

Scanning Precession Electron Diffraction

Duncan N. Johnstone Department of Materials Science & Metallurgy

Electron Microscopy Group e_{μ}

Acknowledgement: Paul A. Midgley (for slides and wisdom)

Outline

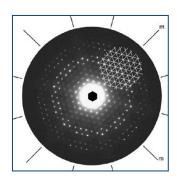
- 1. Practical problems and precession
- 2. Precession Electron Diffraction
- 3. Experimental aspects of PED
- 4. Scanning Precession Electron Diffraction
- 5. Scanning Precession Electron Tomography

Part I: Practical Problems & Precession

Traditional Applications of Electron Diffraction

Structure Solution and Refinement

Point Group and Bravais Lattice Identification



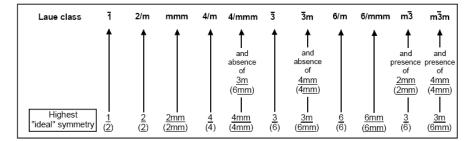
J.P. Morniroli et al. *Ultramicroscopy* 107 (2007) 514–522

 $Beryl - Be_3Al_2Si_6O_{18}$

* Data extracted from the Inorganic Crystal Structure Database (ICSD) - Ver. 2005-1

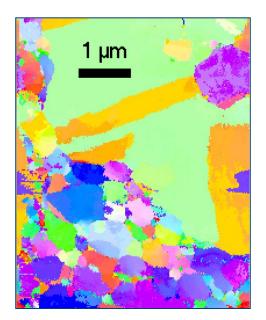
Crystal Structure Determination by Method *

Table 1. Connection between the "ideal" symmetry of microdiffraction precession patterns and the Laue class. ZOLZ symmetries are given between parentheses.



Crystal Cartography

Phase & Orientation Mapping



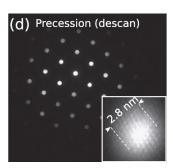
Phase ID

Texture

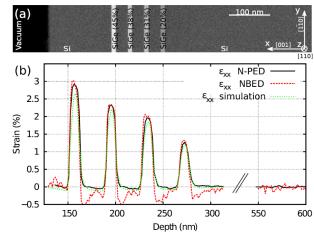
Inter-phase Relationships

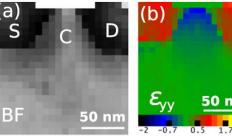
Lattice Rotations

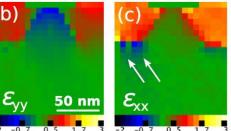
Strain Mapping

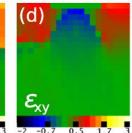


J.L. Rouviere et al *Appl. Phys. Lett.* 103, 241913 (2013)





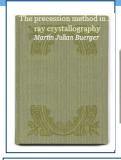




Strain (%) measured near the SiGe channel region of a transistor structure

Part II: Precession Electron Diffraction

Precession electron diffraction: a history



1937

The precession method in X ray crystallography Martin Julian Buerger

1976

Ultramicroscopy 2 (1976) 53-67

A METHOD FOR PRODUCING HOLLOW CONE ILLUMINATION ELECTRONICALLY IN THE CONVENTIONAL TRANSMISSION MICROSCOPE

William KRAKOW and Leon A. HOWLAND

Xerox Corporation, Xerox Square, W114 Rochester, N.Y. 14644, USA

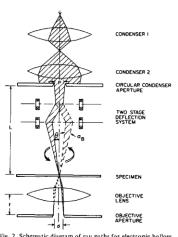
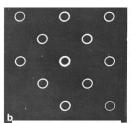


Fig. 2. Schematic diagram of ray paths for electronic hollow cone illumination.



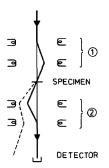
Ultramicroscopy 5 (1980) 71-74

1980

ZONE-AXIS PATTERNS FORMED BY A NEW DOUBLE-ROCKING TECHNIQUE

J.A. EADES

H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK



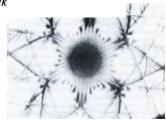


Fig. 1. Schematic diagram of the principle of the method. Two sets of coils are used: (1) the coils before the specimen are the illumination alignment coils, used for scanning in normal STEM; (2) the coils after the specimen are the imaging lens alignment coils. The solid line represents the direct beam; the dashed line represents a diffracted beam.

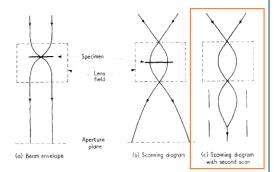
J. Mol. Biol. (1970) 48, 375-393

1970

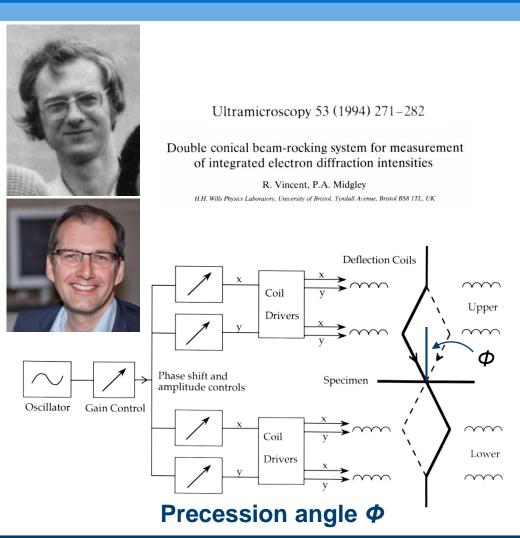
A Scanning Microscope with 5 Å Resolution

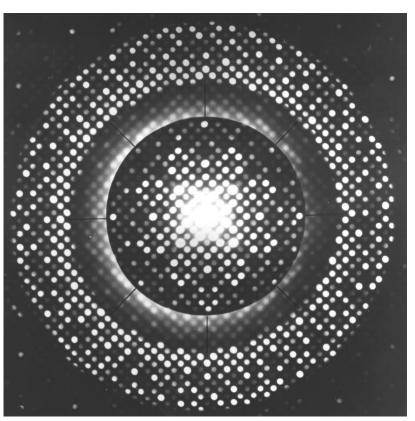
A. V. CREWE AND J. WALL[†]

The Enrico Fermi Institute and Department of The University of Chicago, Chicago, Ill. 6063.



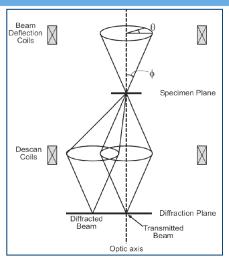
Electron analogue of Buerger's precession X-ray method

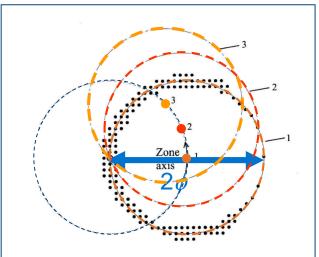


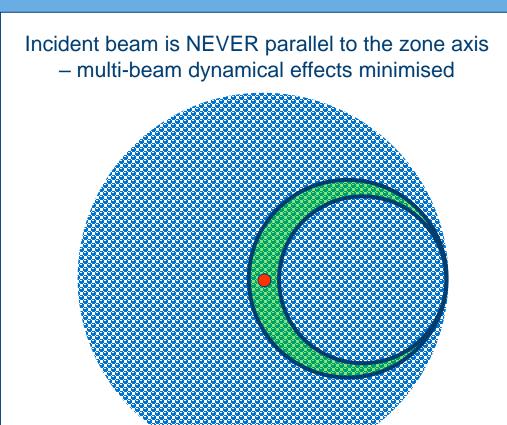


 $[001] Er_2Ge_2O_7$

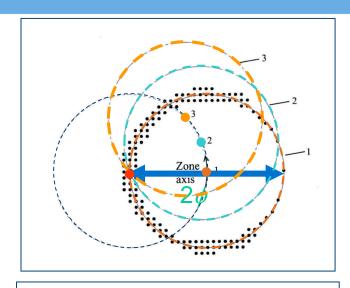
Zone-axis PED geometry: sample more reciprocal space







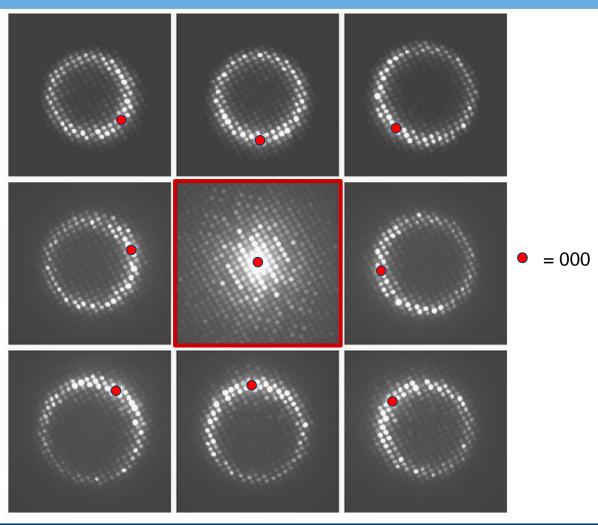
Zone-Axis Precession Electron Diffraction Geometry



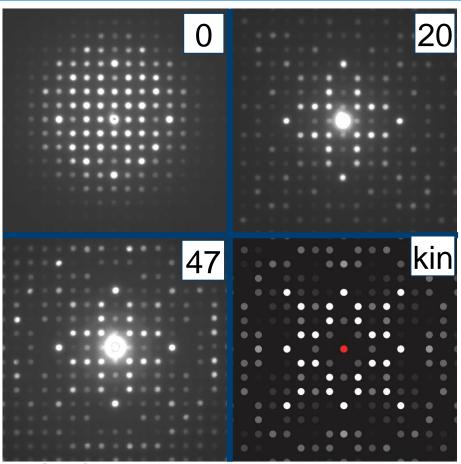
Diffraction patterns recorded from bismuth manganite.

