

Epidemiological principles – types of studies

Course «Infections control in a global perspective» at NRSGH at NTNU

Bjørn G. lversen

17 March 2022

Based on a lecture by Pawel Stefanoff and EPIET/EUPHIM material

Descriptive studies

• The W's of descriptive epidemiology:

- What \rightarrow health issue of concern
- Who → person
- Where \rightarrow place
- When → time

Different types of descriptive studies

- Case reports
- Case series
- Cross-sectional
- Description of surveillance data

Analytical epidemiology

- To examine associations between exposures and outcomes
- taking into account
 - Statistical error
 - Bias (selection bias, information bias)
 - confounding
 - effect modifications

marching towards outcomes

What is a cohort?

One of 10 divisions of a Roman legion (480 soldiers)

Group of individuals

- sharing same experience
- followed up for specified period of time

Examples

- birth cohort
- guests at barbecue
- refugees living in a camp
- influenza vaccinated in 2018-19

 \bigcirc

Calculate measure of frequency

Cumulative incidence

- incidence proportion

- attack rate (outbreak)

Incidence rate

end of follow-up

Incidence among exposed

Incidence among unexposed

Purpose

- Study if an exposure is associated with outcome(s)
- Estimate risk of outcome in
- exposed and unexposed groups
- Compare risk of outcome in the two groups
- Cohort membership
 - Being at risk of outcome(s) studied
 - Being alive and
 - Being free of outcome at start of follow-up

Presentation of cohort data: 2x2 table

Risk in exposed= a/a+b

Risk in unexposed= c/c+d

Prospective cohort study

Retrospective cohort study

Recipe: Cohort study

- Identify group of
 exposed subjects
 unexposed subjects
- Measure incidence of disease
- Compare incidence between exposed and unexposed group

Cohort study

Interpretation of Risk Ratios

Vaccine efficacy (VE)

Status	Pop. (1,000s)	Cases	Cases per 1,000	RR
Vaccinated	302	150	0.49	0.28
Unvaccinated	298	515	1.7	Ref.
Total	600	665	1.1	

VE = 1 - RR = 1 - 0.28

= 72%

Disadvantages of cohort studies

- Large sample size
- Latency period
- Cost
- Time-consuming
- Loss to follow-up
- Exposure can change
- Multiple exposure = difficult
- Ethical considerations

Strengths of cohort studies

• Can directly measure

- incidence in exposed and unexposed groups
- true relative risk
- Well suited for rare exposure
- Temporal relationship exposure-disease is clear
- Less subject to selection bias
 - outcome not known (prospective)

Principle of case control studies

Source population

- Exposed
- Unexposed

Source population

- Exposed
- Unexposed

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Cases

 \bigcirc

Controls:

Sample of the source population

Representative with regard to exposure

Case control study

Retrospective nature

Distribution of cases and controls according to exposure in a case control study

	Cases	Controls
Exposed	а	b
Not exposed	С	d
Total	a + c	b + d
% exposed		

Distribution of cases and controls according to exposure in a case control study

	Cases	Controls
Exposed	а	b
Not exposed	C	d
Total	a + c	b + d
% exposed	a/(a+c)	b/(b+d)

Intuitively

if the frequency of exposure is higher among cases than controls

then the incidence rate will probably be higher among exposed than non-exposed Spetses island, 3000 residents, 200 cases of gastroenteritis

Water Consumption	Cases	Controls
YES	150	60
NO	50	140
Total	200	200
% exposed	75%	30%

Case control study

Case control study

Case control study design

Spetses island, 3000 residents, 200 cases of gastroenteritis

Water Consumption	Cases	Controls
YES	150	60
NO	50	140
Total	200	200
Odds of exposu	re 3	0.43
	OR= (150/50)/ (60/140)	

= 7

Advantages of case control studies

- Rare diseases
- Several exposures
- Long latency
- Rapidity
- Low cost
- Small sample size
- Available data
- Less ethical problems

Limitations of case-control studies

- Cannot compute directly risk
- Not suitable for rare exposure
- Temporal relationship exposure-disease difficult to establish
- Biases +++
 - control selection
 - recall biases when collecting data
- Loss of precision due to sampling