

High power Li-ion battery systems for maritime applications

#### THE BATTERY TECHNOLOGY THAT MAKES ENERGY DO MORE!



Mission: We contribute to efficient use of energy

Vision: Sustainable use of energy



# Li-ion history

- Each step in the Li-ion battery history was built on the previous step
- The power tool Li-ion battery effort was the catalyst for the automotive Li-ion battery development
- The automotive Li-ion battery development was necessary for the maritime Li-ion battery system development



ENERGY

#### Why batteries in maritime applications?

- Reduced OPEX
  - Reduced fuel consumption
  - Reduced spinning reserve
  - Reduced maintenance costs
  - Potentially reduced CAPEX
- Reduced emissions: PM, CO, NOx, CO2
- Enables utilization of renewable energy
- Improved dynamic response
- Indications of further benefits, safety



RETURKRAFT FRA KRAN - Kranene på skipet skal generere strøm når lasten senkes - tu.no/industri/skip Rederiet får støtte fra Enova til å bruke returkraften.



Så mye drivstoff kan skip spare på å sette inn batterier Oppløftende resultater fra hybridlab i Trondheim.

WWW.TU.NO | VON TORE STENSVOLD

Mehr dazu



#### Maritime batteries

- Maritime batteries differ from automotive batteries, but automotive development has been a crucial enabler for maritime batteries
- Pack propagation and handling of thermal events is much more important for maritime packs
- Energy and power density potentially less important
- Thermal management is more important
  - Longer life expectancy required
  - Less stringent space requiremets
- Safety and life time are crucial success factors in an early market phase, hence focus on systems engineering







#### Maritime safety - thermal event II

| Cathode side of internal short circuit | Anode side of internal short<br>circuit | Likelihood of thermal<br>runaway event |
|----------------------------------------|-----------------------------------------|----------------------------------------|
| Bare cathode current collector         | Anode active material, any SOC          | High                                   |
| Bare cathode current collector         | Bare anode current collector            | Low                                    |
| Active cathode material                | Anode active material, any SOC          | Low                                    |
| Cathode active material                | Bare anode current collector            | Low                                    |

# Grenland Energy battery systems propagation tests

|                        | 4.0V                                 | 4.1V                                 | 4.2V                     | 4.3V                     |
|------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|
| Maximum<br>temperature | 110 °C                               | 85 °C                                | 600 °C                   | 600 °C                   |
| Observation            | No fire,<br>no explosion,<br>leakage | No fire,<br>no explosion,<br>leakage | Fire without propagation | Fire without propagation |

- Nail penetration induced propagation test
- Propagation tests passed
- Detailed test response depends on SOC



#### Battery system types and market segments



Diesel&LNG electric hybrid systems with power optimized battery





Fully electric propulsion systems with energy optimized battery





Emergency backup systems with power optimized battery



Fully customized battery systems





# Energy vs. Power optimized systems







|                             | Energy optimized                                                                | Power optimized                                                     |
|-----------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Discharging                 | Entire capacity typically discharged within 1 hour                              | Entire capacity can be discharged within 10 min or less             |
| Charging                    | Limited fast charging ability, typically<br>1 hour or more for charging         | Fast charging (080% SOC)<br>within 15 min or less                   |
| Capacity                    | Relatively high capacity,<br>typically >100 Wh/kg                               | Comparably low capacity,<br>typically <60 Wh/kg                     |
| Low temperature performance | Relatively high impedance, generally<br>good performance at room<br>temperature | Good performance also at very low temperatures due to low impedance |
| Cycle life                  | Typically high utilization of SOC window, therefore limited cycle life          | Typically low SOC swing for power systems, very high cycle life     |
| Generally                   | High capacity – Low power                                                       | High Power – Low capacity 💧                                         |







## Battery for open hatch general cargo carrier

- World's first battery system for a hybrid crane in a bulk carrier
- Substantial efficiency gains
- Substantial emission reductions every year throughout the lifetime of the battery system:
  - CO2 emissions corresponding to more than 100 cars
  - NOx emissions corresponding to 5000 diesel powered cars
  - Particulate matter emissions corresponding to 7000 diesel cars.
- Power optimized battery system
  - 67 kWh
  - 730 kW peak power



## Integration - Battery hybrid propulsion







9/21/2016

©2015 GrenlandEnergy - Confidential and Proprietary

14

## What is needed besides batteries?

- ▲ For AC grid, η≈0.9
  - Transformer Noise reduction
  - Drive AC/DC conversion
- For DC grid, η≈0.9
  - DC drive DC/DC conversion
- Round Trip Efficiency
  - ▲ Li-ion batteries: η≈0.95 (0.9-0.98)
  - ▲ Transformer: η≈ 0.96
  - brives: η≈ 0.97
  - ► Total: η≈ 0.85
- Total energy & emissions savings are very dependent on operational strategy and optimization is necessary



## Optimum energy management



9/21/2016

©2015 GrenlandEnergy - Confidential and Proprietary

**ENERGY** 

#### Generation 2 Battery System - Example



Voltage: Discharge power: Charge power: Pack capacity: 580...770 V 560 kW (peak @ 50% SOC) 320 kW (peak @ 50% SOC) 54 kWh (max)

Weight: Customization: Approx. 900 kg Modular and scalable

- Integrated active cooling and offgas handling
- Dynamic Master/Slave architecture
- Datalogging and remote diagnostics capable



# Battery modelling

Temperature and SOC can be assumed constant over a short period



#### Model fit, system



#### Maritime battery systems

- Correct dimensioning to satisfy operational profiles
- Optimized energy-to-power ratio
- Large maritime battery systems require enhanced safety
- Minimizing fuel consumption and emissions require usage strategy optimization
- Simple empirical models are very useful for batteries



#### Thank you very much for your attention

# If anyone is interested: we have very intersting student projects available



WE MAKE ENERGY DO MORE

#### **Grenland Energy AS**

post@grenlandenergy.com www.grenlandenergy.com +47 94 88 17 58

