Ola Nilsen, Yang Hu, Jonas Sottmann, Knut B. Gandrud, Pushpaka Samarasingha, Annina Moser, Helmer Fjellvåg

Electrons in motion
NAFUMA Nanostructured Functional Materials

Cathode
Electrolyte
Anode
NAFUMA

Nanostructured Functional Materials

Powder In situ Thin film
The motion...

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$ or Li$_2$Mn$_3$NiO$_8$?

MoO$_3$

Preussian blue Na$_x$Mn[Fe(CN)$_6$]$_y$

Thin and solid
The motion...

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$ or Li$_2$Mn$_3$NiO$_8$?

LiNi$_{0.5}$Mn$_{1.5}$O$_4$ = 5 V 😊

The material exist with varying degrees of cation disorder in the spinel structure, where the disordered Fd-3m structure show a higher capacity over the ordered P4$_3$32 structure.
Disordered spinel; Fd-3m

\[\text{Li}_2(\text{Mn}_{0.75}\text{Ni}_{0.25})_4\text{O}_8 \]

Ordered spinel, P4₃32

\[\text{Li}_2\text{Mn}_3\text{NiO}_8 \]

Mn, Ni ordering

Cu kα X-ray data

Intensity (arbitrary units)

* \(\text{Li}_x\text{Ni}_{1-x}\text{O} \)

\[\text{Mn}_{15-900_60} \]

\[\text{Mn}_{15-900} \]

\[\text{Mn}_{15-600} \]
Disordered spinel; Fd-3m

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$

Ordered spinel, P4$_3$32
Mn, Ni ordering

Neutron data

Intensity (arbitrary units)

2θ (°)

Mn15-900
Mn15-600

P4$_3$32
Fd-3m
Disordered spinel; Fd-3m

\[\text{Li}_2(\text{Mn}_{0.75}\text{Ni}_{0.25})_4\text{O}_8 \]

Ordered spinel, P4\text{3}32

\[\text{Li}_2\text{Mn}_3\text{NiO}_8 \]

Mn, Ni ordering

Neutron data

Synthesis at low-T give a disordered spinel with respect to Mn/Ni.

Intermediate temperatures and up (700°C) give complete Mn-Ni ordering
Disordered spinel; Fd-3m

\[\text{Li}_2(\text{Mn}_{0.75}\text{Ni}_{0.25})_4\text{O}_8 \]

Ordered spinel, P4_332

\[\text{Li}_2\text{Mn}_3\text{NiO}_8 \]

Mn, Ni ordering

Neutron data

Synthesis at low-T give a disordered spinel with respect to Mn/Ni.

Intermediate temperatures and up (700°C) give complete Mn-Ni ordering

…or disordered at high temp over long time…
In-operando battery cell for synchrotron studies at SNBL
In-operando synchrotron experiments
In-operando synchrotron experiments

Li$_2$Mn$_3$NiO$_8$
In-situ PXRD and XANES measurements

Reduced d^8 octahedral

d^7 Jahn Teller deformed

Ni$^{2+}$

Phase I

Change in current

Phase II

Ni$^{3+}$

Phase III

Ni$^{4+}$

XANES: shift in edge position
EXAFS: change 1. coordination sphere

Li$_2$Mn$_3$NiO$_8$
Discharge capacity versus cycle number for "type B" cathodes prepared from LiMn$_{1.5}$Ni$_{0.5}$O$_4$ powders. Discharge rates 15 mA/g (approximately 0.1 C); potential window 3.5 - 4.9 V. And Galvanostatic charge and discharge curves

We report the highest recorded specific capacity for the ordered phase, currently with submicron size particles as achieved by heat treatment at 900 °C for 10 h followed by 700 °C for another 10 h.
The motion…

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$ or Li$_2$Mn$_3$NiO$_8$?

MoO$_3$
TEM and SAED on MoO$_3$ nanobelt

Nice belts with well defined reflections...

