Li, carbon black Particle size ~ 40-60 nm IMERYS

Gold coated cast of Super P Li

Material properies

	KS6 graphite	AO-2 'graphitic'	Super P Li (carbon black)
Particle size ¹	3 µm (d50)	0.15-3 µm	40-60 nm
Surface area (N ₂ ads) [m ² /g]	22.4	57.8	64.9
Ratio [%] edge:basal:defect (planes (N ₂ ads)	30:53:17	92:4:4	29:50:21
<i>d00</i> 2 [Å]	3.357	3.357	3.532
L_c [Å]	649	539	30

¹From suppliers

Voltage profile during galvanostatic cycling

Cyclic voltammetry, Super P Li, cut-off voltage = 5.5 V

16

Addition of anion receptor, Tris (hexafluoroisopropyle) borate THFIPB (AR)

5

- Borate with fluorinated
 functional groups
- Reduced ion-pairing in electrolyte
- Improved SEI stability of graphite anode demonstrated

$$CF_3$$
 O CF_3 $CF_$

T (min.)

120

180

240

60

Increased release of PF_5 and PF_3O observed¹

¹OEMS performed at PSI

Science and Technology

Experiments performed at PSI

18

Cyclic voltammogram, cathodic, SLP30 graphite

AR25 = 0.025 M AR AR75 = 0.075 M AR

Effect of AR on graphite anode

200 cycles at 1 C, total charge (above), galvanostatic charge (below)

- Anion intercalation occurs from around 4.6 V for graphitic materials
- Irreversible capacity loss correlates with edge plane surface area
- Growth of film from electrolyte decomposition products prevents anion intercalation
- Structural damage caused by anion intercalation is observed for graphitic materials (by in-situ XRD)
- Structural damage occurs during first cycle
- Chemical surface film formation, for example by addition of an anion receptor, possibly involving oxygen surface groups, may prevent structural damage.

Thank you for your attention!!

NTNU and PSI are acknowledged for the support

Cyclic voltammetry, KS6 and AO-2

Reduction of current upon multiple cycles

Shift in cathodic peak (de-intercalation peak) after cycling

1st charge/discharge

		0002 [A]
KS6	initial	3.358
	1st charge	3.679
	1st discharge	3.365
Graphene AO-2	initial	3.357
	1st charge	3.639
	1st discharge	3.358

Galvanostatic cycling, AO-2 (multilayer graphene)

Carbon conductive additives

Cyclic voltammetry, 1M LiPF6 3:7 EMC:DMC

MOv

Carbon conductive

additive