Patterns recorded at several points around a precession circle of $\phi = 1.5^{\circ}$.

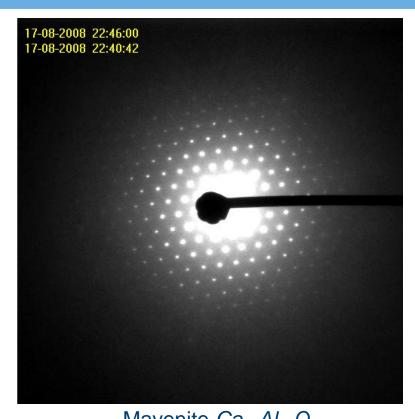
Resultant PED pattern is sum of all off-axis patterns



Zone-axis precession electron diffraction



Er₂Ge₂O₇ With increase in precession angle, patterns look qualitatively 'more kinematical'

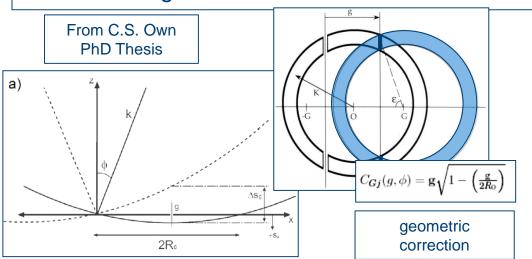


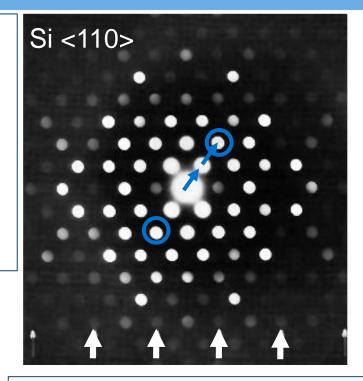
Mayenite $Ca_{12}AI_{14}O_{33}$ Movie courtesy of Yves Maniette (NanoMegas) – precession angle:

0 to 50 mrad

Advantages of precession electron diffraction

- Precession many more reflections intercepted by Ewald Sphere – large data set.
- 2. Diffracted intensities determined by <u>integrating</u> through Bragg condition
- 3. Focussed probe: $d \sim C_s \Phi^2 \alpha$
- 4. Reduces (sometimes!) effects of dynamical scattering → 'kinematical' intensities?

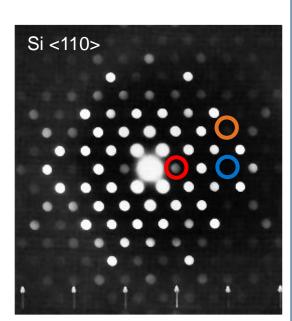


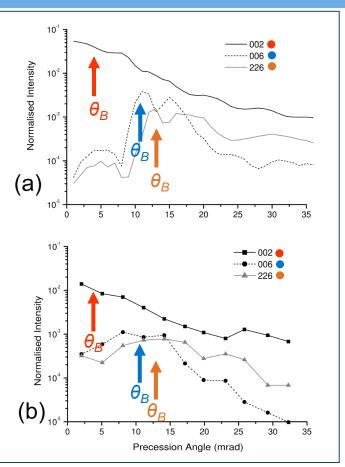


Rows of reflections arrowed should be absent $(F_{hkl} = 0 \text{ for } h+k+l=4n+2)$

Reflections present along {hhh}

Intensities of kinematically-forbidden reflections



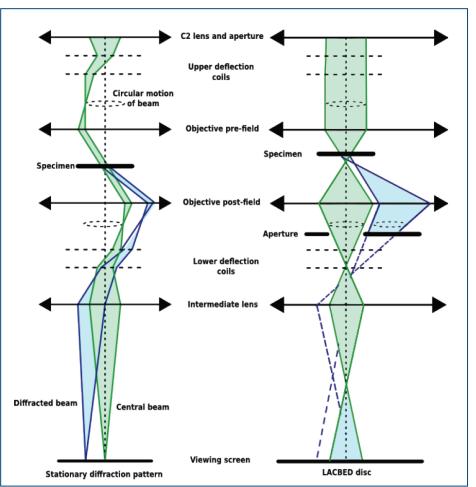


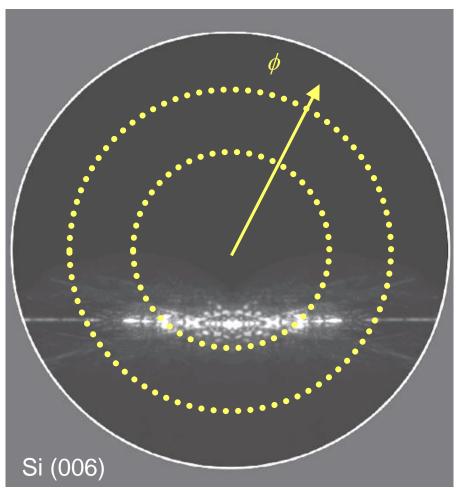
Simulation

Experiment

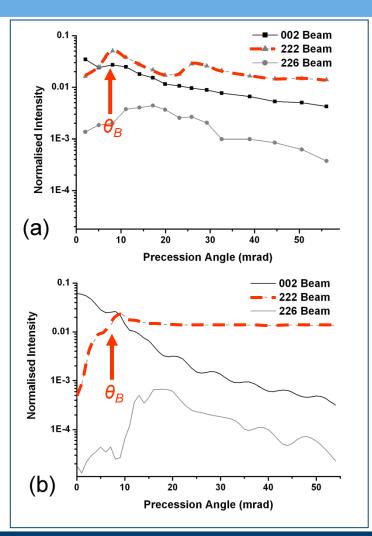
Intensity vs precession angle for kinematically-forbidden reflections

Precession angle and LACBED





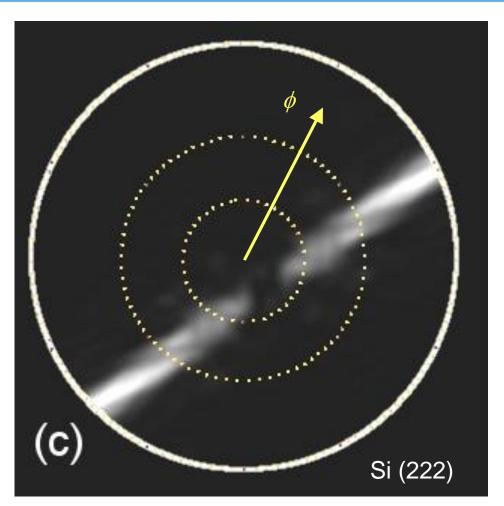
Kinematically forbidden reflectios - 222

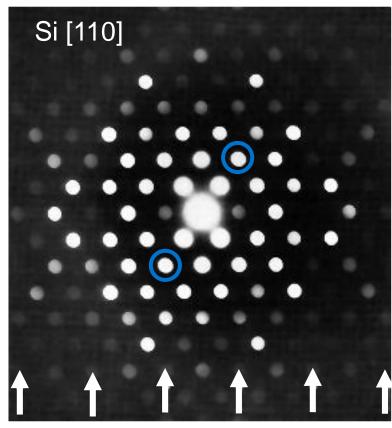


Experiment

Simulation

Precession angle and LACBED

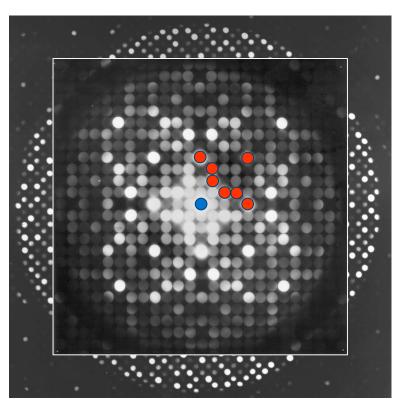




Solving crystal structures: ZOLZ

 $[001] Er_2Ge_2O_7$

Direct Methods

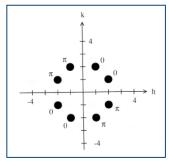


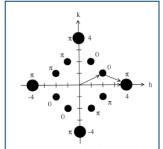
Probabilistic methods to allow guesses as to correct phases of structure factors.

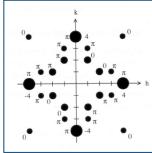
Space group symmetry (projection) allows some **strong** *hk*0 reflections to be assigned phases.

Phase triplets: $\phi(-\mathbf{h}) + \phi(\mathbf{k}) + \phi(\mathbf{h}-\mathbf{k}) \approx 0$

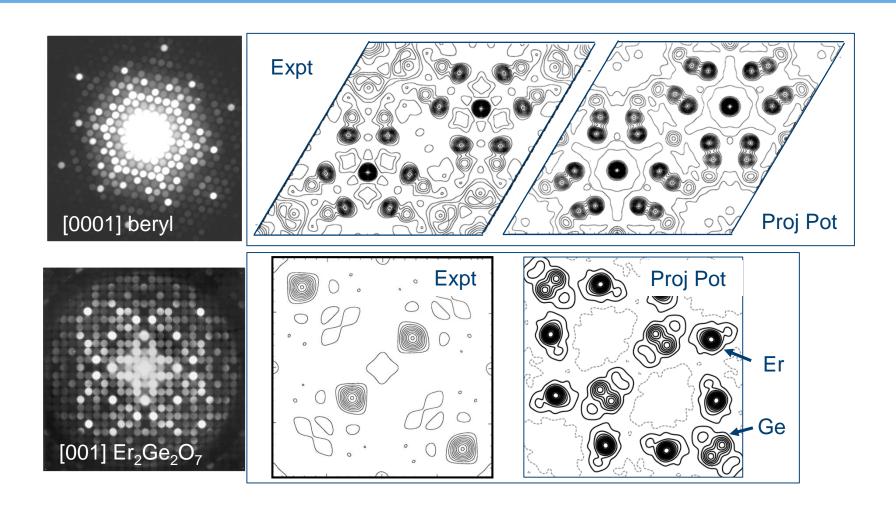
The rest assumed initially random but then 'refined' to give best consistent set of phases.







