

How Battery Materials Work: Visualizing Ion Migration

Mette Ø. Filsø, Aarhus University, Denmark

BATTERY RESEARCH AT AARHUS UNIVERSITY

- Synthesis and characterization of electrode materials
 - $\blacktriangleright \text{Li}_{4}\text{Ti}_{5}\text{O}_{12}, \text{LiFePO}_{4}, \text{LiCoO}_{2}, \text{LiMn}_{2}\text{O}_{4}, \text{TiO}_{2}, \text{SnO}_{2}$
 - Na_xMn_yCo_zNi_{1-y-z}O₄
- Nanostructuring
- Performance testing of half-cells
- In operando X-ray diffraction
- In situ X-ray diffraction
- Visualization of ion migration
- MOFs

AARHUS

JNIVFRSITFT

The Procrystal Analysis is performed with the software CrystalExplorer.

Unit cell dimensions Space group Atomic positions

 $\int \rho_{pro}(r) = \sum_{A \in crystal} \rho_A(r)$

Ball-and-stick model

ARHUS JNIVERSITET

Continuous landscape of electron density

Procrystal

Danmarks Grundforskningsfond Danish National Research Foundation

[he Universi'

Electron density = Potential energy?

For dense lattices there is a clear similarity between curves!

Limitations:

- 1) Does *not directly* account for Li...Li interactions, or Li...framework interactions
- 2) Static lattice
- 3) Analysis depends on the CIF used
- 4) Relies on the *electron density = potential energy* assumption
- 5) Neutral atoms

RESULTS

LiFePO₄

🔵 Li 🥚 Fe 🥘 P 🔴 O

 $ho_{
m pro}$ = 0.0030 au $ho_{
m pro}$ (migration) = 0.0027 au

Islam *et al., Chem. Mater.* **17** (2005), 5085-5092 Nishimura *et al., Nature mat*, **7** (2008), 707-711

RESULTS

LiCoO₂

LiTiS₂

LiMn₂O₄

 $ho_{
m pro}$ = 0.0040 au $ho_{
m pro}$ (migration) = 0.0033 au

 $ho_{\rm pro}$ = 0.0042 au $ho_{\rm pro}$ (migration) = 0.0042 au

 $ho_{
m pro}$ = 0.0060 au $ho_{
m pro}$ (migration) = 0.0058 au

RESULTS

Dimensionality	Compounds				
1D	LiAIPO ₄ F	LiFePO ₄	LiFeBO ₃		Procrystal value for rapid Li-ion
2D	LiTiS ₂	LiCoO ₂	LiMnO ₂	LiFeP ₂ O ₇	migration:
3D	Li ₄ Ti ₅ O ₁₂	LiTi ₂ O ₄	LiMn ₂ O ₄	Li ₂ Mn ₂ O ₄	$ \rho_{\rm pro}({\rm migration}) = 0.0029(7) {\rm au} $
	Li ₆ Si ₂ O ₇	Li ₆ PS ₅ I	LiFeSO ₄ F	Li_5AIO_4 - α	
	$\rm Li_2SiO_3$	Li _{1.8} SnO ₃	Li_4GeS_4	$Li_3Fe_2(PO_4)_3$	NB: for layered materials:
	$Li_2Ge_2O_5$	$Li_4P_2O_7$	Li ₂ TiO ₃	Li ₃ V ₂ (PO ₄) ₃	$\rho_{\rm pro}$ (migration) = 0.0054(9) au
	Li ₃ AuO ₃	Li ₃ BO ₃			

APPLICATIONS

- 1) Educational tool
- 2) Visual addition to scientific communication
- 3) 'first approximation tool'

TREATING ATOMIC DISORDER

 $Li_4Ti_5O_{12}$

8*a* site: Li 32*e* site: O 16*d* site: 1/6 Li, 5/6 Ti 'densest framework'

 ρ_{PPO} (migration) = 0.0040 au

'actual stoichiometry'

 ρ_{pro} (migration) = 0.0035 au

TREATING ATOMIC DISORDER

8*a* site: Li 32*e* site: O 16*d* site: 1/6 Li, 5/6 Ti 'densest framework'

 ρ_{PPO} (migration) = 0.0040 au

'actual stoichiometry' (16d Li stationary)

 ρ_{PP} (migration) = 0.0040 au

COMPARISON WITH BOND VALENCE THEORY

Li₃AuO₃

Made in collaboration with assoc. Prof. Stefan Adams, Department of Materials Science & Engineering National University of Singapore

COMPARISON WITH BOND VALENCE THEORY

Li_{1.8}SnO₃

 $[\]rho_{\rm Dro}(3) = 0.0025 \text{ au}$

 $\begin{array}{l} E_{\rm BV}(1) = 0.10 \; {\rm eV} \\ E_{\rm BV}(2) = 0.40 \; {\rm eV} \\ E_{\rm BV}(3) = 0.48 \; {\rm eV} \end{array}$

Made in collaboration with assoc. Prof. Stefan Adams, Department of Materials Science & Engineering National University of Singapore

Research Foundation

ACKNOWLEDGEMENTS

- Prof. Bo Brummerstedt Iversen
- Prof. Mark Arthur Spackman
- Assoc. Prof. Stefan Adams
- The Aarhus Battery Group
- CMC/iNANO
- Danish National Research Fondation