...in one direction...
TEM and SAED on MoO$_3$ nanobelt

Nice belts with well defined reflections…
…in one direction…

Structural differences at nanoscale MoO$_3$ nanobelts vs bulk
Structural differences at nanoscale Stacking faults

MoO₃ nanobelts with stacking faults
High capacity cathode materials: **Bulk and nanobelt MoO₃**

Commercial state-of-the-art cathode material LiFePO₄/LiCoO₂ spinel,…

Must solve stability issue: degradation mechanism
Li insertion process for MoO₃

Computational modeling:

In-situ diffraction:
Rapid «amorphization» (loss of diffraction peaks)
α-MoO$_3$ as cathode material

N-doped α-MoO$_3$ nanobelts gives the highest capacity to date

α-MoO$_3$ nanobelts are difficult to study because of preferred orientation

Using bulk α-MoO$_3$ as a model material for in situ diffraction studies

Phase transformation

Galvanostatic cycling

Potential vs. Li/Li⁺ (V)

Pristine MoO₃ Li₁.₄MoO₃ LiₓMoO₃ Li₁.₄MoO₃

Intensity (arb. units)

2θ (angle)

Prist. MoO₃ Li₁.₄MoO₃ LiₓMoO₃ Li₁.₄MoO₃
Layer expansion and contraction during lithiation
The motion...

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$ or Li$_2$Mn$_3$NiO$_8$?

MoO$_3$

Preussian blue Na$_x$Mn[Fe(CN)$_6$]$_y$
Combined XRD and XAS analysis

Follow Oxidation State

Identify Phases
Na (de)insertion mechanism in Na$_x$Mn[Fe(CN)$_6$]$_y$
The motion...

Li$_2$(Mn$_{0.75}$Ni$_{0.25}$)$_4$O$_8$ or Li$_2$Mn$_3$NiO$_8$?

MoO$_3$

Preussian blue Na$_x$Mn[Fe(CN)$_6$]$_y$

Thin and solid
3D all-solid-state Li-ion batteries

- **Solid state Li-ion batteries**
 - Safer, more environment friendly
 - Low Li⁺ conductivity

- **Thin film electrolytes**
 - Compensate the low conductivity
 - Facilitate architecture design

- **3-dimentional (3D) structure**
 - Desired power density
 - Require suitable thin film deposition technology

References

Cathode materials

V$_2$O$_5$ E. Østreng, …, H. Fjellvåg,
J. Mater. Chem. A, 2 (2014) 15044

FePO$_4$ K.B. Gandrud, …, H. Fjellvåg,
J. Mater. Chem A. 1 (2013) 9054
Conductivity measurements

Cross-plane

\[\sigma_{\text{cross}} = \frac{L}{R \times A} = \frac{d_{\text{film}}}{R \times A_{\text{electrode}}} \]

• More practical interests
• Challenges: short-circuiting
• Difficult to carry out

In-plane

\[\sigma_{\text{in}} = \frac{L}{R \times A} = \frac{D_{\text{electrode}}}{R \times (d_{\text{film}} \times L)} \]

• Circumvent the short-circuitings
• Significant resistance
• More sensitive to parasitics
Conductivity measurements

Cross-plane

\[\sigma_{\text{cross}} = \frac{L}{R \times A} = \frac{d_{\text{film}}}{R \times A_{\text{electrode}}} \]

In-plane

\[\sigma_{\text{in}} = \frac{L}{R \times A} = \frac{D_{\text{electrode}}}{R \times (d_{\text{film}} \times L)} \]

- More practical interests
- Challenges: short-circuiting
- Difficult to carry out

- Circumvent the short-circuitings
- Significant resistance
- More sensitive to parasitics
Thermally activated ionic characteristics → Arrhenius relation: \(\sigma = \frac{\sigma_0}{T} \exp(-\frac{E_a}{kT}) \)

Larger thickness-dependence for in-plane method: surface, interface

\(\sigma \) @ room temperature: \(10^{-10} \sim 10^{-9} \text{Scm}^{-1} \)
Conductivity of LiAlO$_2$ films