Structure 'solutions' using ZOLZ & direct methods



So how akinematical are PED intensities?

For *kinematical* intensities:

$$I_g \propto \left| F_g \right|^2$$

and the intensity is independent of other reflections

<u>Dynamical</u> diffraction: - diffracted beams interfere and resultant intensity depends on structure factors (phases) of all beams.

$$I_g = f(F_g, F_h, F_i, F_j....)$$

If intensities are kinematical, they will be <u>insensitive</u> to the phases of all other structure factors.

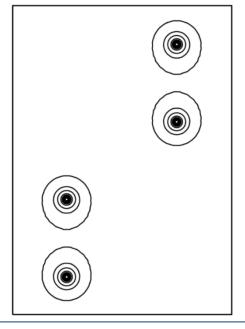
Many possible structures can produce the same kinematical diffraction intensities (although not all structures are reasonable).

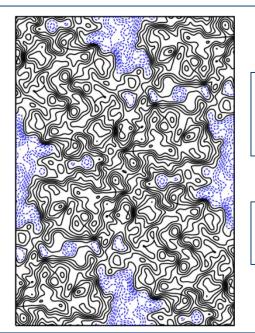
Can scramble phases of Fourier components of projected potential to create a model of such a structure.

Phase scrambling: testing for kinematic behaviour

Each homometric structure will give the <u>same kinematical</u> diffraction pattern (structure factor moduli) but <u>different dynamical</u> patterns

Original (Si <110>)



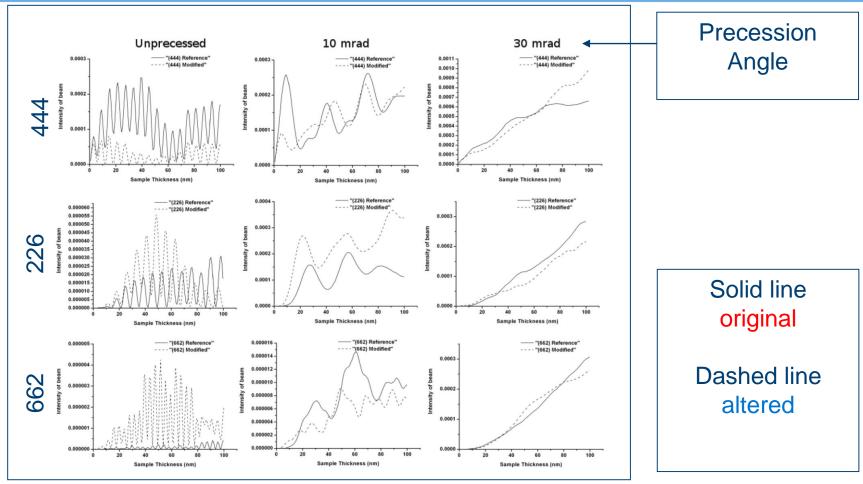


Blue indicates negative potential

(Phases Scrambled)

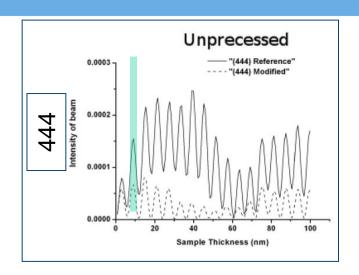
If precession make intensities 'more kinematical' then the diffracted intensities from these two structures should converge to being the same at sufficiently high precession angles.

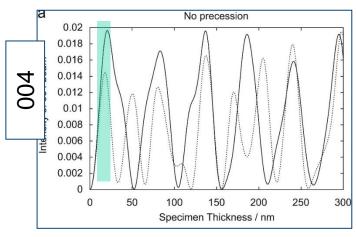
Phase scrambling – dynamical multislice calculation

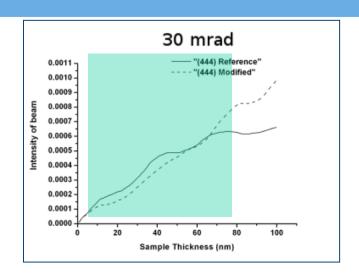


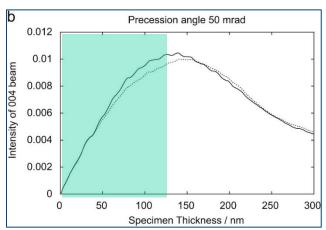
Simulated (multislice) intensities of (a) 444, (b) 226 and (c) 662 for Si [110]

Phases Scrambling – multislice Si [110] @ 300kV





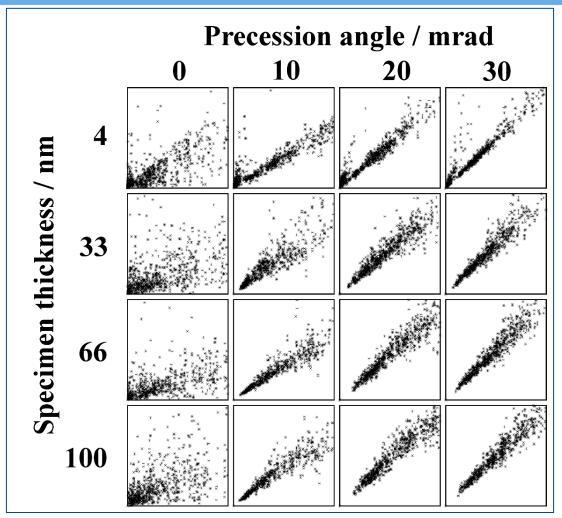


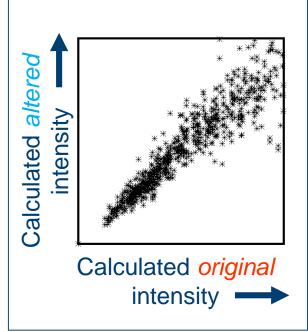


Solid line original

Dashed line altered

Intensity of phase-altered reflections





If intensities correlated then I_g independent of phases and \therefore 'kinematic'

So why didn't EGO work?

Structure refinement – 'how good' is our solution?

Conventional refinement techniques comparing experimental intensities to kinematical ones the refinement value is poor.

$$R_1 = \frac{\sum_{\mathbf{h}} \left(|F_{\mathbf{h}}|_{\text{obs}} - k |F_{\mathbf{h}}|_{\text{calc}} \right)}{\sum_{\mathbf{h}} |F_{\mathbf{h}}|_{\text{obs}}},$$

Typically our R₁ values are 30-50% (X-ray refinements are often a few%)

Why so bad?! Data is <u>not</u> kinematical – We are comparing apples and pears!!

But data can't be so bad because we're getting good structure solutions!

New developments can help overcome challenges:

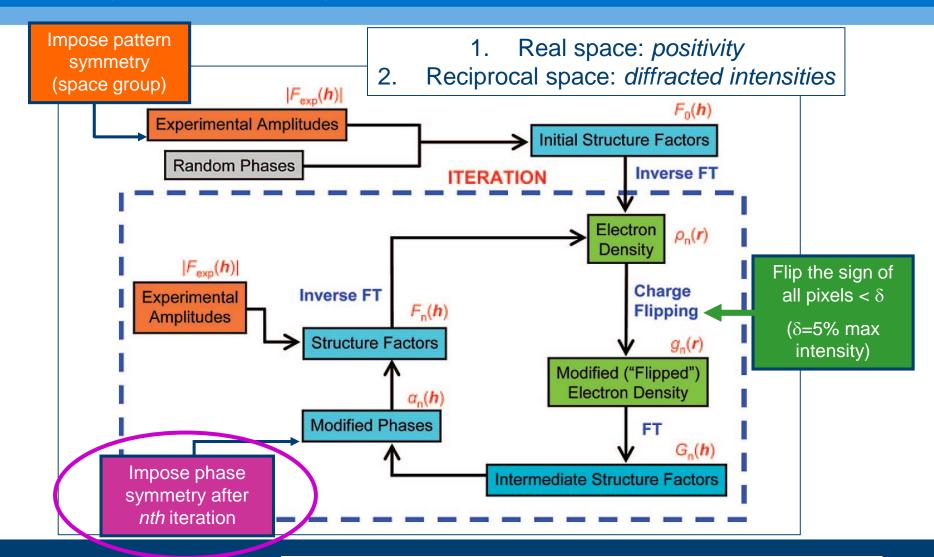
Iterative structure solution algorithms (charge flipping) – better solutions

Acquire 3D data – better constrained

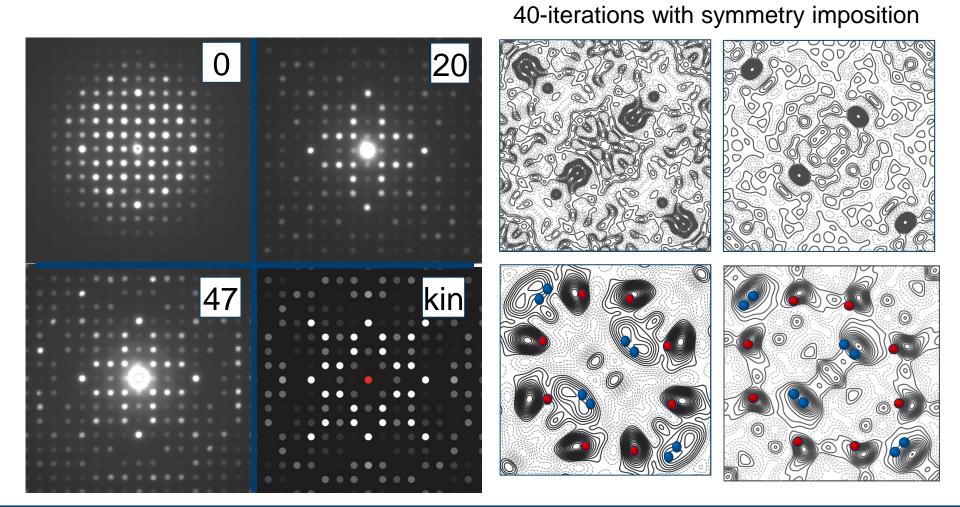
Dynamical refinement – better refined

Charge Flipping: Structure solution with constraints

(Oszlanyi and Suto, Acta Cryst A 2004)

