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Motivation 

 

 

 

• Cheap and abundant 

precursors 

 

• Theoretical capacity 166-333 

mAh g-1 (reversible extraction 

beyond one Li per formula 

unit) 

– Accessible capacity of 

LiCoO2 ~ 140 mAh g-1 

 

• Conductive coating and 

nano-sizing required  

https://www.uwgb.edu/dutchs/PLANETS/Geochem.htm 

LiCoO2 alone accounts for about 50%  

of the materials cost of a Li-ion battery  

Li2MSiO4/C  (M = Mn, Fe)  
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Motivation 

• Vast majority of reported Li2MSiO4/C syntheses are 

wet chemical methods 
– Sol-Gel 

– Solvothermal 

– … 

 Time consuming, hardly scalable 

If a new cathode material shall ever be commercialised, 

 scalability and time efficiency are key factors 
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Mix and Fire 

• Commercially available cheap precursors 
– Li2CO3 and Fe2O3 submicron powders 

(Rana Gruber AS) 

– Fumed silica (Wacker Chemie GmbH) 

– Sucrose (Dansukker) 

 Inexpensive, quick and scalable 

 

Assumption: Small reactants facilitate phase 

formation and the applied C source hinders particle 

growth 
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Mix and Fire 

1. Mix 

– 20 wt. % sucrose as carbon former 

– Wet ball milling in EtOH (4h) 

– Drying and pellet pressing 

 

2. Fire 

– 10 h in Ar at different temperatures ranging from 

600 to 800 deg 

700 deg 
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Mix and Fire 
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A closer look at the Si precursor 

Wu et al. Soft Matter, 2012, 8, 10457–10463 

http://www.aerosil.com/product/aerosil/en/services/packagin

g/Pages/default.aspx 

http://www.chem.hawaii.edu/Bil301/principles.html 

Pyrogenic silica is 

commercially 

produced by Flame 

hydrolysis of SiCl4 
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Flame spray pyrolysis 

Recent developments resulted in 

a process called Liquid-Feed 

Flame Spray Pyrolysis 

 

– Combination of flame hydrolysis and 

conventional spray pyrolysis 

– Inherent advantages of both 

methods combined 

• Liquid precursor solution 

• Production of loosely agglomerated nano 

particles 
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Flame spray pyrolysis 

Realistically, the oxidising nature 

and the extreme short residence 

time will make the phase 

formation of a quaterny oxide 

very unlikely 

 

 

Commercial production limited to binary 

oxides 
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Flame spray pyrolysis 

Realistically, the oxidising nature 

and the extreme short residence 

time will make the phase 

formation of a quaterny oxide 

very unlikely 

 

 

 

Hence, the combination of FSP with a 

reducing heat treatment and carbon coating 

in a single step 

– Carbonising additives are of major importance 

to hinder particle growth 
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Flame spray pyrolysis 

Flow chart 

 

Solution preparation* 

 

Flame Spray Pyrolysis 

 

Wet ball milling (addition corn 

starch as C source) 

 

Reducing heat treatment 

* Metal nitrates and TEOS as precursors 
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Flame spray pyrolysis 

Flow chart 

 

Solution preparation* 

 

Flame Spray Pyrolysis 

 

Wet ball milling (addition corn 

starch as C source) 

 

Reducing heat treatment 

* Metal nitrates and TEOS as precursors 

Two important factors are 

highlighted to obtain highly 

active nano sized materials 

 

1. Solution combustibility 

– 1:5 H2O:EtOH compared to 

1:5 p-Xylene:EtOH 

 

2. Cation concentration 

– Highly concentrated Fe(NO3)3 

solutions cause particle 

growth and aggregation (The 

behaviour was not observed 

for Mn(NO3)2 
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Flame spray pyrolysis 

* Also Mn deficient samples were synthesised  

Two important factors are 

highlighted to obtain highly 

active nano sized materials 

 

1. Solution combustibility 

– 1:5 H2O:EtOH compared to 

1:5 p-Xylene:EtOH 

 

2. Cation concentration 

– Highly concentrated Fe(NO3)3 

solutions cause particle 

growth and aggregation (The 

behaviour was not observed 

for Mn(NO3)2) 

Synthesised samples 

 

LMS in two different precursor 

solutions* 

 

LFS with two different precursor 

concentrations 

 

LFMS 50/50 (Fe/Mn) 
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Influence of the solution combustibility (LMS) 
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Influence of the precursor concentration (LFS) 

LFS 

high 

conc. 

LFS 

low 

conc. 

LFMS 

high 

conc. 

0 25 50 75 100
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

 

 

 d
V

/d
lo

g
(D

) 
P

o
re

 V
o

lu
m

e
 [
c
m

3
g

-1
]

Pore Diameter [nm]

 LFS 0.24

 LFS 0.12

 LFMS 0.24



17 

Electrochemical response (LMS) 
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Electrochemical response (LMS) 
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Electrochemical response (LFS and LFMS) 
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Electrochemical response (LFS and LFMS) 
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Electrochemical response (LFS at 60 deg) 
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Conclusions 

Inexpensive solid state reaction yields in electrochemical 

active LFS: 
– Challenging to achieve high phase purities and hence capacities 

Flame spray pyrolysis of a EtOH/p-Xylene based solution was 

shown to be an adequate method to synthesise nano scale 

Li2MSiO4 compounds: 

 

LMS: 
– The reversible exchange of more than one Li per formula unit was shown 

– Irreversible amorphisation of the structure during the first oxidation causes severe 

capacity decay 

LFS: 
– The precursor conc. showed a major influence on the morphology 

– The reversible exchange of one Li per formula unit was possible at elevated 

temperature 

– Adjustment of the precursors could result in an easy and scalable 

method to produce highly active LFS as alternative low cost electrode 
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Thank you for your 

kind attention! 