<table>
<thead>
<tr>
<th>Materials</th>
<th>σ_{RT} (S cm$^{-1}$)</th>
<th>E_a (eV)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-crystalline γ-LiAlO$_2$</td>
<td>$\sim 1 \times 10^{-17}$ *</td>
<td>1.14(1)</td>
<td>1</td>
</tr>
<tr>
<td>Polycrystalline γ-LiAlO$_2$</td>
<td>2×10^{-14} *</td>
<td>0.81 (extrinsic)</td>
<td>2</td>
</tr>
<tr>
<td>γ-LiAlO$_2$ film on quartz substrate</td>
<td>5.6×10^{-8} *</td>
<td>0.56</td>
<td>3</td>
</tr>
<tr>
<td>Quenched glass</td>
<td>3×10^{-11} *</td>
<td>0.88</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5×10^{-8} *</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>ALD LiAlO$_2$ films, sapphire and Ti substrates</td>
<td>$1 \sim 5 \times 10^{-10}$</td>
<td>0.7~0.8</td>
<td>This work</td>
</tr>
</tbody>
</table>

- Room temperature conductivity was rarely reported
- Disordered amorphous/glassy Li$_x$AlO$_y$ → higher conductivity
- Improved conductivity can be expected with increasing Li content

• Increasing Li content x from 0.32 to 0.98 results in improved conductivity.

• Compatible in-plane and cross-plane conductivities with acceptable deviations (< 1 order of magnitude).

• The film with highest Li content does not show a pronounced conductivity enhancement, probably due to the H/C surface enrichment.
TiO$_2$ on structured surface

Figure 31: left: cyclic voltammetry of batteries with TiO$_2$ (black), TiC and TiO$_2$ (red) and soot with TiC and TiO$_2$ (blue). right: capacity of the batteries with and without soot. The cell with soot was first cycled at a higher rate, which is why the capacity is lower at first.
TiO$_2$ on structured surface

Carbon structured surface

with TiO$_2$ (black), TiC and TiO$_2$ (red) and soot. The cell with soot batteries with and without soot. The cell with soot is lower at first.
Acknowledgements

Helmer Fjellvåg
Mari Alnes
Matti Putkonen
Titta Aaltonen
Ville Miikkulainen

Knut B Gandrud
Erik Østreng
Anders Pettersen
Amund Ruud
Annina Moser
Yang Hu
Jonas Sottmann
Ponniah Vajeeston
Pushpaka Samarasingha

Martin Sunding
Anna Magraso
Alexander Azarov
Timo Sajavaara
Leila Costelle
Niels H. Andersen
Nanocubes of Co$_3$O$_4$.

ALD reaction chambers – Powder

Skjematisk oppsett for pulvercelle
ALD reaction chambers – powder - mini

2 powder cells:

Small = 1.5 ml

Large = ca. 30 ml
ALD reaction chambers – powder - maxi

500 ml
Li-battery

Charge

Discharge

Cathode

Electrolyte

Anode

UiO: Centre for Materials Science and Nanotechnology
University of Oslo
3D Batteries: Power and Energy

- 50 nm LiCoO$_2$ on 80 μm long pillars
 - 1.3 μm in diameter, 1.3 μm distance between pillars
- 0.003 mAh/cm2 x 56 \rightarrow **0.168 mAh/cm2**

Bonus: Enhanced kinetics!
- Got both good power and energy density!
Reactors for coatings & thin films
Atomic Layer Deposition

Home made reactor
Hybrid Closed/flow type reactor

TSF 500 (BENEQ)
Flow type reactor
Coating of powder

Nanocubes of Co₃O₄.
ALD advantages:
- Low process temperature (25 – 400 °C)
- Conformal coverage, 3D
- Easily scalable
Batcave @ NAFUMA

Automated sample changer – battery cycling, diffraction and XAS