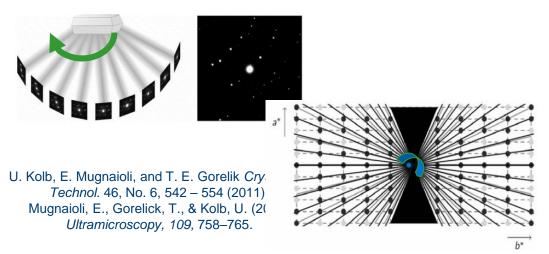


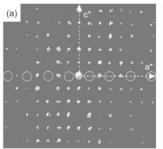
Structure 'solutions' using ZOLZ & charge flipping

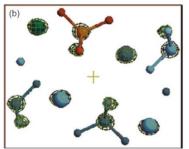


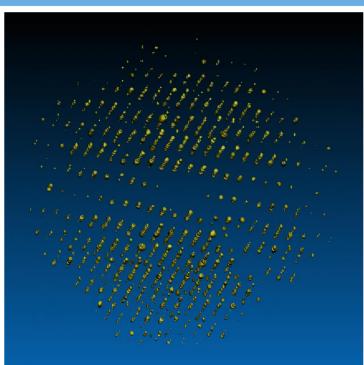
Automated Diffraction Tomography

'Diffraction Tomography' (2008) – acquiring PED patterns about a 'random' single axis → 3D data





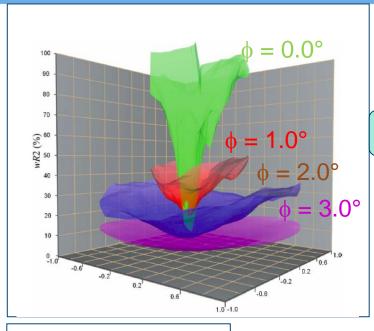




3D data from Mg₃Al(OH)₃Si₂O₇ synthesized at 6.5 GPa, 700 C

Movie courtesy of Mauro Gemmi (IIT) Pisa

Dynamical Refinement



L. Palatinus et al Acta Cryst. (2013) A69, 171–188

Table 16

Refinement of all permitted structure parameters of the orthopyroxene structure against the data set opht1p2.4.

Maximum and average distance mean the distances from the reference structure refined against X-ray diffraction data.

wR2, R2, R1 (%)	Kinematical 15.80, 20.63, 30.61	Two-beam 15.69, 19.49, 28.54	Dynamical 5.45, 7.48, 11.25
Minimum U_{iso} (Å ²)	-0.0099	-0.0164	-0.0085
Maximum distance (Å)	0.302	0.146	0.093
Total average distance (Å)	0.122	0.106	0.048
Average distance of cations (Å)	0.044	0.108	0.050
Average distance of O atoms (Å)	0.175	0.105	0.047
occ(Fe1)	0.571	0.413	0.134
occ(Fe2)	1.094	1.278	0.436

e.g. R1 (kin) 30.61% \rightarrow 11.25% (dyn)

$$wR2 = \left[\frac{\sum w_{\mathbf{g}} \left(I_{\mathbf{g}}^{\circ} - I_{\mathbf{g}}^{\circ}\right)^{2}}{\sum w_{\mathbf{g}} \left(I_{\mathbf{g}}^{\circ}\right)^{2}}\right]^{1/2},$$

$$R2 = \frac{\sum \left| I_{\mathbf{g}}^{\mathrm{o}} - I_{\mathbf{g}}^{\mathrm{c}} \right|}{\sum \left| I_{\mathbf{g}}^{\mathrm{o}} \right|},$$

$$R1 = \frac{\sum \left| (I_{\mathbf{g}}^{o})^{1/2} - (I_{\mathbf{g}}^{c})^{1/2} \right|}{\sum (I_{\mathbf{g}}^{o})^{1/2}}.$$

Sample orientation and thickness required accurately for dynamical refinement but not for kinematical refinement.

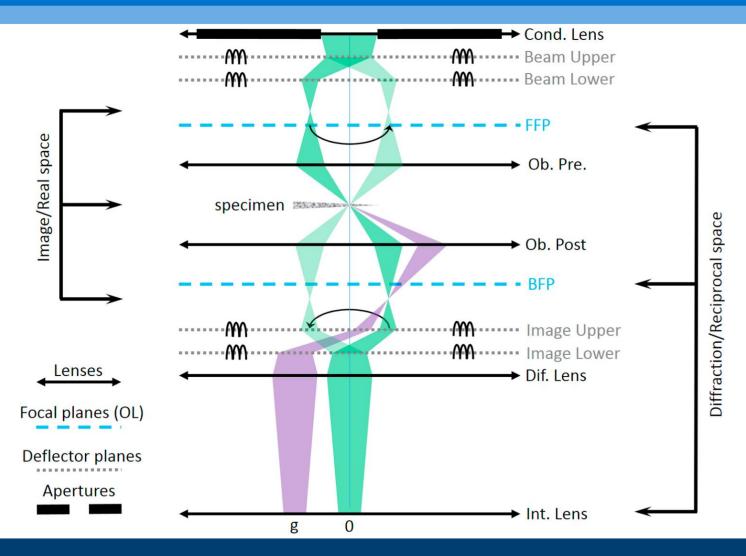
For dynamical refinement with PED the sample orientation and thickness is not needed quite so accurately.

Summary

- 1. PED gives more reflections and with intensities integrated through the Bragg condition.
- 2. PED intensities are <u>not</u> kinematical but, with sufficiently high precession angle, behave in some kinematic-like ways.
- 3. PED reduces sensitivity to orientation and thickness. Pragmatically this is often quite useful.
- 4. Ab-initio structure solution best achieve with precession electron diffraction (PED).
- 5. 3D data & dynamical refinement is now the 'gold standard'

Part III: Experimental Aspects of PED

PED optical configuration



PED alignment

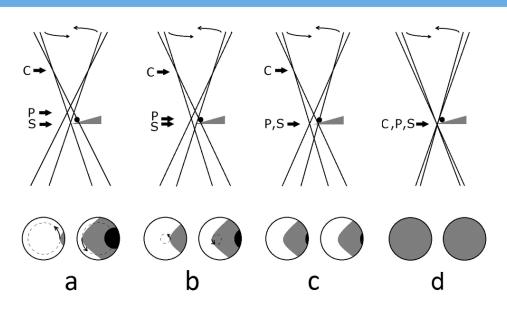
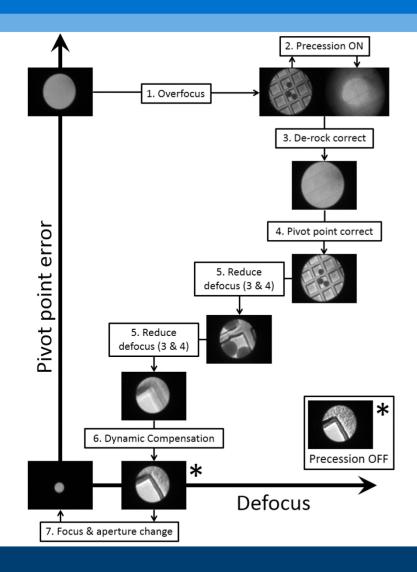
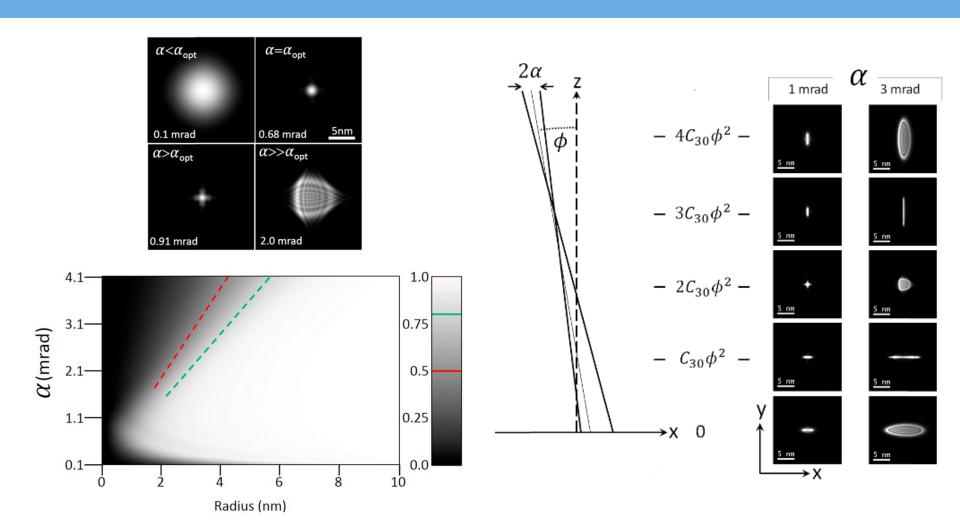


Image of the probe unreliable due to lens aberrations – use the shadow image in the Ronchigram.

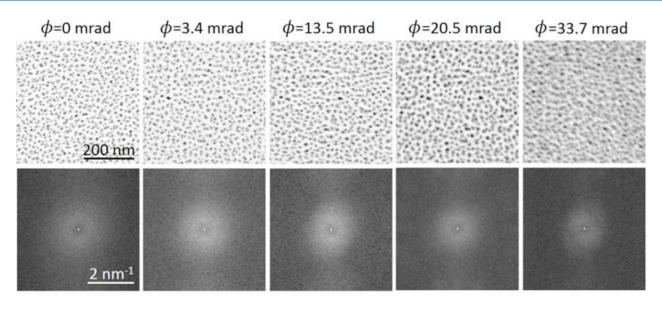
Need to bring pivot point plane, condenser focal plane, and specimen plane into coincidence.



