Basics of outbreak Investigation

Njoki Miriam Karinja

17 March 2022

Outline of the session

- > After this session you should be able to:
 - > Define an outbreak
 - > Describe the principles of outbreak investigations
 - > List and explain the steps of an outbreak investigation

What is an outbreak?

- > Occurrence of more cases of disease than expected
 - > Over a particular period of time
 - > In a given geographical area
 - > Amongst a specific group of people

Why investigate an outbreak?

- > To characterise the problem
- > To stop/control the outbreak
- Prevent future outbreaks
- Improve surveillance and outbreak detection
- > Opportunity to train epidemiologist
- Research answer certain questions

Steps in Outbreak Investigation

- 1. Establish the existence of a real outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses using descriptive findings
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Execute control and prevention measures

Step 1:Detect Outbreak

- Indicator-based surveillance system (IBS) Routine surveillance data from IPD/OPD
- > Event-based surveillance (EBS) Trustworthy network that can notify you
 - > Media, hotline, others
- > Laboratories
- Reported by clinicians/clinics
- Reported by schools (school health services)

What if its not an outbreak?

- > Artifact
 - > Increased awareness- active case finding, media coverage
 - > Change in surveillance practices new case definition or new laboratory tests available
 - > Laboratory error
- Variation of the denominator:
 - Rapidly changing population denominators
 - > Hospital patients, migrants, refugees, mass gathering

Step 2: Confirm the diagnosis

A two-stage process

- 1. Clarify the syndrome and identify diagnoses
 - > Communicate with clinicians, specialists
 - > Examine the frequency of symptoms among cases
 - > Which age groups affected?
- 2. Confirm diagnosis with laboratory tests
 - > Discuss best tests to use with laboratory and clinicians

Confirm the outbreak

- Establish the baseline
 - > Surveillance data where available
 - > Ask around: Hospital/ laboratories/physicians
- > Compare the magnitude of current problem with the historical data
- Caution
 - Seasonal variation
 - > Notification artefacts weekends, new staff
 - > Diagnostic bias, new lab techniques, more labs

Population Denominators

- > Important at this point to:
 - Determine possibly affected population;
 - > Calculate attack rates by geographic area;
 - > Used in estimating of supplies for control measures: latrines, water, vaccination, community health workers etc.
- > Where to find population denominators?
 - > Last census of the area?
 - > Local authorities: municipality or village leaders
 - > Other stakeholders: UN agencies? NGOs

If no population denominators available?

- Count shelters/tents estimate average tent size and extrapolate;
- Comprehensive population count house to house if possible;
- Satellite imagery and automatic shelter counting:
- Possible in urban areas and displaced persons settlements;
- Requires recent satellite image;
- > Fly a drone

- Hygienic measures —
- others

- Mode of transmission
- Vehicle of transmission
- Source of contamination
- Population at risk
- Exposure to causing illness

Step 3: Define a case

- Standard set of criteria for deciding if a person should be classified as having the disease under investigation
- > Clear, simple, and practical
- Critical components:
 - > Time (when?)
 - > Place (where?)
 - Person (who?)
 - Clinical/biological criteria (what?)

Consideration for case definition

- > Case definition tiers
 - Suspected cases
 - > Probable cases: i.e. with epidemiological link to a confirmed case
 - Confirmed cases: through laboratory diagnostics
- > Case definitions can evolve over an outbreak
 - > As lab methods become available
 - > As new geographic areas are identified
 - Ensure that case definitions are compatible or acceptable by local and national health authorities

Examples of case definitions

- > Hepatitis E outbreak Chad:
- Suspected case: Any case of Acute Jaundice Syndrome (yellow eyes) identified at hospital or community level from 3 September 2016
- Confirmed case: any suspected case that tests positive for anti-HEV IgM with the RDT or positive for viral RNA at the reference laboratory
- > Measles outbreak Moba, Katanga 2013
- Suspected case: any child that presents for care with:
- > Rash
- and cough
- > and coryza (i.e. runny nose) or conjunctivitis (i.e. red eyes)

