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Greetings from Switzerland
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I need more 

power!!!



Electrochemical Energy Storage Section

Battery Research in Switzerland
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Battery Research in Switzerland

Three different groups expert in:

• Synthesis of electroactive materials

• Characterizations of those new materials

• Electrochemical analysis of new type of electrodes

• Understanding of reaction mechanisms
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Batteries in Different Systems
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Motivation: The “Battery Law”
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The Realistic Future
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How Much Does It Cost?

8



Electrochemical Energy Storage Section 9

Ragone-Plot
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Electrochemical Energy Storage in Batteries



Electrochemical Energy Storage Section

 Increase the voltage window and/or the specific charge

Specific energy = Specific  charge * Voltage
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Specific Energy
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Electrochemistry: Nonaqueous Electrolytes
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What Is Inside a Battery?

13



Electrochemical Energy Storage Section 14

The Battery Research

(Electro)-Chemistry

MaterialSystem
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The Challenges

XX• Environment: Hg, Cd, ... ; recycling

• Cost:

- cheap raw materials

- cheap technology

• Safety:

SAFETY MEASURES DISABLED!
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Materials in Lithium-Ion Batteries
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Batteries Based on LiFePO4

They are on the market. They are considered to be safe.

But do we understand them???
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LiFePO4

Charge/Discharge curve of LiFePO4:
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The charge/discharge voltage curves of LiFePO4 are very flat, 

because they undergo a two-phase reaction
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Li-Ion Batteries

Advances in Lithium-Ion Batteries

Edited by Walter A. van Schalkwijk, 

Bruno Scrosati

The features of Li-ion batteries are as follows:

Really?

Revisit this classical question!
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What Is a ‘Memory Effect’?

Memory effect:

Observed in Ni-Cd and Ni-MH batteries 

Sato, Y., Takeuchi, S. & Kobayakawa K. “Cause of the memory effect observed in alkaline 

secondary batteries using nickel electrode” J. Power Sources 93, 20-24 (2001).

Example:

Ni-MH  AAA-size

(B) After 300 shallow 

discharge cycles

The battery recalls the 

depth of previous cycles
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Experiment: A Memory Effect
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To our surprise, we found a slight but clear memory effect in the 

charge curve of LiFePO4
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GITT Measurements of LiFePO4 and Li4Ti5O12
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X: Polarization increasing after relaxation,   Y: Overshoot at the beginning

X and Y are the keys to understanding the mechanism of the memory effect.

LiFePO4 Li4Ti5O12

‘X’ ‘Y’ 

Each pulse current in GITT and CC current are identical (C/4) 
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Many-Particle Model

Particle-by-particle charging process based on a non-monotone 

single-particle chemical 

potential

In 2010 by 

W. Dreyer et al.

Chemical potential
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The Mechanism of the Memory Effect
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Thus, the Memory Effect Is…

The memory effect is the “delayed” overshooting, which 

normally appears at the beginning of the charge curve,

due to the division of the Li-mole fraction into two groups.
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LiFePO4 (LFP)
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Another “strange behavior” of LiFePO4…
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LiFePO4 Electrodes @ Synchrotron
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In situ XRD during EIS
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LiFePO4
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There is a continuous solid-solution reaction for 

LiFePO4 at high rate conditions, with consequences on the 

charging process.

Slow charging Fast charging
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The lithium (de)-insertion mechanism

of LiNi0.8Co0.15Al0.05O2
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LiNi0.8Co0.15Al0.05O2 – Galvanostatic Curves
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LiNi0.8Co0.15Al0.05O2 – Cyclic Voltammetry
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After the activation during the first cycle, there is a sequential 

rearrangement of the lattice
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LiNi0.8Co0.15Al0.05O2 – Operando XRD
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Synchrotron data                      Laboratory XRD data

Clear differences in the reaction pathways of the 1st and 2nd cycle
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LiNi0.8Co0.15Al0.05O2 – Operando XRD

R1: pristine phase

R2: second rhombohedral phase

34
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LiNi0.8Co0.15Al0.05O2 – Conclusions
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• For the first charge, the poor Li+ ion mobility of the fully lithiated NCA 

electrode causes a large overpotential needed to form a second phase

• This phase has faster lithium-ion mobility and increased electrical 

conductivity compared to R1

• De-insertion of Li from the R2 phase proceeds via a solid solution 

mechanism and a fully lithiated phase at the end of the discharge to 3.0 V 

is not achieved => Li content between 0 < 1-x < 0.03

• The second charge starts with an NCA with some lithium deficiency and 

larger electrical conductivity compared to the R1 phase that allows the 

reaction to proceed in a solid solution manner, as for the following cycles
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HE-NCM materials (“5 Volt”)
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Overview of Materials for the Positive Electrode
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At high potentials

NCA and NCM materials

can offer higher specific energy

Pot. 3.9 V
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Commercialized
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Cycling Properties of HE-NCM (Ni, Co, Mn)

Very high specific charge compared to other cathodes  but…

- Strong fading during cycling 

- Drop of potential during cycling (leaching, structure) 

 How to stabilize the potential and buffer the fading?