Lens Aberrations & PED probe size

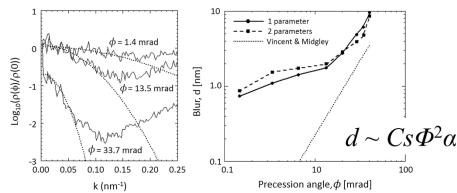


Demonstrating precession induced blur



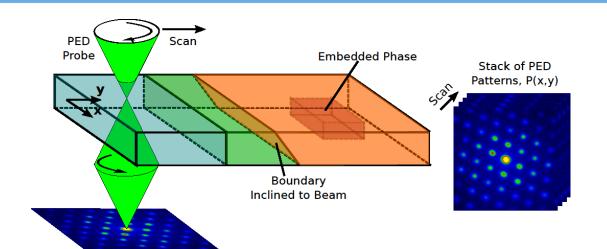
At higher precession angles Vincent-Midgley expression reasonable.

At lower angles we are limited by noise on the coils.

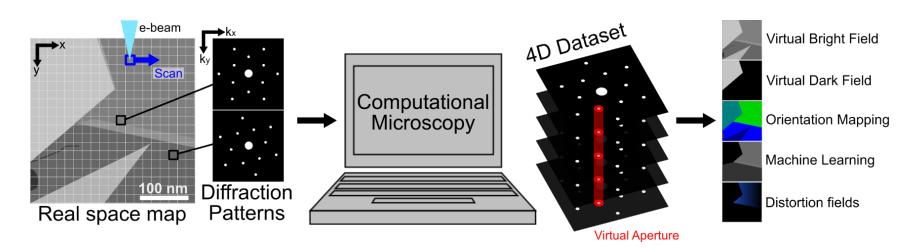


Part IV: Scanning Precession Electron Diffraction

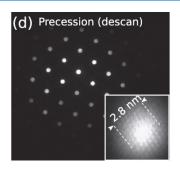
Crystal Cartography



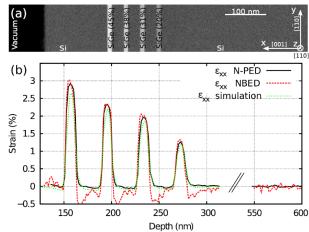
Typical precession: 100Hz Dwell time = 20 ms i.e. 50 patterns / sec 100x100 pixels in 2-3 min

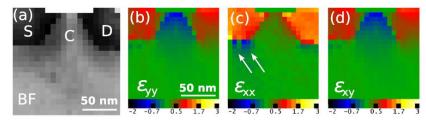


Strain mapping in (S)TEM



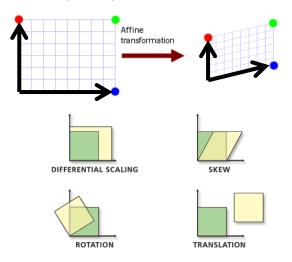
J.L. Rouviere et al *Appl. Phys. Lett.* 103, 241913 (2013)





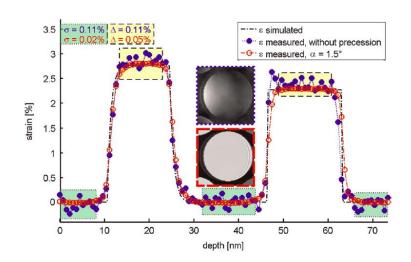
Strain (%) measured near the SiGe channel region of a transistor structure

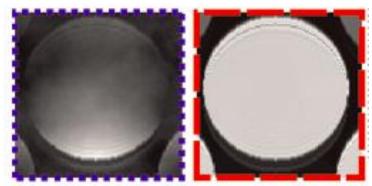
Very small distortions in the PED patterns converted into local strain measurements.



- Lattice based
 - Find peaks.
 - Fit lattice to get basis vectors
 - Calculate affine transform between bases
- 2. Image processing
 - Calculate optimum affine transform directly between recorded patterns.

Strain Precision & Precession





C. Mahr et al. Ultramicroscopy 158 (2015) 38 – 48

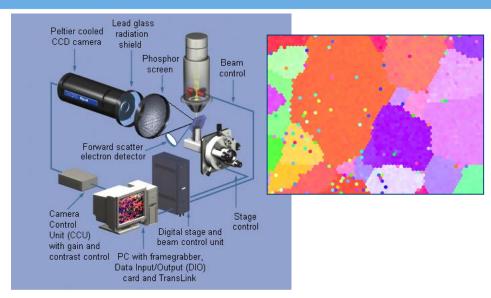
Precision with precession:

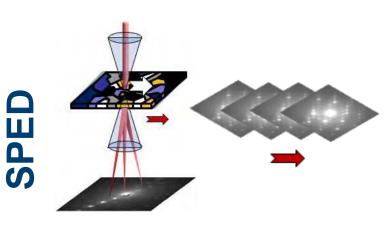
- Integration through the Bragg condition means integration through bending & rel-rod effects.
- Lattice plane distortions integrated through.
- 3. Homogeneously filled CBED disks are easier to track in computational analysis.

Typically claim ~2e-4

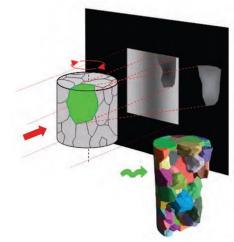
Based on rms error in unstrained region.

Phase & Orientation Mapping: A wider view

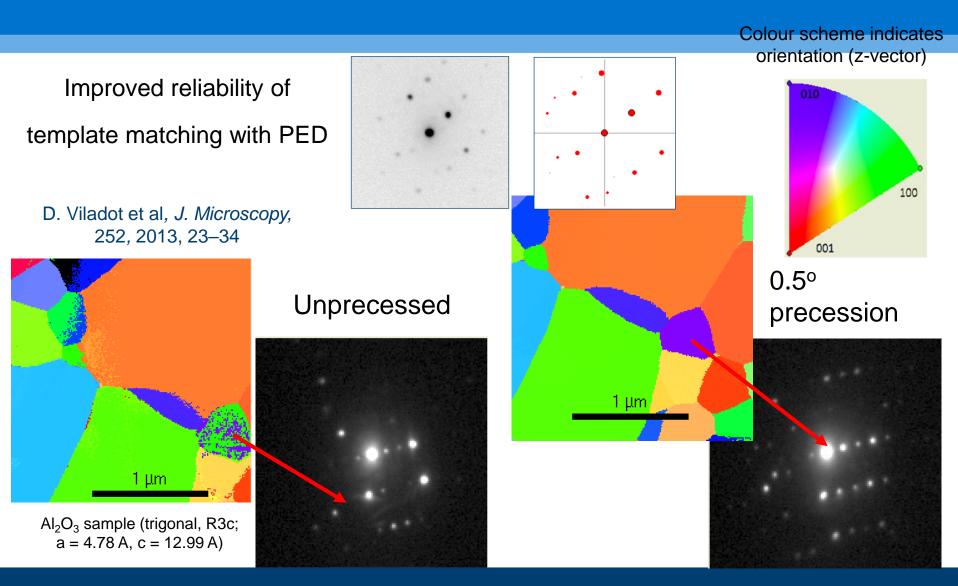




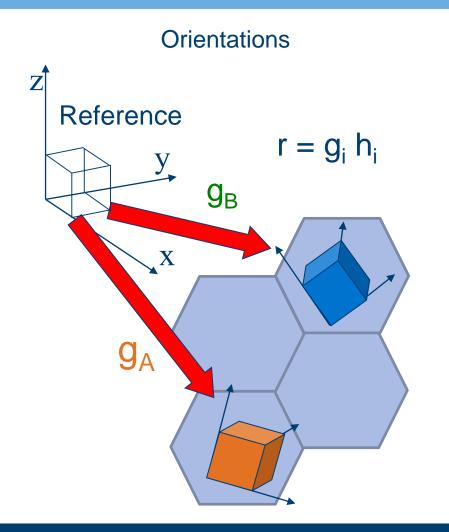
6 2 4 3

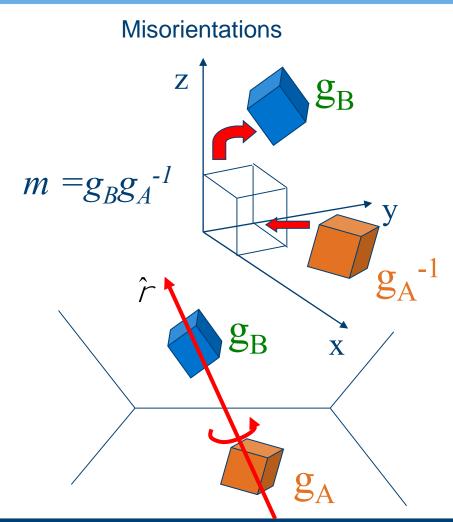


Orientation Mapping via Template Matching

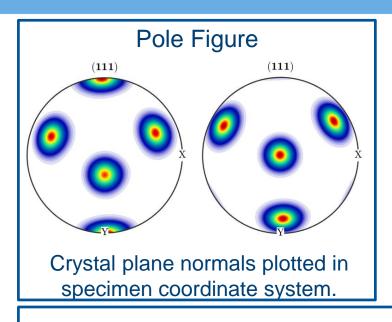


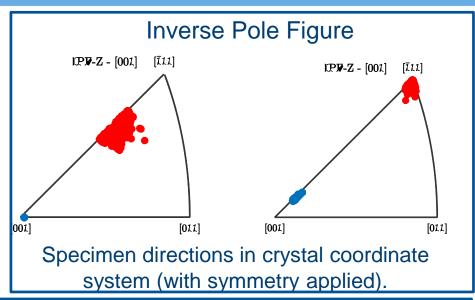
Orientations & Misorientations



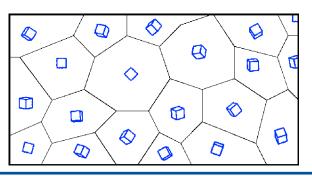


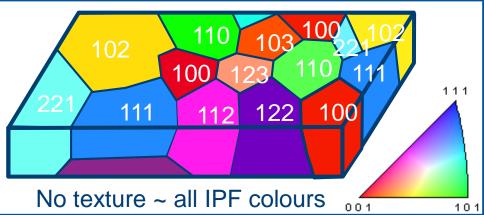
Standard ways to represent orientations





Orientation Images

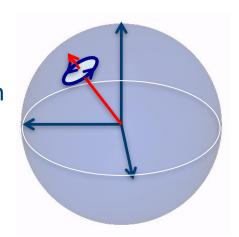




Neo-Eulerian representations of orientations

A rotation may be described by a rotation axis r and angle α :

