

www.ntnu.edu

Lithium Transition Metal Orthosilicates by Scalable and Inexpensive Synthesis Methods as Positive Electrode for Li-ion Batteries

<u>Nils Wagner¹</u>, T. Mokkelbost², A. Fossdal², K. Jayasayee², S. M. Hanetho², J. Tolchard², P. E. Vullum², A-M. Svensson¹ and F. Vullum-Bruer¹

¹ Norwegian University of Science and Technology, 7465 Trondheim, Norway, ² SINTEF Materials and Chemistry, 7465 Trondheim, Norway

Wednesday the 2nd of December 2015

Motivation

Cheap and abundant precursors

- Theoretical capacity 166-333 mAh g⁻¹ (reversible extraction beyond one Li per formula unit)
 - Accessible capacity of LiCoO₂ ~ 140 mAh g⁻¹
- Conductive coating and nano-sizing required

https://www.uwgb.edu/dutchs/PLANETS/Geochem.htm

Motivation

- Vast majority of reported Li₂MSiO₄/C syntheses are wet chemical methods
 - Sol-Gel
 - Solvothermal
 - ..
- Time consuming, hardly scalable

If a new cathode material shall ever be commercialised, scalability and time efficiency are key factors

NTNU – Trondheim Norwegian University of Science and Technology

Mix and Fire

- Commercially available cheap precursors
 - Li₂CO₃ and Fe₂O₃ submicron powders (Rana Gruber AS)
 - Fumed silica (Wacker Chemie GmbH)
 - Sucrose (Dansukker)
- Inexpensive, quick and scalable

Assumption: Small reactants facilitate phase formation and the applied C source hinders particle growth

Mix and Fire

Mix 1.

- 20 wt. % sucrose as carbon former
- Wet ball milling in EtOH (4h)
- Drying and pellet pressing

2. **Fire**

10 h in Ar at different temperatures ranging from 600 to 800 deg

100 %

90 %

80 % 70 %

60 %

50 % 40 %

30 %

20 %

10 %

0%

Fe₃O₄

Li₂SiO₃

"FeO"

LiFeO₂

Li₂Si₂O₅

600

"FeO"

650

20

Li₂SiO₃

700

750

Li₂SiO₃

800

Mix and Fire

Delithiated sample	Li/Si ratio	Chemical comp.	
Map 1	1.0	LiFeSiO ₄	
Map 2	1.5	Li _{1.5} FeSiO ₄	

A closer look at the Si precursor

Pyrogenic silica is commercially produced by Flame hydrolysis of SiCl₄

Wu et al. Soft Matter, 2012, 8, 10457–10463

http://www.chem.hawaii.edu/Bil301/principles.html

http://www.aerosil.com/product/aerosil/en/services/packagin g/Pages/default.aspx

www.ntnu.edu

Recent developments resulted in a process called Liquid-Feed Flame Spray Pyrolysis

- Combination of flame hydrolysis and conventional spray pyrolysis
- Inherent advantages of both methods combined
 - Liquid precursor solution
 - Production of loosely agglomerated nano particles

Realistically, the oxidising nature and the extreme short residence time will make the phase formation of a quaterny oxide very unlikely

Commercial production limited to binary oxides

Realistically, the oxidising nature and the extreme short residence time will make the phase formation of a quaterny oxide very unlikely

Hence, the combination of FSP with a reducing heat treatment and carbon coating in a single step

 Carbonising additives are of major importance to hinder particle growth

Flow chart

Solution preparation* Flame Spray Pyrolysis Wet ball milling (addition corn starch as C source) Reducing heat treatment

* Metal nitrates and TEOS as precursors

Flow chart

Two important factors are highlighted to obtain highly active nano sized materials

1. Solution combustibility

 1:5 H₂O:EtOH compared to 1:5 p-Xylene:EtOH

2. Cation concentration

 Highly concentrated Fe(NO₃)₃ solutions cause particle growth and aggregation (The behaviour was not observed for Mn(NO₃)₂

* Metal nitrates and TEOS as precursors

Synthesised samples

LMS in two different precursor solutions*

LFS with two different precursor concentrations

LFMS 50/50 (Fe/Mn)

Two important factors are highlighted to obtain highly active nano sized materials

1. Solution combustibility

- 1:5 H₂O:EtOH compared to
 1:5 p-Xylene:EtOH
- 2. Cation concentration
 - Highly concentrated Fe(NO₃)₃ solutions cause particle growth and aggregation (The behaviour was not observed for Mn(NO₃)₂)

* Also Mn deficient samples were synthesised

Influence of the solution combustibility (LMS)

15

Influence of the precursor concentration (LFS)

LFS high conc.

16

LFS low conc.

LFMS high conc.

Electrochemical response (LMS)

17

Electrochemical response (LMS)

Charge rate C 1 C = 160 mA g^{-1}

18

Electrochemical response (LFS and LFMS)

19

Electrochemical response (LFS and LFMS)

Electrochemical response (LFS at 60 deg)

Note, for the capacities of the top abscissa 10 wt. % carbon were deducted from the sample mass

21

Conclusions

Inexpensive solid state reaction yields in electrochemical active LFS:

- Challenging to achieve high phase purities and hence capacities

Flame spray pyrolysis of a EtOH/p-Xylene based solution was shown to be an adequate method to synthesise nano scale Li₂MSiO₄ compounds:

LMS:

- The reversible exchange of more than one Li per formula unit was shown
- Irreversible amorphisation of the structure during the first oxidation causes severe capacity decay

LFS:

- The precursor conc. showed a major influence on the morphology
- The reversible exchange of one Li per formula unit was possible at elevated temperature
- Adjustment of the precursors could result in an easy and scalable method to produce highly active LFS as alternative low cost electrode

Thank you for your kind attention!

