

Epidemiological principles – basic indicators

Course «Infections control in a global perspective» at NRSGH at NTNU

Bjørn G. lversen

14 March 2022

Based on a lecture by Pawel Stefanoff and EPIET/EUPHIM material

Epidemiology

Epidemiology studies the occurrence of illness: the <u>frequency and distribution of diseases</u> in the population and their <u>determinants</u>

> Frequency and distribution of diseases (descriptive): who, what, when, where Determinants (analytical): why

Measures in Epidemiology

Measures of...

frequency	association	impact
- Incidence	- Risk Ratio	- Attributable risk
- Prevalence	 Odds Ratio Risk difference 	- Population attributable fraction

Counts

On its own very little informative

Who is in the denominator? In what time period did they occur? **Proportion, ratio and rate**

What, who is in the denominator ? In what time period did they occur?

Proportion

- The division of 2 numbers
- Numerator included in the denominator
- In general, quantities are of same nature
- In general, ranges between 0 and 1
- Percentage = proportion x 100%
- Example:

$$\frac{males}{population} = \frac{400}{1,000} = 0.4 = 40\%$$

Proportion of rotten apples

Oranges to apples- a proportion?

Ratio

- The division of 2 numbers
- Numerator not included in the denominator
- Allows to compare quantities of different nature

$$\frac{males}{females} = \frac{5}{2} = 2.5:1$$

$$\frac{hospital - beds}{doctors} = \frac{850}{10} = 85:1$$

$$\frac{controls}{cases} = \frac{90}{30} = 3:1$$

Rate

- The division of 2 numbers
- Time included in the denominator
- Speed of occurrence of an event over time
- Rates may be expressed in any power of 10

$$\frac{Births(2007)}{Population(2007)} = \frac{2,000}{15,000,000} = 0.00013 = 13/100,000$$

• 13 births per 100,000 population in the year 2007

Example: Rates and Ratio

2,500 1.8 Ratio of Rate per 100,000 standard population 1.7 2,031.2 male/female rate 1.6 Ratio 2,000 ç male to 1,500 Male .2 female 1,000 886.2 Female rate 500 634.3 0.8 0 1935 1940 1950 1960 1970 1980 1990 2000 2010

Age-adjusted death rates and ratio of rates by sex: United States, 1935-2010

SOURCE: CDC/NCHS, National Vital Statistics System, Mortality.

Summary

- Proportion
 - Division of two <u>related</u> numbers
 - Numerator is a subset of denominator
- Ratio
 - Division of two <u>unrelated</u> numbers
- Rate
 - Division of two numbers
 - <u>Time</u> is always in the denominator

Prevalence

Number of cases of disease

Population

- Number of cases of a disease in a given population at a specific time
 - Point in time (point prevalence)
 - Time period (period prevalence)
- Proportion often measured for chronic diseases which have long duration and dates of onset that are difficult to pinpoint.
- Probability of having the disease

Factors influencing Prevalence

- Factors that increase prevalence?
 - Longer duration of disease
 - Prolongation of life
 - Increase in new cases
 - In-migration of cases
 - Out-migration of healthy individuals
 - Improved diagnosis

Factors influencing Prevalence

- Factors that **decrease** prevalence?
 - Short duration of disease
 - High case fatality
 - Decrease in new cases
 - In-migration of healthy individuals
 - Out-migration of cases
 - Improved cure rate

Incidence

- The occurrence of new cases of disease or injury in a population over a specified period of time
- Two types commonly used
 - Incidence proportion
 - Incidence rate

Incidence Proportion

Number of new cases of disease during a period

Population at the beginning of the period

- Number of new cases of a disease in a given population at a specific time
- Proportion of the population that acquires or develops a disease in a period of time
- Probability of developing a disease
- Synonyms
 - Attack rate
 - Risk
 - Probability of developing disease
 - Cumulative incidence

 An incidence proportion used in outbreak setting as a synonym for risk

Overall attack rate

Total number of new cases Total population

Food-specific attack rate

No. of persons who ate a specified food and became ill Total no. of persons who ate that food

Attack Rates

Attack Rates

Incidence Rate

- Measure of incidence that incorporates time directly into the denominator
- Generally calculated from a long-term cohort follow-up study
- Each person is observed from a starting time until one of four "end points" is reached
 - Onset of disease
 - Death
 - Migration out of the study ("lost to follow-up")
 - End of the study

Incidence Rate

Number of new cases of disease

Total person-time of observation

- Proportion of the population that acquires or develops a disease in a period of time
- Speed of developing a disease
- Denominator
 - Measure of time
 - Sum of each individual's time at risk and free from disease

Person - Time

"The Epidemiologist's Bathtub"

Prevalence vs. Incidence

	Prevalence	Incidence	
Numerator:	No. of cases	No. of new cases	
Denominator:	Population at	Population (+time)	
	time point/period		
Measures:	Probability of having disease	Probability of developing the the disease	
Describes:	Burden	Risk	
Used in:	Resource planning	Research on causes, prevention and treatment	

Odds

Probability that an event will happen (1/3)

Probability that an event will not happen (5/)

Odds = 1/5

Probability that cases/controls will be exposed

Probability that cases/controls will not be exposed

Risks, odds and 2x2 tables

	Cases	Non cases	
Exposed	а	b	a+b
Non exposed	С	d	c+d
	a+c	b+d	

- Risk of being a case in exposed = a / (a+b)
- Risk of being a case in non exposed = c / (c+d)
- Odds of being exposed among cases = $\frac{a}{a+c}/(a+c) = a/c$
- Odds of being exposed among non cases = (b/(b+d))/(d/(b+d)) = b/d