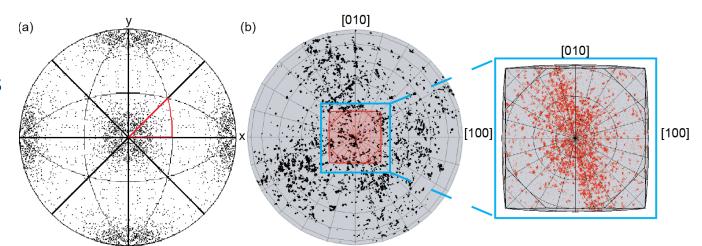
 $\mathcal{R}(r, \alpha)$



Numerous Parameterisations:

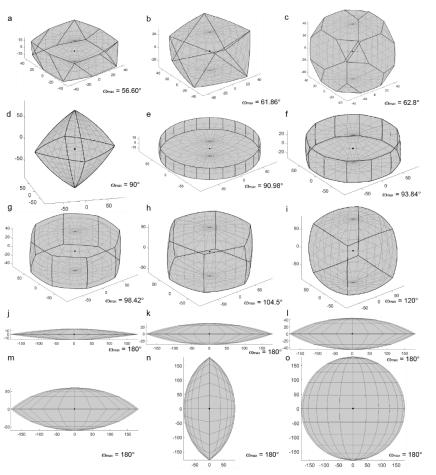
- p = ra
- $p = r \tan (a/2)$
- $p = r \sin (a/2)$
- $p = r {3/4(a \sin a)}^{1/3}$
- p = r 2 tan (a/4)

Symmetry reduces orientation space to a fundamental zone

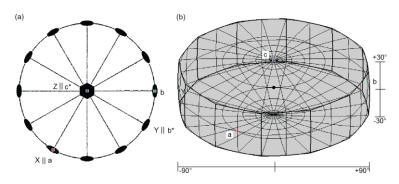


Fundamental zones for orientations

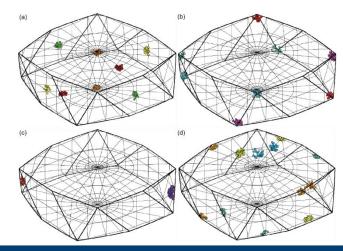
All fundamental zones for orientations



Symmetry reflected in geometry

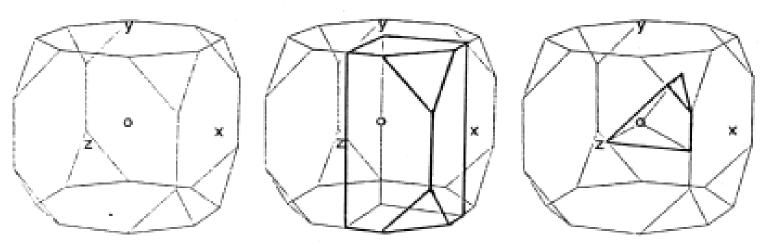


Boundary points have equivalents



Fundamental zones for misorientations

Depends on the symmetry of both crystals



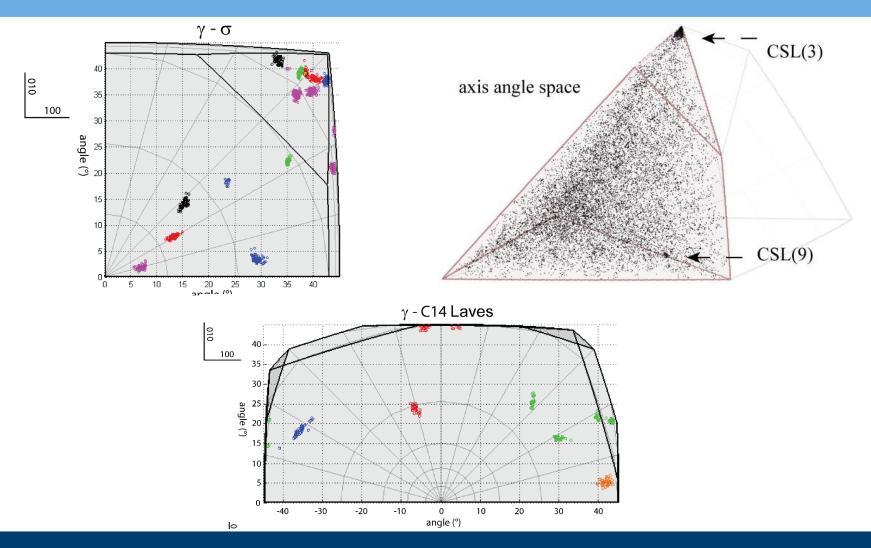
Cubic crystal symmetry, no sample symmetry

Cubic-orthorhombic

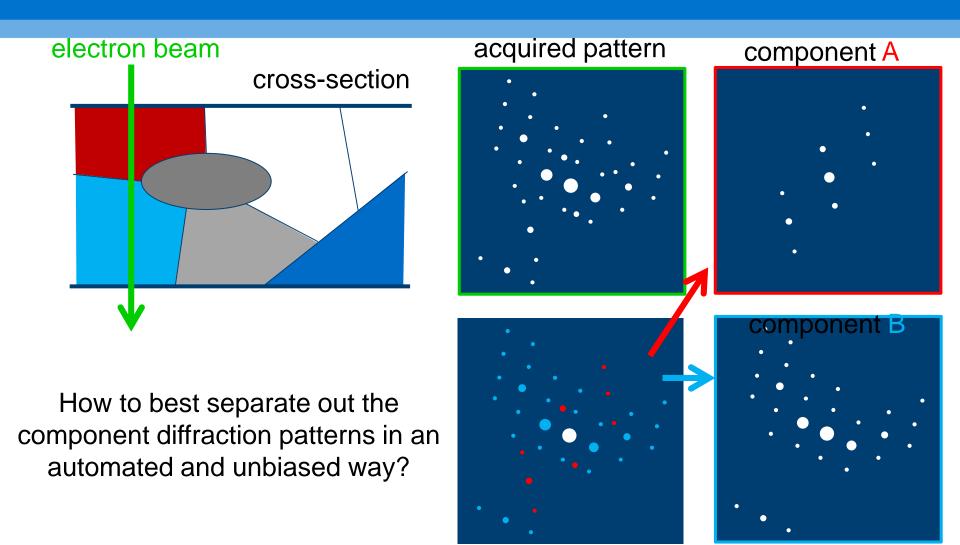
Cubic-cubic symmetry

All fundamental zones for misorientations are sections of the fundamental zone for orientations of the reference crystal symmetry.

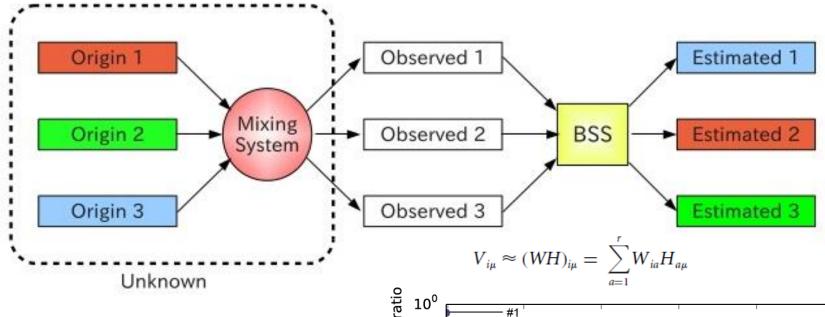
Case Study: Inter-phase relationships in ATI 718Plus



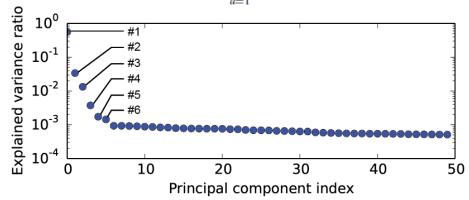
Projection problem: need to separate mixed signals



Can we separate mixed signals using all the data?

