

Ola Nilsen, <u>Yang Hu</u>, <u>Jonas</u> <u>Sottmann</u>, Knut B. Gandrud, Pushpaka Samarasingha, Annina Moser, Helmer Fjellvåg

Electrons in motion

 UiO $\hfill Centre for Materials Science and Nanotechnology$

University of Oslo

The motion...

 $Li_2(Mn_{0.75}Ni_{0.25})_4O_8$ or $Li_2Mn_3NiO_8$? MoO₃

Preussian blue $Na_xMn[Fe(CN)_6]_y$

Thin and solid

University of Oslo

The motion...

$Li_2(Mn_{0.75}Ni_{0.25})_4O_8 \text{ or } Li_2Mn_3NiO_8?$

 $LiNi_{0.5}Mn_{1.5}O_4 = 5 V \odot$

The material exist with varying degrees of cation disorder in the spinel structure, where the disordered Fd-3m structure show a higher capacity over the ordered P4₃32 structure.

Neutron data

Synthesis at low-T give a disordered spinel with respect to Mn/Ni.

Intermediate temperatures and up (700°C) give complete Mn-Ni ordering

Neutron data

Synthesis at low-T give a disordered spinel with respect to Mn/Ni.

Intermediate temperatures and up (700°C) give complete Mn-Ni ordering

University of Oslo

In-operando battery cell for synchrotron studies at SNBL

University of Oslo

In-operando synchrotron experiments

Li₂Mn₃NiO₈

University of Oslo

In-operando synchrotron experiments

Li₂Mn₃NiO₈

UiO: Centre for Materials Science and Nanotechnology Li₂Mn₃NiO₈ University of Oslo In-situ PXRD and XANES measurements

University of Oslo

Cycling

Discharge capacity versus cycle number for "type B" cathodes prepared from LiMn_{1.5}Ni_{0.5}O₄ powders. Discharge rates 15 mA/g (approximately 0.1 C); potential window 3.5 - 4.9 V. And Galvanostatic charge and discharge curves

We report the highest recorded specific capacity for the *ordered* phase, currently with submicron size particles as achieved by heat treatment at 900 °C for 10 h followed by 700 °C for another 10 h.

University of Oslo

The motion...

$Li_2(Mn_{0.75}Ni_{0.25})_4O_8 \text{ or } Li_2Mn_3NiO_8?$

MoO₃

TEM and SAED on MoO₃ nanobelt

Nice belts with well defined reflections...

... in one direction...

UiO Centre for Materials Science and Nanotechnology University of Oslo

TEM and SAED on MoO₃ nanobelt

Nice belts with well defined reflections...

... in one direction...

Structural differences at nanoscale MoO₃ nanobelts vs bulk

University of Oslo

Structural differences at nanoscale Stacking faults

MoO₃ nanoblelts with stacking faults

spinel,...

High capacity cathode materials: **Bulk and nanobelt MoO₃**

Must solve stability issue: degradation mechanism

Li insertion process for MoO₃

Computational modeling:

MoO₃

Li_{0.25}MoO₃

 $Li_{1.75}MoO_3$

In-situ diffraction:

Rapid «amorphization» (loss of diffraction peaks)

University of Oslo

α -MoO₃ as cathode material

N-doped α -MoO₃ nanobelts gives the highest capacity to date

 α -MoO₃ nanobelts are difficult to study because of preferred orientation

Using bulk α -MoO₃ as a model material for in situ diffraction studies

Wang et. al. Vol. 3, is. 5, pg. 606-614 , Adv. Energy Mater. 2012

UiO Centre for Materials Science and University of Oslo

3.0

3.5

 2θ (angle)

4.0

7.0 7.5 8.0

8.5

9.0

9.5

University of Oslo

Li_{1.4}MoO₃

 α -MoO₃

Layer expansion and contraction during lithiation

University of Oslo

The motion...

 $Li_2(Mn_{0.75}Ni_{0.25})_4O_8$ or $Li_2Mn_3NiO_8$? MoO₃

Preussian blue $Na_xMn[Fe(CN)_6]_y$

UiO **Centre for Materials Science and Nanotechnology**

University of Oslo

Combined XRD and XAS analysis

Identify Phases

University of Oslo

Na (de)insertion mechanism in $Na_xMn[Fe(CN)_6]_y$

University of Oslo

The motion...

 $Li_2(Mn_{0.75}Ni_{0.25})_4O_8 \text{ or } Li_2Mn_3NiO_8?$

MoO₃

Preussian blue $Na_xMn[Fe(CN)_6]_y$

Thin and solid

University of Oslo

3D all-solid-state Li-ion batteries

http://www.ict.fhg.de/deutsch/scope/ae/Libattery.gif)

- Safter, more environment friendly
- Low Li⁺ conductivity
- Thin film electrolytes
 - Compensate the low conductivity
 - Facilitate architecture design

Advanced Energy Materials 2011, 1, 10-33. Adv. Funct. Mater. 2008, 18, 1057.