C/3

C/15

4C
C-rate:

1C = discharge in 1 hour

C/10
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HE-NCM: Li2MnO3 Stabilized NCM

Li(Ni, Co, Mn)O2 Li2MnO3 = Li(Li1/3Mn2/3)O2

• 3 [M] slabs

• Hexagonal structure (R-3m)

• 3 [Li1/3Mn2/3] slabs 

• Monoclinic structure (C2/m)

rLi+=0.72 Å, rMn4+=0.53 Å, rNi2+=0.69 Å, rCo3+=0.54 Å Layered structure

39
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HE-NCM: Phase Coexistence

XRD & Neutron Diffraction
Li2MnO3 is accommodated

in the NCM host lattice

Monoclinic distortions  Li2MnO3

 Li/Ni exchange ca. 5%

Stacking faults

 Apparent Li+/Mn2+ exchange ca. 20%

XRD pattern

ND pattern

(SINQ, PSI)
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Concept to Stabilize HE-NCM

Metal slab

Metal slab

Inter-slab
oxidation

Li

Ni

oxidation

Standard HE-NCM 

Modified HE-NCM

Mn Co

-Li

Strategy: insert “inactive” element:

- to avoid structural transition

- to avoid layer shrinkage

- to reduce anode “pollution”

Transit to the 

anode

41

Mn

Ni

Ni

Li
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Syntheses
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Post-treatment (acid treatment of HE-NCM)

• Choice of the cation difficult (due to size and steric effects) 

• Control of the position of the cation 

• Porosity and morphology kept 

Home-made synthesis (sol-gel method)

• No control of the position of the cation 

• Wide variety of cations

• Possibility of cation mixing 

• Flexibility of the synthesis 
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1st Step Post-Treatment  Acid ‘Washing’ to Remove Li

Acid-treated samples: higher specific charge

(with less Li)

43

1 day 6 days

Reference sample: the best one

(too much Li removed?)
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Morphology of the Particles after Washing

Analysis:

- Loss of the original 

morphology after 6 days

- Insignificant damage with 

HNO3 after 1 day

- BET doubled in 1 day

Conclusion:

- 1 day treatment selected 

for the exchange

44



Electrochemical Energy Storage Section

2nd Step Post-Treatment  Cation Exchange
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• Fading less pronounced 

• Specific charge higher for the

4 h acid/exchange 

• More fading regardless of the treatment 

• Very low specific charge 

Do we have a clear winner ???

Cation 1 Cation 2

Acid (4 h) – cation 1 (4 h)

Acid (4 h) – cation 1 (24 h)

Acid (4 h) – cation 2 (4 h)

Acid (4 h) – cation 2 (24 h)

Acid (24 h) – cation 2 (24 h)
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Evolution of the Potential during Cycling
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Remember

• Specific charge higher and more stable

for 4 h/4 h 

• Higher potential fading than reference 

We improved specific charge with less Li… We improved the voltage fading…

Cation 1 Cation 2

Reference

Acid (4h) – cation 1 (4h)

Acid (4h) – cation 1 (24h)

Reference

Acid (4 h) – cation 1 (4 h)

Acid (4 h) – cation 1 (24 h)

Acid (4 h) – cation 2 (4 h)

Acid (4 h) – cation 2 (24 h)

Acid (24 h) – cation 2 (24 h)

Remember

• Specific charge lower than reference 

• Mitigation of potential fading 
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Home-Made Synthesis

• Lower specific charge 

• More stable specific charge 

Cation 3

Reference

Cation 3

So we found some winners . BUT, why are they winners?

=> More next year

47
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Na-ion batteries
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Li- and Na-Ion Facts
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Property Lithium Sodium

Crustal abundance (ppm) 20 23600

Cost (USD/t) 24000 500

Anode current collector Cu Al

BGS Supply risk index* 

(1 = very low; 10 = very high)

6.7 -

Property Lithium Sodium

Ionic radius (Å) 0.69 0.98

Molar mass (g mol-1) 6.94 22.99

Voltage vs. S.H.E. (V) -3.045 -2.714

Theor. capacity (mAh g-1) 3861 1165

*British Geological Society Supply Risk Index: 

Factors considered include scarcity, production concentration, reserve distribution, recyclability, substitutability, political stability
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Standard electrode formulation 

80% active material 

10% conductive additive (Super P)

10% poly(vinylidene) difluoride (PVDF) binder

Differences Li-Ion/Na-Ion Batteries

50

Sn electrode (PVDF binder) Sn electrode (CMC binder)

Know-how of LIBs cannot be applied to NIBs
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Huge Volume Expansion

Alloys: Volume Expansion Challenge
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Underlying Problem:

Pulverization of Electrode

Loss of electronic contact

Dead weight material

Alternative  Alloy materials such as MSn2

Buffer volume changes by alloying active metal with inactive metal

(Sn) (M = Co, Fe, Mn)

Na15Sn4 alloy Don’t alloy with Na
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Electrochemistry of MSn2
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FeSn2

MnSn2

CoSn2

Constant increase of the specific charge

Possible “activation” mechanism?

Sodiation

Desodiation
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There is lot of fun when doing research on batteries!

Questions?

53

Conclusion
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