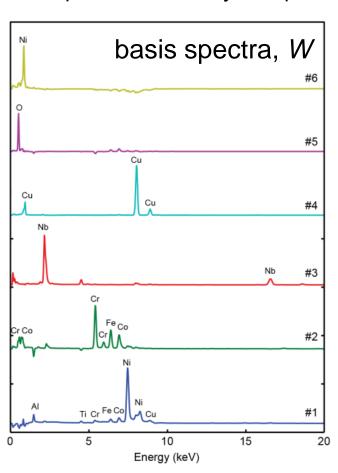


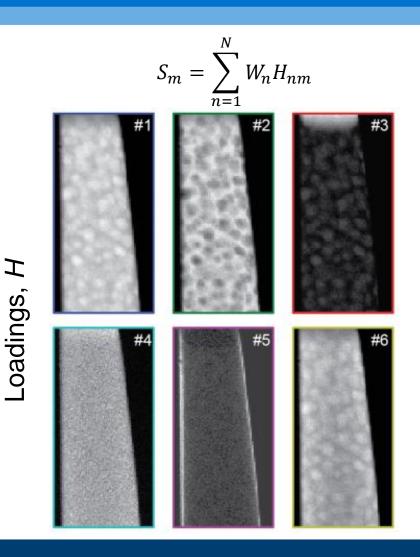
Use PCA scree plot to estimate the number of components



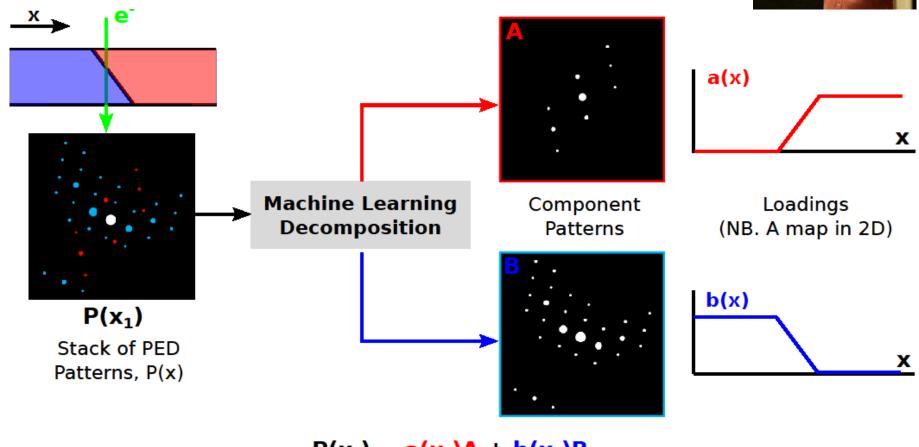
Blind source separation in spectrum imaging

Basis spectra statistically 'independent'

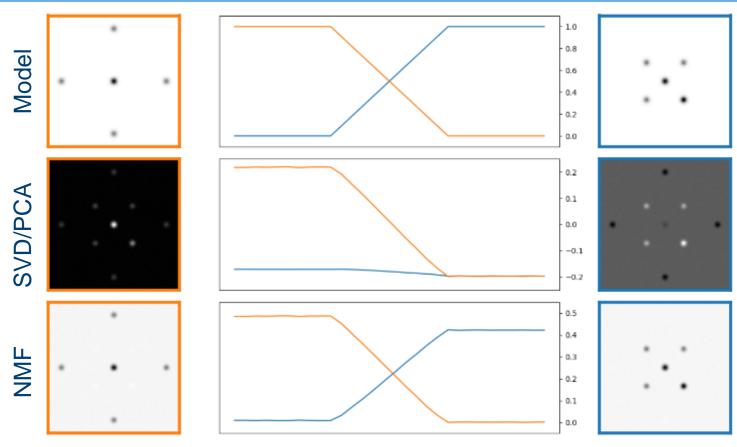




Machine Learning SPED



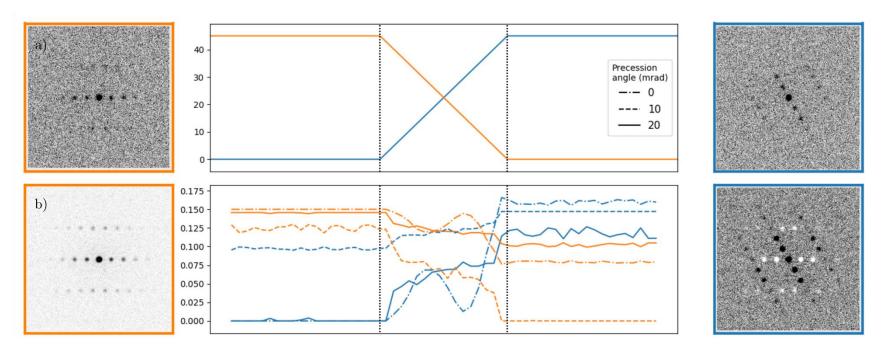
Which Method of Unsupervised Learning?



PCA/SVD does not obtain physical patterns. NMF giving physical constraints does!

NMF, theoretical data, and precession

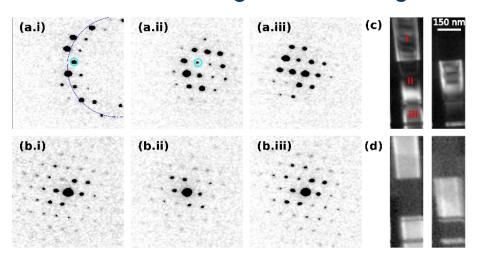
Multi-slice simulation of GaAs rotation twin boundary inclined to the beam direction. 200 precession steps, thickness ~ 150nm.



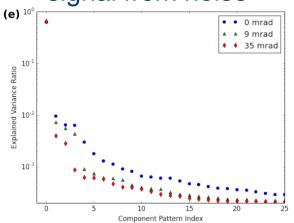
NMF loading becomes more monotonic with increasing precession angle.

NMF, experimental data and precession

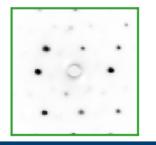
Precession integrates bending

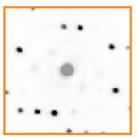


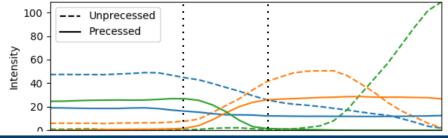
With precession can separate signal from noise

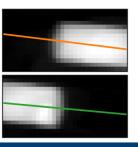


With precession overlap is revealed with reasonable accuracy









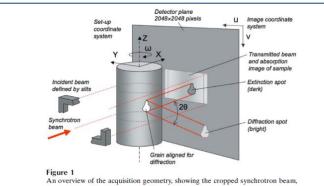
Summary

- 1. Strain mapping
 - Precession improves precision
- 2. Orientation mapping
 - Precession aids matching
 - Orientation analysis can be taken much further than colour maps
- 3. Machine Learning
 - Precession necessary to separate physically interesting signal
 - Results reduce the diffraction data to essential components guiding further, more detailed, analysis.

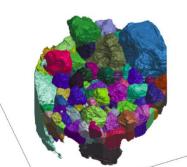
Part V: Scanning Precession Electron Tomography

What about crystallographic mapping in 3D?

(A) X-RAY. Diffraction Contrast Xray Tomography – using images



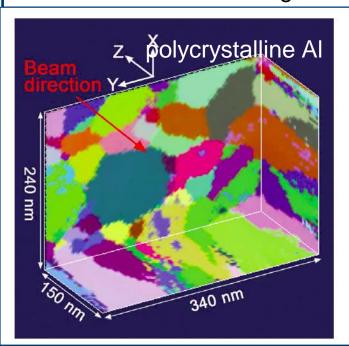
the sample, and both direct and diffracted images on the detector.



Al alloy FOV = 500 umVoxel size ~1um

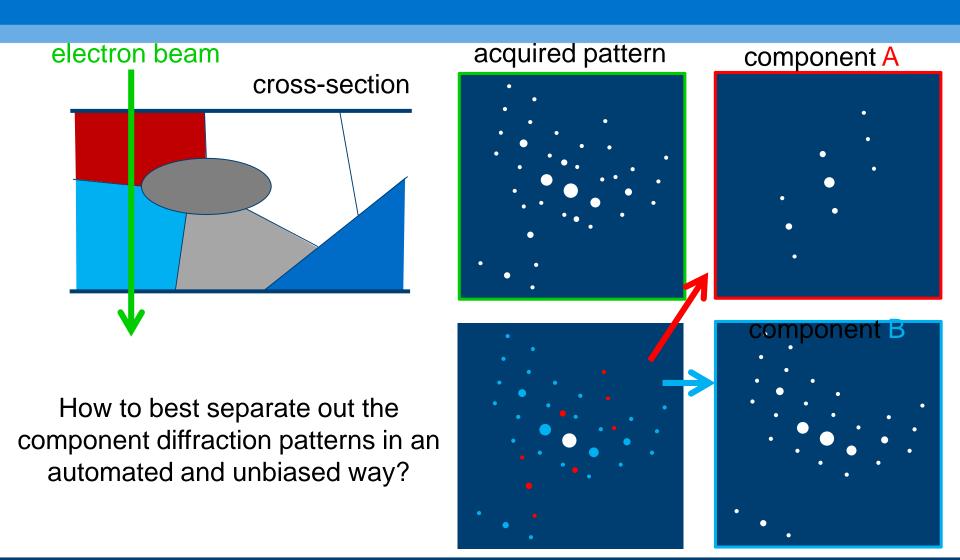
G. Johnson et al, J. Appl. Cryst. (2008) 41. 310-318

(B) TEM. 3D grain orientation – tilt series of HCDF images

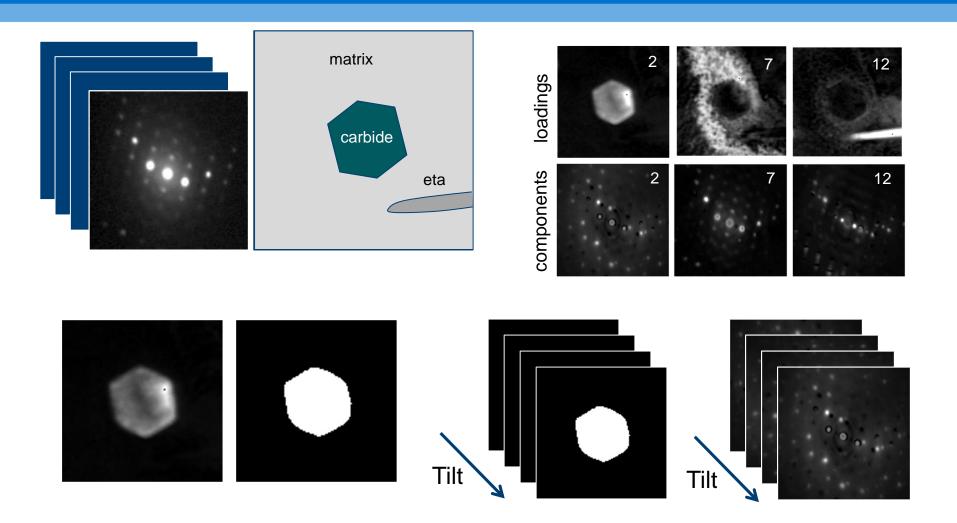


More than 100,000 dark field images recorded +/-30° @ 1°. At each sample tilt, the beam rotation angle varied 0 -3994.inlistens 1052ience 332 (2011) 833