- 3-dimentional (3D) structure
 - Desired power density
 - Require suitibable thin film deposition technology

University of Oslo

Conductivity measurements

- More practical interests
- Challenges: short-circuiting
- Difficult to carry out

- Circumvent the short-circuitings
- Significant resistance
- More sensitive to parasitics

University of Oslo

Conductivity measurements

University of Oslo

Conductivity of LiAIO₂ films

- ▶ Thermally activated ionic characteristics → Arrhenius relation: $\sigma = \frac{\sigma_0}{T} \exp(-\frac{E_a}{kT})$
- Larger thickness-dependence for in-plane method: surface, interface
- > σ @ room temperature: $10^{-10} \sim 10^{-9} \, \text{Scm}^{-1}$

University of Oslo

Conductivity of LiAIO₂ films

Materials	σ _{RT} (S cm ⁻¹)	E _a (eV)	Ref.
Single-crystalline γ-LiAlO2	~1×10 ⁻¹⁷ *	1.14(1)	1
Polycrystalline γ -LiAlO ₂	2×10 ⁻¹⁴ *	0.81 (extrinsic) 1.3 (intrinsic)	2
ALD LiAIO ₂ film on quartz substrate	5.6×10 ⁻⁸ *	0.56	3
Quenched glass 0.6Li ₂ O–0.4Al ₂ O ₃ 0.7Li ₂ O–0.3Al ₂ O ₃	3×10 ⁻¹¹ * 5×10 ⁻⁸ *	0.88 0.57	4
ALD LiAIO ₂ films, sapphire and Ti substrates	1~5 ×10 ⁻¹⁰	0.7~0.8	This work

- Room temperature conductivity was rarely reported
- Disordered amorphous/glassy $Li_xAIO_y \rightarrow higher$ conductivity
- Improved conductivity can be expected with increasing Li content

1. The Journal of Physical Chemistry C 2012, 116, 142432. J. Am. Ceram. Soc. 1984, 67, 418-413. J. Chem. Mater. 2014, 26, 3128-3134.4. J. Appl. Phys. 1980, 51, 3756-3761.

University of Oslo

Li_xTaO_y with Li content variation

x in Li _x TaO _y	In-plane		Cross-plane	
	$\sigma_{RT} (Scm^{-1})$	E _a (eV)	σ_{RT} (Scm ⁻¹)	E _a (eV)
0.32	2.1×10 ⁻⁹	0.68	1.6×10 ⁻⁹	0.70(1)
0.51	6.0×10 ⁻⁹	0.66	2.9×10 ⁻⁹	0.65(1)
0.98	7.5×10 ⁻⁸	0.64	1.6×10 ⁻⁸	0.82(2)
1.73	1.4×10 ⁻⁹	0.74	4.5×10 ⁻¹⁰	0.73(3)

- Increasing Li content x from 0.32 to 0.98 results in improved conductivity.
- Compatible in-plane and cross-plane conductivities with acceptable deviations (< 1 order of magnitude).
- The film with highest Li content does not show a pronounced conductivity enhancement, probably due to the H/C surface enrichment.

University of Oslo

TiO₂ on structured surface

Figure 31: left: cyclic voltammetry of batteries with TiO_2 (black), TiC and TiO_2 (red) and soot with TiC and TiO_2 (blue). right: capacity of the batteries with and without soot. The cell with soot was first cycled at a higher rate, which is why the capacity is lower at first.

TiO₂ coated

University of Oslo

TiO₂ on structured surface

Carbon structured surface

with TiO₂ (black), TiC and TiO₂ (red) and soot e batteries with and without soot. The cell with vhy the capacity is lower at first.

Acknowledgements

Helmer Fjellvåg

Mari Alnes Matti Putkonen Titta Aaltonen Ville Miikkulainen

Knut B Gandrud Erik Østreng Anders Pettersen Amund Ruud Annina Moser

Yang Hu Jonas Sottmann Ponniah Vajeeston Pushpaka Samarasingha Martin Sunding Anna Magraso Alexander Azarov Timo Sajavaara Leila Costelle Niels H. Andersen

University of Oslo

ALD reaction chambers – Powder

Skjematisk oppsett for pulvercelle

University of Oslo

ALD reaction chambers – powder - mini

2 powder cells:

Small = 1.5 ml

Large = ca. 30 ml

University of Oslo

ALD reaction chambers – powder - maxi

500 ml

University of Oslo

Li-battery

3D Batteries: Power and Energy

- 50 nm LiCoO₂ on 80 μ m long pillars
 - 1.3 μ m in diameter, 1.3 μ m distance between pillars
- 0.003 mAh/cm² x 56 → 0.168 mAh/cm²
- Bonus: Enhanced kinetics!
 - Got both good power and energy density!

Reactors for coatings & thin films Atomic Layer Deposition

Home made reactor Hybrid Closed/flow type reactor

TSF 500 (BENEQ) Flow type reactor

Coating of powder

Skjematisk oppsett for pulvercelle

ALD

ALD

Ui Centre for Materials Science and Nanotechnology University of Oslo

UiO **Chemistry** University of Oslo

Batcave @ NAFUMA

3 Nov 2015 1. Electrochim. Acta 2015, 153, 232-237 2. J. Mater. Che

2. J. Mater. Chem. A 2014, 2, 15044-15051

Automated sample changer – battery cycling, diffraction and XAS

