

Basics of

Infectious Disease Epidemiology

Course «Infections control in a global perspective» at NRSGH at NTNU

Bjørn G. Iversen

14 March 2022

Based on a lecture from EPIET by Mike Catchpole, Bernadette Gergonne, James Stuart, Outi Lyytikäinen, Viviane Bremer

Introduction

Basic infectious disease epidemiology is simple!

- To understand the dynamics of infectious diseases is important for prevention and control
- Pandemics can be explosive

 Smallpox, plague, cholera, measles, influenza, COVID-19
- Pandemics can be slow and go under the radar for a long time → Aids, TB, leprosy, AMR
- The difference between epidemiology for infections and other diseases

Infectious vs. non-infectious disease epidemiology

Same

- general rationale
- terminology (mostly)
- study methods
- ways of collecting data
 - blood samples, questionnaires, registries ...
- analysis (statistics)

- but some special features

- A case may also be a risk factor
 - Person with infection can also be source of infection
- People may be immune
 - Having had an infection or disease could result to resistance to an infection (immunity)
- A case may be a source without being recognized
 - Asymptomatic/sub-clinical infections
- There is sometimes a need for urgency
 - Epidemics may spread fast and require control measures
- Preventive measures (usually) have a good scientific evidence

Case = exposure

- Primary case
 - Person who brings the disease/infection into a population
- Secondary cases
 - Persons who are infected by primary case
- Generation of infections (waves)
 - Secondary cases are infected at about the same time and consequently tertiary cases
- Index case
 - First case discovered during an outbreak
- Reproductive rate
 - Potential of disease to spread in a population

Chain of Transmission

Reservoir and source of infection

Reservoir of infection

- Ecological niche where the infectious agent survives and multiplies
- Person, animal, arthropod, soil, or substance

Source

- Human
- Animal
- Environment

Transmission routes

Direct transmission	Indirect transmission
Mucous to mucous membrane	Waterborne
Across placenta	Airborne
Transplants, blood	Foodborne
Skin to skin	Vectorborne
Sneezes, cough	Objects/Fomites

Possible outcomes after exposure

Dynamics of disease and infectiousness

Relationships between time periods

Disease occurrence in populations

Sporadic

Occasional cases occurring at irregular intervals

•Endemic

 Continuous occurrence at an expected frequency over a certain period of time and in a certain geographical location

Epidemic or outbreak

 Occurrence in a community or region of cases of an illness with a frequency clearly in excess of normal expectancy

Pandemic

Epidemic involves several countries or continents, affecting a large population

What causes incidence to increase?

Factors influencing disease transmission

Reproductive rate – R

- Potential of an infectious disease to spread in a population
- Dependent on 4 factors:
- Probability of transmission in a contact between an infected individual and a susceptible one
- Frequency of contacts in the population contact patterns in a society
- Duration of infectiousness
- Proportion of the population/contacts that are already immune, not susceptible

Basic reproductive rate (R₀)

Basic formula for the <u>actual</u> value: $R_0 = \beta * \kappa * D$

- β risk of transmission per contact (i.e. attack rate)
 - Condoms, face masks, hand washing $\rightarrow \beta \downarrow$
- **K** average number of contacts per time unit
 - ullet Isolation, closing schools, public campaigns o κ \downarrow
- D duration of infectiousness measured by the same time units as κ
 - Specific for an infectious disease
 - ullet Early diagnosis and treatment, screening, contact tracing o D \downarrow

Basic reproductive rate (R₀)

- Average number of individuals directly infected by an infectious case (<u>secondary cases</u>) during her or his entire infectious period, when she or he enters <u>a totally susceptible</u> <u>population</u>
- (1+2+0+1+3+2+1+2+1+2)/10 = 1.5
 - \bullet R₀ < 1 the disease will disappear
 - \bullet R₀ = 1 the disease will become endemic
 - $ightharpoonup R_0 > 1$ there will be an epidemic

Effective reproduction number R_e

- If the population is not fully susceptible, the average number of secondary cases is less than Ro. This is the effective reproduction number, Re.
- Epidemic in susceptible population
- Number of susceptibles starts to decline
- Eventually, insufficient susceptibles to maintain transmission. When each infectious person infects <1 persons, epidemic dies out

Initial phase $R = R_0$

Peak of epidemic R = 1

Changes to R(t) over an epidemic

R, threshold for outbreak

- If R < 1
 - infection cannot invade a population
 - implications: infection control mechanisms unnecessary (therefore not cost-effective)
- •If R > 1
 - on average the pathogen will invade that population
 - •implications: control measure necessary to prevent (delay) an epidemic

Herd immunity

- Level of immunity in a population which prevents epidemics even if some transmission may still occur
- Presence of immune individuals protects those who are not themselves immune

Minimum proportion (p) of population that needs to be immunized in order to obtain herd immunity

$$p > 1 - 1/R_0$$

e.g.

if $R_0 = 3$, immunity threshold = 67%

if $R_0 = 16$, immunity threshold = 94%

Important concept for immunization programs and eradication of an infectious disease

Vaccination coverage required for elimination

Pc = 1-1/Ro

Summary

- Infectious diseases will continue to be an important threat to humans
- Basic infectious disease epidemiology is simple and fun
- Infectious disease epidemiology is different
- Transmission dynamics important for prevention and control