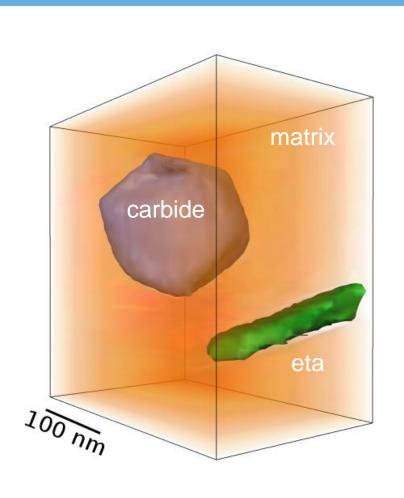
Projection problem: need to separate mixed signals

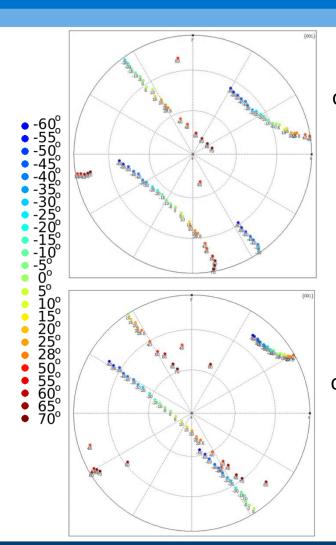


SPED Tomography of 718+



Real & Reciprocal Space in 3D

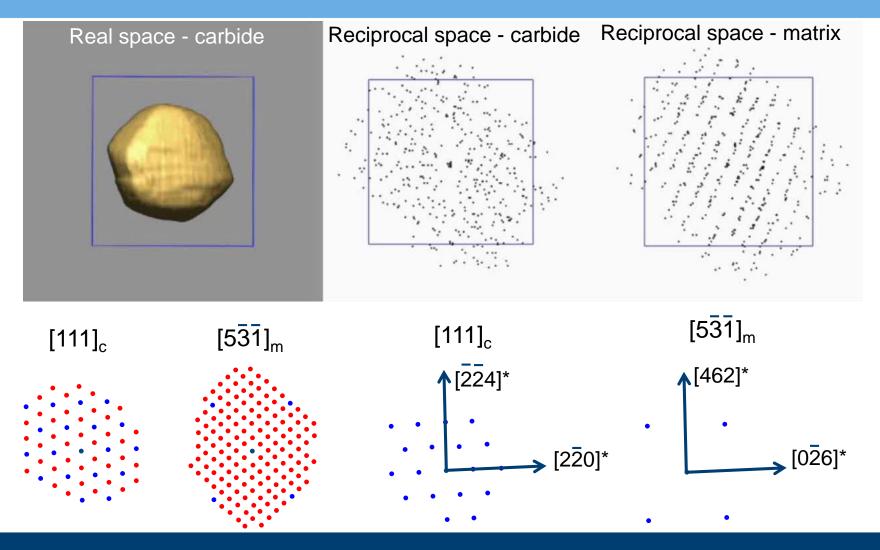




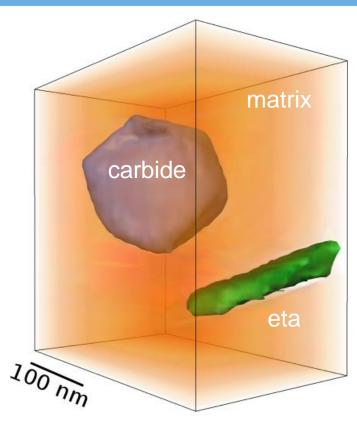
matrix component

carbide component

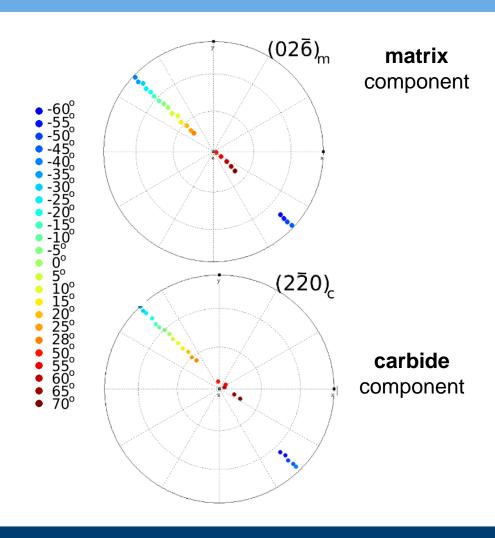
Orientation Relationship in 3D



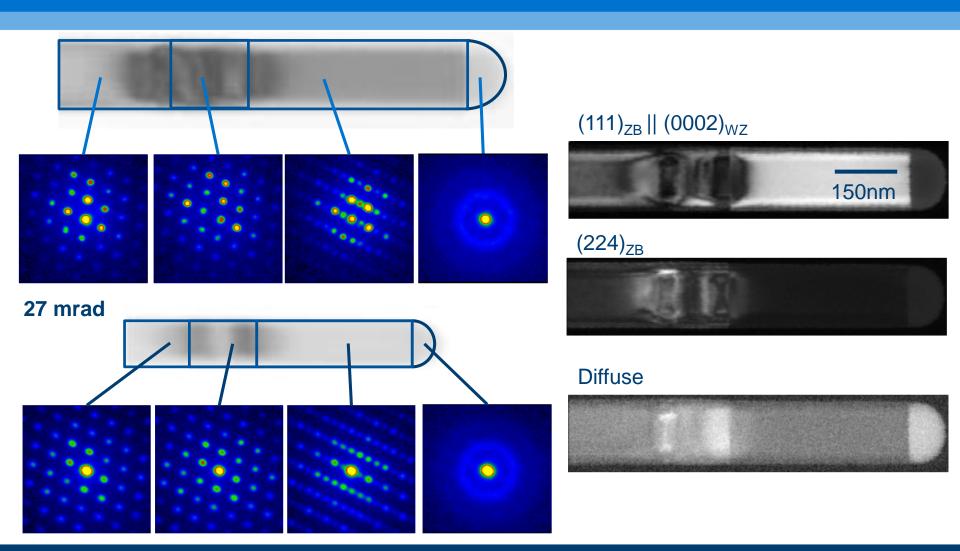
Orientation Relationship in 3D



 $\{111\}_{carbide} // \{531\}_{matrix}$ $[220]^* // [026]^*$

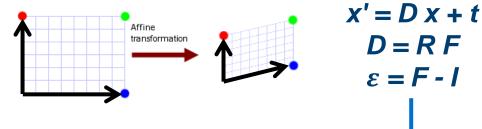


Case Study: GaAs Nanowires



Towards Strain Tomography

1. Map strain at every pixel



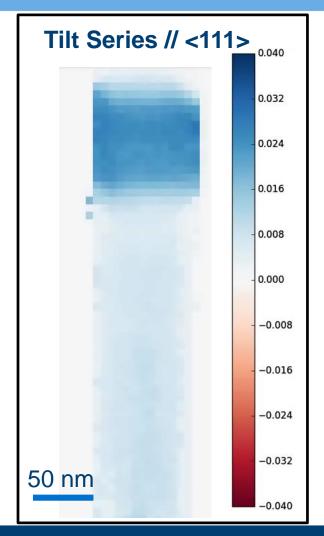
2. Mapped strain is average along beam path

$$\langle \boldsymbol{\varepsilon} \rangle = \frac{\int_{-\infty}^{\infty} \boldsymbol{\varepsilon}(x) \, ds}{\int_{-\infty}^{\infty} ds}$$

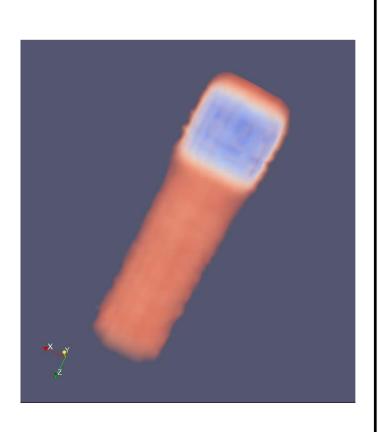
3. Projected component of strain

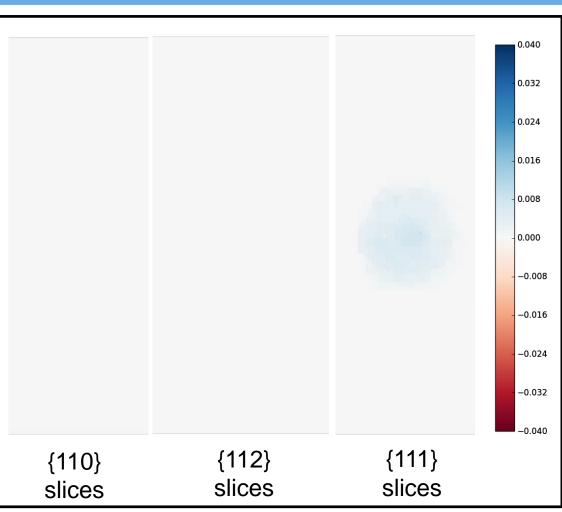
$$J\varepsilon(x) = \int_{-\infty}^{\infty} \varepsilon(x) \, ds$$

4. Reconstruct as scalar tomography



Towards Strain Tomography - ε_{rod}(x) reconstruction





Summary

Materials are 3D – we should be doing something about that.

Crystallographic tomography is growing significantly in recent years with electron (and X-rays).

Questions?