Step 4: Search for cases

- > Start with the case definition and population at risk
- > Aim for *uniform* strategy to search for cases
- > Use multiple sources:
 - > Laboratories
 - Mandatory notification systems
 - Health facilities
 - Community level active case finding

Collect information

- > Type of information:
 - > Identifying information: date of birth, sex, age etc.
 - > Demographic information: occupation, village of residence etc.
 - Clinical details
 - > Known exposures and risk factors
- > Where to collect information:
 - 'mild' disease: outpatient clinics
 - 'severe' disease: hospital admissions, cholera treatment centres;
 - Community surveillance (through CHWs)

Line list

> Ensure information on:

- > Demographics: Age, sex, residence
- > Health history: vaccination or previous disease
- Known symptoms
- Contacts if relevant
- > Laboratory data
- > Only include:
 - > What is feasible (consider resources and trained staff) to collect;
 - What is necessary to collect in that moment to answer specific questions (quality of care, spread?);
 - > What data can contribute to improved response?

Data description

- > **TIME:** when did the outbreak take place
 - > Epidemic curve
- > **PLACE:** where did the cases occur?
 - > Maps
- > **PERSON:** Who was affected
 - > Distribution by age, sex, occupation

The epidemic curve

- > Drawing the histogram
 - Time in X axis
 - Plot cases on Y-axis
- > Description
 - Beginning, peak(s) (Number, Duration) and end
- Helps to develop hypotheses
 - Incubation period
 - > Aetiological agent
 - > Type of source
 - > Type of transmission
 - Time of exposure

Epidemic curve

Outbreak dynamics in time

Propagated source cases 12 -10 11 12 13 weeks

Common persistent source

Common intermittent source

Mapping of cases

Step 6: Test hypotheses using analytical epidemiology

- Characteristics common to cases
 - > Hypotheses generation
- > More than one hypotheses may be generated
 - > There may be more than one source
 - > Maybe following a false lead?
 - > Throw your nets wide
- Analytical study test hypotheses to sort out:
 - > Characteristics common to all individuals
 - > Characteristics specific to cases

Analytical epidemiology

- > Which study designs are used most often in outbreak investigations?
- > (Retrospective) cohort study
- Case control study
- > Other designs:
- Case study
- cohort study

Step 7: Draw conclusion

> Interpretation of all the collected outbreak information incl. descriptive and analytical epidemiology

- Is the suspected exposure associated with illness?
 - > What is the strength of association?
 - Is there a statistical significance?
 - Causality?
- Is there a dose response relationship?
 Higher exposure, stronger association

Does the source/vehicle identified explain most cases?
 Are most of the cases exposed?

Step 8: Conduct additional investigations

- Laboratory studies
 - > Microbiological typing
 - Identical isolates among cases
 - Identical isolates in source and cases
- > Other investigations
 - > Environmental
 - > (e.g., test water, vector studies, visit the kitchen)
 - > Anthropological
 - > (e.g., understand a practice at risk)
 - > Veterinarian
 - > (e.g., test animals in zoonotic disease outbreaks)

Step 9: Communicate findings

- > Epidemiological report to conclude an outbreak investigation
- Communicate findings timely with the different stakeholders
- Stakeholders include (context-specific):
 - Community / population at large
 - Health care staff
 - Laboratory staff
 - Epidemiologists
 - > Ministry of Health (and other ministries depending on the outbreak)
 - Public health agencies
 - Health cluster (incl NGOs)
 - Scientific community

Step 10: Implement control and prevention measures

- > Measures to stop the spread of disease
- \succ Should be implemented at any time during the outbreak investigation
- Formulate clear, specific and feasible recommendations on the basis of your findings
- \succ Ensure implementation of the recommendations
- \succ Examples of control and prevention measures
 - Contact tracing
 - Vaccinations
 - Prophylaxis
 - Quarantine of contacts/ suspected cases
 - \succ Isolation of cases
 - Risk communication
 - Hygienic measures

Acknowledgement

ECDC - European field epidemiology trainings program (EPIET)

MSF